organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o612-o613

N-tert-Butyl-2-[4-(di­methyl­amino)­phen­yl]imidazo[1,2-a]pyrazin-3-amine

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 18 March 2013; accepted 21 March 2013; online 28 March 2013)

In the title compound, C18H23N5, the imidazole ring makes a dihedral angles of 3.96 (8) and 19.02 (8)°, respectively, with the pyrazine and benzene rings while the dihedral angle between the pyrazine and benzene rings is 16.96 (7)°. In the crystal, mol­ecules are linked via N—H⋯N hydrogen bonds, forming chains along [010]. These chains are linked by C—H⋯N hydrogen bonds, forming two-dimensional networks lying parallel to (001).

Related literature

For applications of the pyrazine ring system in drug development, see: Du et al. (2009[Du, X. H., Gustin, D. J., Chen, X. Q., Duquette, J., McGee, L. R., Wang, Z. L., Ebsworth, K., Henne, K., Lemon, B., Ma, J., Miao, S. C., Sabalan, E., Sullivan, T. J., Tonn, G., Collins, T. L. & Medina, J. C. (2009). Bioorg. Med.Chem. Lett. 19, 5200-5204.]); Dubinina et al. (2006[Dubinina, G. G., Platonov, M. O., Golovach, S. M., Borysko, P. O., Tolmachov, A. O. & Volovenko, Y. M. (2006). Eur. J. Med. Chem. 41, 727-737.]); Ellsworth et al. (2007[Ellsworth, B. A., Wang, Y., Zhu, Y. H., Pendri, A., Gerritz, S. W., Sun, C. Q., Carlson, K. E., Kang, L. Y., Baska, R. A., Yang, Y. F., Huang, Q., Burford, N. T., Cullen, M. J., Johnghar, S., Behnia, K., Pelleymounter, M. A., Washburn, W. N. & Ewing, W. R. (2007). Bioorg. Med. Chem. Lett. 17, 3978-3982.]); Mukaiyama et al. (2007[Mukaiyama, H., Nishimura, T., Kobayashi, S., Ozawa, T., Kamada, N., Komatsu, Y., Kikuchi, S., Oonota, H. & Kusama, H. (2007). Bioorg. Med. Chem. Lett. 15, 868-885.]). For ongoing structural studies of heterocyclic N-containing derivatives, see: Nasir et al. (2010[Nasir, S. B., Abdullah, Z., Fairuz, Z. A., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2187.]). For background to the fluorescence properties of compounds related to the title compound, see: Kawai et al. (2001[Kawai, M., Lee, M. J., Evans, K. O. & Norlund, T. (2001). J. Fluoresc. 11, 23-32.]); Abdullah (2005[Abdullah, Z. (2005). Int. J. Chem. Sci. 3, 9-15.]). For general background to the use of imidazole derivatives as drugs, see: Dooley et al. (1992[Dooley, S. W., Jarvis, W. R., Marione, W. J. & Snider, D. E. Jr (1992). Ann. Intern. Med. 117, 257-259.]); Jackson et al. (2000[Jackson, C. J., Lamb, D. C., Kelly, D. E. & Kelly, S. L. (2000). FEMS Microbiol. Lett. 192, 159-162.]); Banfi et al. (2006[Banfi, E., Scialino, G., Zampieri, D., Mamolo, M. G., Vio, L., Ferrone, M., Fermeglia, M., Paneni, M. S. & Pricl, S. (2006). J. Antimicrob. Chemother. 58, 76-84.]). For a related structure, see: Ouzidan et al. (2011[Ouzidan, Y., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011). Acta Cryst. E67, o1684.]).

[Scheme 1]

Experimental

Crystal data
  • C18H23N5

  • Mr = 309.41

  • Orthorhombic, P b c a

  • a = 12.1746 (11) Å

  • b = 13.9614 (13) Å

  • c = 20.2985 (19) Å

  • V = 3450.2 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.985

  • 18314 measured reflections

  • 4157 independent reflections

  • 2964 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.148

  • S = 1.03

  • 4157 reflections

  • 218 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N1i 0.873 (18) 2.201 (18) 3.0361 (18) 160.0 (14)
C11—H11⋯N4ii 0.93 2.53 3.428 (2) 162
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The pyrazine ring system is a useful structural element in medicinal chemistry and has found broad applications in drug development which can be used as antiproliferative agents (Dubinina et al., 2006), potent CXCR3 antagonists (Du et al., 2009),CB1 antagonists (Ellsworth et al., 2007) and c-Src inhibitory (Mukaiyama et al., 2007). On-going structural studies of heterocyclic N-containing derivatives (Nasir et al., 2010) are also motivated by an investigation of their fluorescence properties (Kawai et al., 2001; Abdullah, 2005). For multidrug-resistant Tuberculosis (Dooley et al.,(1992)), antifungal and antimycobacterial activity (Banfi et al. 2006), and bactericidal effects (Jackson et al. 2000), the use of imidazole based compounds has been reported. In view of the different applications of this class of compounds, we have undertaken a single-crystal structure determination of the title compound.

In the titled compound, Fig. 1, the imidazole ring (N2/N4/C3/C5/C6) makes a dihedral angle of 3.96 (8)° with the pyrazine ring (N1/N2/C1-C4) and a dihedral angle of 19.02 (8)° with the benzene ring (C7-C12). The dihedral angle between the pyrazine ring and the benzene ring is 16.96 (7)°.The dimethylamine group (N5/C14/C15) attached with the benzene ring makes a dihedral angle of 8.84 (11)°.

In the crystal, molecules are linked via N-H···N hydrogen bonds forming chains along [010]. These chains are linked by C—H···N hydrogen bonds forming two-dimensional networks lying parallel to (001); see Table 1 and Fig. 2 for details.

Related literature top

For applications of the pyrazine ring system in drug development, see: Du et al. (2009); Dubinina et al. (2006); Ellsworth et al. (2007); Mukaiyama et al. (2007). For ongoing structural studies of heterocyclic N-containing derivatives, see: Nasir et al. (2010). For background to the fluorescence properties of compounds related to the title compound, see: Kawai et al. (2001); Abdullah (2005). For general background to the use of imidazole derivatives as drugs, see: Dooley et al. (1992); Jackson et al. (2000); Banfi et al. (2006). For a related structure, see: Ouzidan et al. (2011).

Experimental top

2-aminoamidine (1.0 mmol) was placed in an oven-dried round bottom flask, dissolved in EtOH (5.0 mL) and stirred at room temperature. 4-N,N-dimethyl benzaldehyde (1.0 mmol), isocyanide (1.0 mmol) and Iodine (2.0 mol%) were added sequentially and the mixture stirred at room temperature for one hour. Progress of the reaction was monitored by TLC. When finished the reaction mixture was concentrated under reduced pressure and the crude product was partitioned between EtOAc and water. The organic phase was separated, and the residual product in the aqueous phase was extracted with EtOAc (2 × 10 mL). The combined organic extract was dried over anhydrous Na2SO4, filtered, concentrated and purified using column chromatography (silica gel 60-120 mesh, elutent: 2% EtOAc in hexane). Colourless block-like crystals, suitable for X-ray diffraction analysis, were obtained by slow evaporation of a solution of the title compound in ethanol at room temperature [M.p: 478 - 480 K; IR (KBr, cm-1): 3259 (NH)]

Refinement top

The NH H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were placed in calculated positions and refined in the riding model: C—H = 0.93 - 1.08 Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008)and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the c axis. The hydrogen bonds are shown as dashed lines [see Table 1 for details; H-atoms not involved in hydrogen bonds have been omitted for clarity].
N-tert-Butyl-2-[4-(dimethylamino)phenyl]imidazo[1,2-a]pyrazin-3-amine top
Crystal data top
C18H23N5F(000) = 1328
Mr = 309.41Dx = 1.191 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4157 reflections
a = 12.1746 (11) Åθ = 2.0–28.3°
b = 13.9614 (13) ŵ = 0.07 mm1
c = 20.2985 (19) ÅT = 293 K
V = 3450.2 (6) Å3Block, colourless
Z = 80.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4157 independent reflections
Radiation source: fine-focus sealed tube2964 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω and ϕ scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1516
Tmin = 0.978, Tmax = 0.985k = 1817
18314 measured reflectionsl = 1627
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0723P)2 + 0.8061P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4157 reflectionsΔρmax = 0.32 e Å3
218 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0055 (8)
Crystal data top
C18H23N5V = 3450.2 (6) Å3
Mr = 309.41Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.1746 (11) ŵ = 0.07 mm1
b = 13.9614 (13) ÅT = 293 K
c = 20.2985 (19) Å0.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4157 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2964 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.985Rint = 0.043
18314 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.32 e Å3
4157 reflectionsΔρmin = 0.25 e Å3
218 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.08078 (14)0.06634 (12)0.30835 (9)0.0504 (4)
H10.12750.07430.34420.060*
C20.01406 (13)0.01078 (11)0.30790 (8)0.0435 (4)
H20.01400.05420.34270.052*
C30.04911 (13)0.03960 (10)0.20176 (7)0.0402 (3)
C40.01999 (15)0.11940 (11)0.20827 (9)0.0506 (4)
H40.02060.16460.17460.061*
C50.12824 (11)0.09448 (10)0.23825 (7)0.0343 (3)
C60.16191 (11)0.07218 (10)0.17397 (7)0.0340 (3)
C70.23754 (11)0.12262 (10)0.12939 (7)0.0337 (3)
C80.28253 (13)0.07449 (10)0.07535 (7)0.0397 (3)
H80.26280.01100.06800.048*
C90.35502 (14)0.11775 (12)0.03267 (7)0.0455 (4)
H90.38430.08250.00200.055*
C100.38571 (12)0.21406 (11)0.04048 (7)0.0405 (3)
C110.33674 (12)0.26364 (11)0.09300 (7)0.0396 (3)
H110.35240.32830.09880.047*
C120.26608 (12)0.21882 (10)0.13617 (7)0.0375 (3)
H120.23650.25380.17090.045*
C130.51820 (19)0.20205 (17)0.05008 (11)0.0752 (6)
H13A0.55850.15230.02810.113*
H13B0.56840.24280.07340.113*
H13C0.46740.17400.08060.113*
C140.48781 (18)0.35712 (15)0.00500 (10)0.0670 (5)
H14A0.42220.39520.00700.101*
H14B0.53140.37680.03200.101*
H14C0.52920.36570.04480.101*
C150.24118 (15)0.15682 (14)0.33195 (8)0.0528 (4)
C160.34950 (17)0.1809 (3)0.29967 (13)0.1029 (10)
H16A0.36160.13870.26310.154*
H16B0.40780.17340.33110.154*
H16C0.34790.24600.28430.154*
C170.2179 (2)0.2255 (2)0.38729 (11)0.0970 (9)
H17A0.21820.28980.37070.146*
H17B0.27330.21900.42060.146*
H17C0.14720.21140.40590.146*
C180.2491 (3)0.0546 (2)0.35636 (17)0.1255 (13)
H18A0.18770.04090.38450.188*
H18B0.31620.04640.38060.188*
H18C0.24840.01160.31950.188*
N10.08393 (13)0.13359 (9)0.25942 (8)0.0540 (4)
N20.05405 (10)0.02334 (8)0.25439 (6)0.0364 (3)
N30.14805 (10)0.16613 (9)0.28437 (6)0.0393 (3)
N40.11341 (11)0.01085 (9)0.15268 (6)0.0417 (3)
N50.45877 (13)0.25768 (12)0.00212 (7)0.0601 (4)
H30.1442 (13)0.2223 (13)0.2656 (8)0.042 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0562 (10)0.0418 (9)0.0532 (9)0.0031 (7)0.0173 (8)0.0078 (7)
C20.0505 (9)0.0407 (8)0.0394 (7)0.0067 (7)0.0083 (7)0.0017 (6)
C30.0444 (8)0.0323 (7)0.0440 (8)0.0002 (6)0.0063 (7)0.0035 (6)
C40.0567 (10)0.0364 (8)0.0586 (10)0.0068 (7)0.0142 (8)0.0076 (7)
C50.0361 (7)0.0293 (7)0.0375 (7)0.0033 (6)0.0007 (6)0.0002 (5)
C60.0340 (7)0.0296 (7)0.0385 (7)0.0035 (5)0.0007 (6)0.0020 (5)
C70.0322 (7)0.0343 (7)0.0345 (7)0.0021 (5)0.0015 (5)0.0002 (6)
C80.0467 (8)0.0332 (7)0.0392 (7)0.0001 (6)0.0016 (6)0.0043 (6)
C90.0532 (9)0.0448 (9)0.0384 (7)0.0022 (7)0.0086 (7)0.0059 (7)
C100.0369 (7)0.0467 (9)0.0379 (7)0.0026 (6)0.0001 (6)0.0016 (6)
C110.0402 (7)0.0366 (8)0.0419 (7)0.0045 (6)0.0010 (6)0.0017 (6)
C120.0392 (7)0.0352 (7)0.0379 (7)0.0011 (6)0.0010 (6)0.0056 (6)
C130.0726 (14)0.0869 (16)0.0662 (12)0.0015 (11)0.0331 (11)0.0044 (11)
C140.0725 (13)0.0677 (12)0.0610 (11)0.0256 (10)0.0065 (10)0.0113 (9)
C150.0494 (9)0.0655 (11)0.0434 (8)0.0067 (8)0.0102 (7)0.0113 (8)
C160.0460 (12)0.188 (3)0.0746 (14)0.0117 (15)0.0093 (11)0.0300 (17)
C170.0787 (15)0.146 (3)0.0659 (13)0.0234 (16)0.0176 (12)0.0533 (15)
C180.147 (3)0.091 (2)0.138 (3)0.0072 (19)0.092 (2)0.0259 (18)
N10.0589 (9)0.0375 (7)0.0657 (9)0.0044 (6)0.0185 (7)0.0017 (7)
N20.0390 (6)0.0311 (6)0.0392 (6)0.0031 (5)0.0039 (5)0.0009 (5)
N30.0445 (7)0.0354 (7)0.0378 (6)0.0047 (5)0.0024 (5)0.0055 (5)
N40.0472 (7)0.0340 (6)0.0439 (7)0.0049 (5)0.0072 (6)0.0060 (5)
N50.0613 (9)0.0632 (9)0.0557 (8)0.0138 (8)0.0211 (7)0.0013 (7)
Geometric parameters (Å, º) top
C1—C21.349 (2)C11—H110.9300
C1—N11.367 (2)C12—H120.9300
C1—H10.9300C13—N51.440 (2)
C2—N21.3778 (19)C13—H13A0.9600
C2—H20.9300C13—H13B0.9600
C3—N41.3291 (19)C13—H13C0.9600
C3—N21.3847 (18)C14—N51.440 (2)
C3—C41.402 (2)C14—H14A0.9600
C4—N11.313 (2)C14—H14B0.9600
C4—H40.9300C14—H14C0.9600
C5—N21.3819 (18)C15—N31.495 (2)
C5—N31.3912 (18)C15—C171.504 (3)
C5—C61.4027 (19)C15—C161.510 (3)
C6—N41.3709 (18)C15—C181.514 (3)
C6—C71.4706 (19)C16—H16A0.9600
C7—C121.394 (2)C16—H16B0.9600
C7—C81.398 (2)C16—H16C0.9600
C8—C91.376 (2)C17—H17A0.9600
C8—H80.9300C17—H17B0.9600
C9—C101.405 (2)C17—H17C0.9600
C9—H90.9300C18—H18A0.9600
C10—N51.382 (2)C18—H18B0.9600
C10—C111.404 (2)C18—H18C0.9600
C11—C121.378 (2)N3—H30.873 (17)
C2—C1—N1124.07 (15)N5—C14—H14A109.5
C2—C1—H1118.0N5—C14—H14B109.5
N1—C1—H1118.0H14A—C14—H14B109.5
C1—C2—N2118.00 (14)N5—C14—H14C109.5
C1—C2—H2121.0H14A—C14—H14C109.5
N2—C2—H2121.0H14B—C14—H14C109.5
N4—C3—N2111.17 (13)N3—C15—C17106.49 (15)
N4—C3—C4131.60 (14)N3—C15—C16111.26 (15)
N2—C3—C4117.23 (13)C17—C15—C16110.3 (2)
N1—C4—C3123.38 (15)N3—C15—C18109.98 (17)
N1—C4—H4118.3C17—C15—C18111.6 (2)
C3—C4—H4118.3C16—C15—C18107.2 (2)
N2—C5—N3118.08 (12)C15—C16—H16A109.5
N2—C5—C6104.60 (12)C15—C16—H16B109.5
N3—C5—C6137.30 (13)H16A—C16—H16B109.5
N4—C6—C5110.80 (12)C15—C16—H16C109.5
N4—C6—C7118.73 (12)H16A—C16—H16C109.5
C5—C6—C7130.48 (13)H16B—C16—H16C109.5
C12—C7—C8116.29 (13)C15—C17—H17A109.5
C12—C7—C6123.82 (12)C15—C17—H17B109.5
C8—C7—C6119.86 (13)H17A—C17—H17B109.5
C9—C8—C7122.29 (14)C15—C17—H17C109.5
C9—C8—H8118.9H17A—C17—H17C109.5
C7—C8—H8118.9H17B—C17—H17C109.5
C8—C9—C10121.30 (14)C15—C18—H18A109.5
C8—C9—H9119.3C15—C18—H18B109.5
C10—C9—H9119.3H18A—C18—H18B109.5
N5—C10—C11122.09 (14)C15—C18—H18C109.5
N5—C10—C9121.49 (14)H18A—C18—H18C109.5
C11—C10—C9116.41 (13)H18B—C18—H18C109.5
C12—C11—C10121.61 (14)C4—N1—C1117.02 (14)
C12—C11—H11119.2C2—N2—C5132.20 (13)
C10—C11—H11119.2C2—N2—C3120.09 (13)
C11—C12—C7122.01 (13)C5—N2—C3107.56 (12)
C11—C12—H12119.0C5—N3—C15120.24 (12)
C7—C12—H12119.0C5—N3—H3110.0 (11)
N5—C13—H13A109.5C15—N3—H3113.6 (11)
N5—C13—H13B109.5C3—N4—C6105.83 (12)
H13A—C13—H13B109.5C10—N5—C14121.33 (15)
N5—C13—H13C109.5C10—N5—C13120.58 (16)
H13A—C13—H13C109.5C14—N5—C13117.68 (16)
H13B—C13—H13C109.5
N1—C1—C2—N21.0 (3)C1—C2—N2—C5177.97 (15)
N4—C3—C4—N1175.41 (17)C1—C2—N2—C33.0 (2)
N2—C3—C4—N14.2 (3)N3—C5—N2—C25.3 (2)
N2—C5—C6—N42.09 (16)C6—C5—N2—C2173.15 (14)
N3—C5—C6—N4179.96 (16)N3—C5—N2—C3179.30 (12)
N2—C5—C6—C7178.06 (14)C6—C5—N2—C32.27 (15)
N3—C5—C6—C70.1 (3)N4—C3—N2—C2174.29 (13)
N4—C6—C7—C12160.24 (13)C4—C3—N2—C25.4 (2)
C5—C6—C7—C1219.9 (2)N4—C3—N2—C51.79 (17)
N4—C6—C7—C817.7 (2)C4—C3—N2—C5178.51 (14)
C5—C6—C7—C8162.11 (14)N2—C5—N3—C1593.24 (17)
C12—C7—C8—C92.9 (2)C6—C5—N3—C1589.0 (2)
C6—C7—C8—C9178.96 (14)C17—C15—N3—C5161.45 (18)
C7—C8—C9—C101.5 (2)C16—C15—N3—C578.3 (2)
C8—C9—C10—N5179.77 (15)C18—C15—N3—C540.4 (2)
C8—C9—C10—C111.3 (2)N2—C3—N4—C60.46 (17)
N5—C10—C11—C12178.37 (15)C4—C3—N4—C6179.89 (17)
C9—C10—C11—C122.7 (2)C5—C6—N4—C31.04 (16)
C10—C11—C12—C71.3 (2)C7—C6—N4—C3179.08 (13)
C8—C7—C12—C111.5 (2)C11—C10—N5—C140.5 (3)
C6—C7—C12—C11179.53 (14)C9—C10—N5—C14178.34 (17)
C3—C4—N1—C10.5 (3)C11—C10—N5—C13171.93 (17)
C2—C1—N1—C42.2 (3)C9—C10—N5—C139.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N1i0.873 (18)2.201 (18)3.0361 (18)160.0 (14)
C11—H11···N4ii0.932.533.428 (2)162
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC18H23N5
Mr309.41
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)12.1746 (11), 13.9614 (13), 20.2985 (19)
V3)3450.2 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.978, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
18314, 4157, 2964
Rint0.043
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.148, 1.03
No. of reflections4157
No. of parameters218
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.25

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008)and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N1i0.873 (18)2.201 (18)3.0361 (18)160.0 (14)
C11—H11···N4ii0.932.5323.428 (2)162.0
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India for data collection. ZF also thanks the UGC for a meritorious fellowship.

References

First citationAbdullah, Z. (2005). Int. J. Chem. Sci. 3, 9–15.  CAS Google Scholar
First citationBanfi, E., Scialino, G., Zampieri, D., Mamolo, M. G., Vio, L., Ferrone, M., Fermeglia, M., Paneni, M. S. & Pricl, S. (2006). J. Antimicrob. Chemother. 58, 76–84.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDooley, S. W., Jarvis, W. R., Marione, W. J. & Snider, D. E. Jr (1992). Ann. Intern. Med. 117, 257–259.  CrossRef PubMed CAS Google Scholar
First citationDu, X. H., Gustin, D. J., Chen, X. Q., Duquette, J., McGee, L. R., Wang, Z. L., Ebsworth, K., Henne, K., Lemon, B., Ma, J., Miao, S. C., Sabalan, E., Sullivan, T. J., Tonn, G., Collins, T. L. & Medina, J. C. (2009). Bioorg. Med.Chem. Lett. 19, 5200–5204.  Web of Science CrossRef CAS Google Scholar
First citationDubinina, G. G., Platonov, M. O., Golovach, S. M., Borysko, P. O., Tolmachov, A. O. & Volovenko, Y. M. (2006). Eur. J. Med. Chem. 41, 727–737.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEllsworth, B. A., Wang, Y., Zhu, Y. H., Pendri, A., Gerritz, S. W., Sun, C. Q., Carlson, K. E., Kang, L. Y., Baska, R. A., Yang, Y. F., Huang, Q., Burford, N. T., Cullen, M. J., Johnghar, S., Behnia, K., Pelleymounter, M. A., Washburn, W. N. & Ewing, W. R. (2007). Bioorg. Med. Chem. Lett. 17, 3978–3982.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJackson, C. J., Lamb, D. C., Kelly, D. E. & Kelly, S. L. (2000). FEMS Microbiol. Lett. 192, 159–162.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKawai, M., Lee, M. J., Evans, K. O. & Norlund, T. (2001). J. Fluoresc. 11, 23–32.  Web of Science CrossRef CAS Google Scholar
First citationMukaiyama, H., Nishimura, T., Kobayashi, S., Ozawa, T., Kamada, N., Komatsu, Y., Kikuchi, S., Oonota, H. & Kusama, H. (2007). Bioorg. Med. Chem. Lett. 15, 868–885.  CrossRef CAS Google Scholar
First citationNasir, S. B., Abdullah, Z., Fairuz, Z. A., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2187.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOuzidan, Y., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011). Acta Cryst. E67, o1684.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o612-o613
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds