organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-(quinolin-8-yl­­oxy)acetate monohydrate

aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, bDepartment of Chemistry, Yuvarajas College, University of Mysore, Mysore 570005, India, and cX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India
*Correspondence e-mail: mas@physics.uni-mysore.ac.in

(Received 16 March 2013; accepted 24 March 2013; online 28 March 2013)

In the title compound, C13H13NO3·H2O, the dihedral angle between the ethyl ester group [C—C—O—C(=O); maximum deviation = 0.003 (2) Å] and the quinoline ring system is 7.94 (12)°. The water solvent mol­ecule is linked to the title mol­ecule via O—H⋯O and O—H⋯N hydrogen bonds. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming chains propagating along [100].

Related literature

For related structures see: Sarveswari et al. (2010[Sarveswari, S., Vijayakumar, V., Prasath, R., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o3284.]); Ukrainets et al. (2009[Ukrainets, I. V., Shishkina, S. V., Shishkin, O. V., Davidenko, A. A. & Tkach, A. A. (2009). Acta Cryst. E65, o968.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13NO3·H2O

  • Mr = 249.26

  • Monoclinic, P 21 /n

  • a = 6.9562 (4) Å

  • b = 17.5050 (9) Å

  • c = 10.5304 (6) Å

  • β = 100.124 (5)°

  • V = 1262.30 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.715, Tmax = 1.000

  • 9808 measured reflections

  • 2478 independent reflections

  • 1448 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.123

  • S = 1.02

  • 2478 reflections

  • 172 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O5 0.85 (3) 2.06 (3) 2.907 (3) 172
O1W—H2W⋯N16 0.92 (3) 1.96 (3) 2.875 (3) 174
C6—H6A⋯O1Wi 0.97 2.43 3.388 (3) 170
Symmetry code: (i) x-1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In the title molecule, Fig. 1, the bond lengths (Allen et al., 1987) and angles have normal values and are comparable with those reported for similar structures (Sarveswari et al., 2010; Ukrainets et al., 2009). The dihedral angle between the ethyl ester group (C1/C2/O3/C4/O5) and the quinoline (C8—C15/N16/C17) ring system is 7.94 (12)°. The solvent water molecule is linked to the title molecule via O-H···O and O-H···N hydrogen bonds (Fig. 1 and Table 1).

In the crystal, molecules are linked by C—H···O hydrogen bonds (Table 1) forming chains propagating along the a axis direction (Fig. 2).

Related literature top

For related structures see: Sarveswari et al. (2010); Ukrainets et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 8-hydroxy quinoline(0.01 mol) and ethyl chloroacetate (0.015 mol) in the presence of dry acetone (50 ml) and anhydrous potassium carbonate (0.015 mol) was refluxed for 8 h. The residual mass was triturated with cold water to remove potassium carbonate and extracted with ether (30 ml). The ether layer was washed with 10% sodium hydroxide solution (350 ml) followed by water (330 ml) and then dried over anhydrous sodium sulfate and evaporated to dryness. The compound was purified by successive recrystallizations from ethanol yielding colourless block-like crystals (Yield 90%, m.p. 350–352 K).

Refinement top

The water molecule H atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically and treated as riding atoms: C—H distances of 0.93–0.97 Å with Uiso(H) = 1.5Ueq(methyl C) and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 40% probability level. The O-H···O and O-H···N hydrogen bonds are shown as dashed lines (see Table for details).
[Figure 2] Fig. 2. The crystal packing of the title compound view along the a axis, showing the O—H···O, O—H···N and C-H···O hydrogen bonds as dashed lines (see Table 1 for details).
Ethyl 2-(quinolin-8-yloxy)acetate monohydrate top
Crystal data top
C13H13NO3·H2OF(000) = 528
Mr = 249.26Dx = 1.312 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3127 reflections
a = 6.9562 (4) Åθ = 3.5–29.0°
b = 17.5050 (9) ŵ = 0.10 mm1
c = 10.5304 (6) ÅT = 293 K
β = 100.124 (5)°Block, colourless
V = 1262.30 (12) Å30.3 × 0.2 × 0.2 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2478 independent reflections
Radiation source: fine-focus sealed tube1448 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.5°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 2121
Tmin = 0.715, Tmax = 1.000l = 1112
9808 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0382P)2 + 0.1537P]
where P = (Fo2 + 2Fc2)/3
2478 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C13H13NO3·H2OV = 1262.30 (12) Å3
Mr = 249.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.9562 (4) ŵ = 0.10 mm1
b = 17.5050 (9) ÅT = 293 K
c = 10.5304 (6) Å0.3 × 0.2 × 0.2 mm
β = 100.124 (5)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2478 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1448 reflections with I > 2σ(I)
Tmin = 0.715, Tmax = 1.000Rint = 0.051
9808 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.14 e Å3
2478 reflectionsΔρmin = 0.19 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1064 (4)0.11734 (16)0.0152 (2)0.0746 (9)
H1A0.11360.16080.04100.112*
H1B0.12910.13340.09850.112*
H1C0.02080.09460.02370.112*
C20.2574 (4)0.06026 (15)0.0399 (2)0.0605 (7)
H2A0.38680.08250.04810.073*
H2B0.25110.01600.01600.073*
O30.2179 (2)0.03807 (9)0.16644 (14)0.0527 (5)
C40.3381 (3)0.01324 (13)0.2305 (2)0.0431 (6)
O50.4722 (3)0.04156 (11)0.19103 (16)0.0671 (6)
C60.2763 (3)0.03087 (12)0.35690 (19)0.0407 (6)
H6A0.14720.05370.34210.049*
H6B0.27170.01570.40620.049*
O70.4143 (2)0.08241 (8)0.42563 (13)0.0440 (4)
C80.3737 (3)0.11137 (12)0.5390 (2)0.0374 (5)
C90.2176 (3)0.09077 (14)0.5928 (2)0.0501 (6)
H90.12990.05440.55290.060*
C100.1893 (4)0.12463 (16)0.7087 (2)0.0628 (7)
H100.08240.11000.74510.075*
C110.3136 (4)0.17809 (16)0.7690 (2)0.0630 (8)
H110.29020.20060.84490.076*
C120.4787 (4)0.19961 (13)0.7166 (2)0.0471 (6)
C130.6180 (4)0.25321 (14)0.7755 (2)0.0595 (7)
H130.60030.27770.85100.071*
C140.7760 (4)0.26897 (14)0.7230 (2)0.0582 (7)
H140.86980.30350.76200.070*
C150.7960 (4)0.23238 (13)0.6085 (2)0.0538 (7)
H150.90560.24410.57280.065*
N160.6718 (3)0.18260 (11)0.54715 (17)0.0466 (5)
C170.5122 (3)0.16581 (12)0.6004 (2)0.0383 (5)
O1W0.8236 (3)0.10488 (13)0.3454 (2)0.0723 (6)
H2W0.770 (5)0.1318 (18)0.406 (3)0.123 (14)*
H1W0.728 (5)0.0844 (18)0.295 (3)0.109 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.099 (2)0.0701 (19)0.0512 (16)0.0165 (17)0.0026 (16)0.0184 (14)
C20.0763 (19)0.0683 (18)0.0396 (14)0.0050 (15)0.0171 (13)0.0153 (13)
O30.0602 (11)0.0590 (11)0.0403 (9)0.0135 (9)0.0124 (8)0.0143 (8)
C40.0463 (14)0.0449 (14)0.0378 (13)0.0001 (12)0.0067 (11)0.0053 (11)
O50.0646 (12)0.0882 (14)0.0534 (11)0.0269 (11)0.0243 (9)0.0198 (10)
C60.0409 (13)0.0417 (13)0.0394 (12)0.0017 (10)0.0065 (10)0.0068 (10)
O70.0484 (9)0.0490 (10)0.0359 (8)0.0061 (8)0.0110 (7)0.0102 (7)
C80.0442 (13)0.0353 (12)0.0327 (12)0.0049 (10)0.0067 (10)0.0018 (10)
C90.0499 (15)0.0598 (17)0.0424 (14)0.0055 (13)0.0129 (12)0.0047 (12)
C100.0585 (17)0.083 (2)0.0517 (16)0.0014 (15)0.0234 (13)0.0074 (15)
C110.0686 (18)0.079 (2)0.0443 (15)0.0070 (16)0.0184 (14)0.0182 (14)
C120.0577 (15)0.0410 (14)0.0413 (13)0.0083 (12)0.0054 (12)0.0041 (11)
C130.0715 (19)0.0504 (16)0.0531 (15)0.0103 (14)0.0015 (14)0.0194 (13)
C140.0637 (18)0.0478 (16)0.0590 (17)0.0028 (13)0.0003 (14)0.0094 (13)
C150.0588 (16)0.0491 (15)0.0524 (15)0.0068 (13)0.0073 (13)0.0025 (13)
N160.0512 (12)0.0438 (12)0.0446 (11)0.0055 (10)0.0079 (10)0.0040 (9)
C170.0450 (13)0.0358 (13)0.0335 (12)0.0054 (11)0.0051 (10)0.0010 (10)
O1W0.0525 (12)0.0896 (16)0.0786 (15)0.0139 (11)0.0217 (11)0.0260 (13)
Geometric parameters (Å, º) top
C1—C21.492 (3)C9—H90.9300
C1—H1A0.9600C10—C111.354 (3)
C1—H1B0.9600C10—H100.9300
C1—H1C0.9600C11—C121.410 (3)
C2—O31.460 (3)C11—H110.9300
C2—H2A0.9700C12—C131.412 (3)
C2—H2B0.9700C12—C171.414 (3)
O3—C41.328 (2)C13—C141.344 (3)
C4—O51.194 (3)C13—H130.9300
C4—C61.501 (3)C14—C151.393 (3)
C6—O71.420 (2)C14—H140.9300
C6—H6A0.9700C15—N161.314 (3)
C6—H6B0.9700C15—H150.9300
O7—C81.371 (2)N16—C171.361 (3)
C8—C91.359 (3)O1W—H2W0.93 (4)
C8—C171.427 (3)O1W—H1W0.85 (4)
C9—C101.401 (3)
C2—C1—H1A109.5C8—C9—C10119.7 (2)
C2—C1—H1B109.5C8—C9—H9120.1
H1A—C1—H1B109.5C10—C9—H9120.1
C2—C1—H1C109.5C11—C10—C9121.7 (2)
H1A—C1—H1C109.5C11—C10—H10119.2
H1B—C1—H1C109.5C9—C10—H10119.2
O3—C2—C1107.5 (2)C10—C11—C12119.9 (2)
O3—C2—H2A110.2C10—C11—H11120.1
C1—C2—H2A110.2C12—C11—H11120.1
O3—C2—H2B110.2C11—C12—C13123.3 (2)
C1—C2—H2B110.2C11—C12—C17119.8 (2)
H2A—C2—H2B108.5C13—C12—C17117.0 (2)
C4—O3—C2116.17 (19)C14—C13—C12120.2 (2)
O5—C4—O3124.4 (2)C14—C13—H13119.9
O5—C4—C6125.9 (2)C12—C13—H13119.9
O3—C4—C6109.7 (2)C13—C14—C15118.4 (2)
O7—C6—C4108.00 (18)C13—C14—H14120.8
O7—C6—H6A110.1C15—C14—H14120.8
C4—C6—H6A110.1N16—C15—C14125.0 (3)
O7—C6—H6B110.1N16—C15—H15117.5
C4—C6—H6B110.1C14—C15—H15117.5
H6A—C6—H6B108.4C15—N16—C17117.0 (2)
C8—O7—C6117.01 (17)N16—C17—C12122.4 (2)
C9—C8—O7124.6 (2)N16—C17—C8119.47 (19)
C9—C8—C17120.9 (2)C12—C17—C8118.1 (2)
O7—C8—C17114.56 (19)H2W—O1W—H1W107 (3)
C1—C2—O3—C4179.6 (2)C17—C12—C13—C141.4 (3)
C2—O3—C4—O50.3 (3)C12—C13—C14—C151.2 (4)
C2—O3—C4—C6179.04 (19)C13—C14—C15—N160.4 (4)
O5—C4—C6—O74.6 (3)C14—C15—N16—C170.1 (3)
O3—C4—C6—O7176.69 (16)C15—N16—C17—C120.1 (3)
C4—C6—O7—C8173.95 (17)C15—N16—C17—C8179.14 (19)
C6—O7—C8—C94.0 (3)C11—C12—C17—N16178.0 (2)
C6—O7—C8—C17176.90 (17)C13—C12—C17—N160.9 (3)
O7—C8—C9—C10179.4 (2)C11—C12—C17—C81.0 (3)
C17—C8—C9—C101.5 (3)C13—C12—C17—C8179.91 (19)
C8—C9—C10—C110.3 (4)C9—C8—C17—N16177.0 (2)
C9—C10—C11—C121.4 (4)O7—C8—C17—N162.2 (3)
C10—C11—C12—C13178.1 (2)C9—C8—C17—C122.1 (3)
C10—C11—C12—C170.7 (4)O7—C8—C17—C12178.72 (18)
C11—C12—C13—C14177.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O50.85 (3)2.06 (3)2.907 (3)172
O1W—H2W···N160.92 (3)1.96 (3)2.875 (3)174
C6—H6A···O1Wi0.972.433.388 (3)170
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC13H13NO3·H2O
Mr249.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.9562 (4), 17.5050 (9), 10.5304 (6)
β (°) 100.124 (5)
V3)1262.30 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.715, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9808, 2478, 1448
Rint0.051
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.123, 1.02
No. of reflections2478
No. of parameters172
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.19

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O50.85 (3)2.06 (3)2.907 (3)172
O1W—H2W···N160.92 (3)1.96 (3)2.875 (3)174
C6—H6A···O1Wi0.972.433.388 (3)170
Symmetry code: (i) x1, y, z.
 

Acknowledgements

MK acknowledges the help of Bahubali College of Engin­eering, Shravanabelagola, for his research work. RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSarveswari, S., Vijayakumar, V., Prasath, R., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o3284.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUkrainets, I. V., Shishkina, S. V., Shishkin, O. V., Davidenko, A. A. & Tkach, A. A. (2009). Acta Cryst. E65, o968.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds