organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[5-(4-Fluoro­phen­yl)-1-(4-phenyl-1,3-thia­zol-2-yl)-4,5-di­hydro-1H-pyrazol-3-yl]-5-methyl-1-(4-methyl­phenyl)-1H-1,2,3-triazole

aApplied Organic Chemistry Department, National Research Centre, Dokki, 12622 Giza, Egypt, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 25 March 2013; accepted 25 March 2013; online 28 March 2013)

In the title compound, C28H23FN6S, the pyrazole ring adopts an envelope conformation, with the methine C atom being the flap atom. With respect to this ring, the 2-thienyl, triazole and fluoro­benzene rings are approximately coplanar, coplanar and perpendicular, respectively [dihedral angles = 8.56 (17), 6.03 (19) and 73.1 (2)°, respectively] so that to a first approximation the mol­ecule has a T-shape. In the crystal, mol­ecules are consolidated into a three-dimensional architecture by C—H⋯F (involving a bifurcated F atom), C—H⋯S and C—H⋯π inter­actions.

Related literature

For the synthesis, structure and biological activity of 1-thia­zol-2-ylpyrazoline, see: Abdel-Wahab et al. (2012[Abdel-Wahab, B. F., Abdel-Latif, E., Mohamed, H. A. & Awad, G. E. A. (2012). Eur. J. Med. Chem. 52, 263-268.]); Dong et al. (2011[Dong, W.-J., Cui, F.-H., Gao, Z.-L., Li, R.-S., Shen, G.-L. & Dong, H.-S. (2011). J. Heterocycl. Chem. 48, 1154-1160.]).

[Scheme 1]

Experimental

Crystal data
  • C28H23FN6S

  • Mr = 494.58

  • Monoclinic, P 21 /n

  • a = 17.7373 (18) Å

  • b = 7.8367 (7) Å

  • c = 19.4159 (18) Å

  • β = 109.323 (11)°

  • V = 2546.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 295 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.901, Tmax = 1.000

  • 16284 measured reflections

  • 5871 independent reflections

  • 2694 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.232

  • S = 1.06

  • 5871 reflections

  • 328 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C22–C27 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯S1i 0.93 2.87 3.743 (4) 156
C24—H24⋯F1ii 0.93 2.55 3.476 (5) 177
C28—H28B⋯F1iii 0.96 2.53 3.308 (5) 138
C27—H27⋯Cg1i 0.93 2.75 3.518 (4) 141
C14—H14⋯Cg2ii 0.93 2.85 3.756 (5) 164
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y, z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, (I), was characterized in relation to on-going studies into the synthesis, structure and biological activities of 1-thiazol-2-ylpyrazoline derivatives (Abdel-Wahab et al., 2012; Dong et al., 2011).

In (I), the pyrazolyl ring adopts an envelope conformation with the methine-C10 atom being the flap atom. The 2-thienyl and triazole rings are approximately co-planar with the central five-membered ring forming dihedral angles of 8.56 (17) and 6.03 (19)°, respectively; the dihedral angle between these rings is 14.33 (17)°, indicating an overall twist in the molecule. By contrast, the fluorobenzene ring is almost perpendicular to the pyrazolyl ring, forming a dihedral angle of 73.1 (2)°. With respect to the respective attached five-membered ring, the phenyl and p-tolyl residues form dihedral angles of 2.88 (17) and 45.58 (18)°, respectively, indicating co-planar and inclined dispositions. Overall, the shape of the molecule resembles the distorted T-shape reported for the chlorobenzene derivative (Dong et al., 2011).

The three-dimensional architecture is consolidated by C—H···F, involving a bifurcated F1 atom, C—H···S and C—H···π interactions, Fig. 2 and Table 1.

Related literature top

For the synthesis, structure and biological activity of 1-thiazol-2-ylpyrazoline, see: Abdel-Wahab et al. (2012); Dong et al. (2011).

Experimental top

The title compound was prepared according to the reported method (Abdel-Wahab et al., 2012). Beige crystals were obtained from its DMF solution by slow evaporation at room temperature.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2–1.5Uequiv(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view of the crystal packing in projection down the a axis. The C—H···F, C—H···S and C—H···π interactions are shown as blue, orange and purple dashed lines, respectively.
4-[5-(4-Fluorophenyl)-1-(4-phenyl-1,3-thiazol-2-yl)-4,5-dihydro-1H-pyrazol-3-yl]-5-methyl-1-(4-methylphenyl)-1H-1,2,3-triazole top
Crystal data top
C28H23FN6SF(000) = 1032
Mr = 494.58Dx = 1.290 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2615 reflections
a = 17.7373 (18) Åθ = 2.9–27.5°
b = 7.8367 (7) ŵ = 0.16 mm1
c = 19.4159 (18) ÅT = 295 K
β = 109.323 (11)°Prism, light-brown
V = 2546.8 (4) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5871 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2694 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.038
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.9°
ω scanh = 2323
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 107
Tmin = 0.901, Tmax = 1.000l = 2525
16284 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.232 w = 1/[σ2(Fo2) + (0.0967P)2 + 0.2203P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
5871 reflectionsΔρmax = 0.35 e Å3
328 parametersΔρmin = 0.38 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0036 (12)
Crystal data top
C28H23FN6SV = 2546.8 (4) Å3
Mr = 494.58Z = 4
Monoclinic, P21/nMo Kα radiation
a = 17.7373 (18) ŵ = 0.16 mm1
b = 7.8367 (7) ÅT = 295 K
c = 19.4159 (18) Å0.40 × 0.30 × 0.20 mm
β = 109.323 (11)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5871 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2694 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 1.000Rint = 0.038
16284 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.232H-atom parameters constrained
S = 1.06Δρmax = 0.35 e Å3
5871 reflectionsΔρmin = 0.38 e Å3
328 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.53552 (5)0.20817 (11)0.54592 (4)0.0861 (3)
F10.71777 (15)0.6920 (6)0.2659 (2)0.248 (2)
N10.61200 (15)0.1843 (3)0.45456 (13)0.0749 (7)
N20.48605 (15)0.3127 (4)0.40552 (13)0.0869 (8)
N30.41199 (15)0.3365 (3)0.41211 (14)0.0795 (7)
N40.22891 (18)0.4311 (4)0.26442 (14)0.1003 (9)
N50.15671 (17)0.4606 (4)0.26545 (14)0.1023 (9)
N60.16075 (15)0.4627 (3)0.33692 (13)0.0823 (7)
C10.7421 (2)0.0649 (4)0.52615 (17)0.0782 (8)
C20.7666 (2)0.0676 (5)0.4651 (2)0.0999 (11)
H20.73190.10570.42050.120*
C30.8434 (3)0.0133 (6)0.4707 (3)0.1212 (14)
H30.85940.01440.42970.145*
C40.8952 (3)0.0417 (6)0.5361 (3)0.1240 (15)
H40.94620.07860.53980.149*
C50.8711 (3)0.0418 (5)0.5959 (2)0.1078 (12)
H50.90650.07730.64070.129*
C60.7966 (2)0.0089 (4)0.59155 (19)0.0888 (9)
H60.78160.00610.63320.107*
C70.66171 (18)0.1232 (4)0.52085 (16)0.0718 (8)
C80.6299 (2)0.1261 (4)0.57531 (16)0.0853 (9)
H80.65610.08830.62260.102*
C90.54482 (19)0.2344 (4)0.46099 (16)0.0738 (8)
C100.48409 (18)0.3077 (4)0.32859 (16)0.0821 (9)
H100.48750.18890.31410.099*
C110.39996 (18)0.3751 (5)0.28987 (17)0.0931 (10)
H11A0.40150.49000.27180.112*
H11B0.37120.30180.24940.112*
C120.36238 (19)0.3725 (4)0.34853 (16)0.0772 (8)
C130.54996 (17)0.4088 (4)0.31593 (15)0.0739 (8)
C140.5802 (3)0.3588 (6)0.2630 (2)0.1267 (15)
H140.56260.25740.23790.152*
C150.6349 (4)0.4536 (11)0.2466 (4)0.169 (3)
H150.65300.41880.20900.203*
C160.6632 (3)0.5932 (11)0.2821 (4)0.153 (3)
C170.6367 (3)0.6507 (7)0.3366 (3)0.1339 (17)
H170.65680.75070.36180.161*
C180.5788 (2)0.5554 (5)0.35322 (19)0.0985 (11)
H180.55970.59180.38990.118*
C190.27929 (18)0.4113 (4)0.33473 (17)0.0775 (8)
C200.23657 (17)0.4322 (4)0.38183 (16)0.0736 (8)
C210.26213 (18)0.4199 (4)0.46230 (16)0.0849 (9)
H21A0.30710.34440.47930.127*
H21B0.21890.37620.47660.127*
H21C0.27690.53100.48320.127*
C220.08855 (17)0.4876 (4)0.35273 (16)0.0770 (8)
C230.0206 (2)0.4008 (5)0.31273 (19)0.0984 (11)
H230.02120.32830.27500.118*
C240.0483 (2)0.4236 (5)0.3297 (2)0.1067 (12)
H240.09410.36470.30270.128*
C250.0523 (2)0.5298 (5)0.3849 (2)0.0941 (10)
C260.0160 (2)0.6152 (5)0.42197 (19)0.0967 (10)
H260.01540.68920.45920.116*
C270.08582 (19)0.5965 (4)0.40657 (17)0.0853 (9)
H270.13100.65810.43280.102*
C280.1285 (2)0.5489 (7)0.4025 (2)0.1334 (16)
H28A0.15970.44660.38890.200*
H28B0.15850.64390.37590.200*
H28C0.11590.56830.45390.200*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.1046 (7)0.0881 (7)0.0660 (5)0.0002 (4)0.0289 (5)0.0001 (4)
F10.0915 (17)0.367 (6)0.276 (4)0.002 (2)0.048 (2)0.218 (4)
N10.0815 (16)0.0787 (17)0.0566 (14)0.0108 (13)0.0121 (12)0.0048 (12)
N20.0781 (17)0.118 (2)0.0608 (15)0.0031 (15)0.0186 (13)0.0145 (15)
N30.0771 (16)0.0888 (19)0.0721 (17)0.0051 (13)0.0240 (14)0.0077 (14)
N40.103 (2)0.128 (3)0.0606 (17)0.0176 (18)0.0145 (15)0.0013 (16)
N50.090 (2)0.139 (3)0.0665 (18)0.0237 (18)0.0114 (15)0.0037 (17)
N60.0872 (18)0.0913 (19)0.0545 (14)0.0063 (14)0.0045 (13)0.0023 (13)
C10.099 (2)0.0612 (18)0.0675 (19)0.0033 (16)0.0189 (18)0.0079 (15)
C20.110 (3)0.103 (3)0.080 (2)0.010 (2)0.023 (2)0.011 (2)
C30.124 (3)0.138 (4)0.109 (3)0.015 (3)0.049 (3)0.027 (3)
C40.107 (3)0.113 (3)0.145 (4)0.024 (2)0.032 (3)0.026 (3)
C50.116 (3)0.088 (3)0.103 (3)0.014 (2)0.014 (2)0.006 (2)
C60.093 (2)0.080 (2)0.085 (2)0.0113 (18)0.0173 (19)0.0024 (18)
C70.087 (2)0.0567 (17)0.0628 (18)0.0061 (15)0.0131 (15)0.0022 (14)
C80.110 (2)0.085 (2)0.0560 (17)0.0018 (18)0.0210 (17)0.0003 (16)
C90.0779 (19)0.071 (2)0.0670 (19)0.0120 (16)0.0167 (16)0.0023 (15)
C100.087 (2)0.093 (2)0.0625 (18)0.0042 (17)0.0189 (16)0.0001 (17)
C110.078 (2)0.125 (3)0.068 (2)0.0075 (19)0.0123 (16)0.005 (2)
C120.086 (2)0.080 (2)0.0606 (18)0.0112 (17)0.0175 (16)0.0003 (16)
C130.0767 (18)0.093 (2)0.0514 (16)0.0136 (17)0.0205 (14)0.0038 (16)
C140.161 (4)0.135 (4)0.112 (3)0.027 (3)0.083 (3)0.012 (3)
C150.143 (5)0.243 (8)0.164 (6)0.060 (5)0.107 (5)0.070 (6)
C160.069 (2)0.235 (8)0.148 (5)0.006 (4)0.026 (3)0.120 (6)
C170.118 (3)0.150 (4)0.107 (3)0.044 (3)0.001 (3)0.034 (3)
C180.105 (3)0.113 (3)0.079 (2)0.012 (2)0.033 (2)0.000 (2)
C190.0764 (19)0.080 (2)0.0680 (19)0.0005 (15)0.0126 (16)0.0001 (16)
C200.0786 (19)0.0703 (19)0.0626 (18)0.0070 (15)0.0108 (16)0.0041 (15)
C210.0791 (19)0.099 (2)0.0642 (19)0.0076 (17)0.0077 (15)0.0022 (17)
C220.0748 (19)0.078 (2)0.0689 (19)0.0059 (16)0.0108 (15)0.0019 (17)
C230.086 (2)0.091 (3)0.093 (2)0.0097 (19)0.0051 (19)0.024 (2)
C240.067 (2)0.099 (3)0.126 (3)0.0049 (18)0.006 (2)0.010 (2)
C250.078 (2)0.104 (3)0.088 (2)0.0078 (19)0.0110 (18)0.013 (2)
C260.088 (2)0.116 (3)0.080 (2)0.001 (2)0.0200 (19)0.010 (2)
C270.085 (2)0.089 (2)0.074 (2)0.0084 (17)0.0150 (17)0.0117 (18)
C280.081 (2)0.182 (5)0.130 (3)0.019 (3)0.024 (2)0.031 (3)
Geometric parameters (Å, º) top
S1—C81.706 (3)C11—H11A0.9700
S1—C91.723 (3)C11—H11B0.9700
F1—C161.355 (6)C12—C191.441 (4)
N1—C91.299 (4)C13—C181.364 (5)
N1—C71.383 (4)C13—C141.365 (4)
N2—C91.371 (4)C14—C151.341 (8)
N2—N31.374 (3)C14—H140.9300
N2—C101.483 (4)C15—C161.301 (9)
N3—C121.288 (4)C15—H150.9300
N4—N51.308 (4)C16—C171.369 (8)
N4—C191.371 (4)C17—C181.391 (5)
N5—N61.366 (3)C17—H170.9300
N6—C201.360 (4)C18—H180.9300
N6—C221.426 (4)C19—C201.377 (4)
C1—C61.388 (4)C20—C211.479 (4)
C1—C21.392 (4)C21—H21A0.9600
C1—C71.468 (4)C21—H21B0.9600
C2—C31.396 (5)C21—H21C0.9600
C2—H20.9300C22—C271.363 (4)
C3—C41.368 (6)C22—C231.378 (4)
C3—H30.9300C23—C241.378 (5)
C4—C51.363 (6)C23—H230.9300
C4—H40.9300C24—C251.378 (5)
C5—C61.356 (5)C24—H240.9300
C5—H50.9300C25—C261.362 (5)
C6—H60.9300C25—C281.508 (5)
C7—C81.353 (4)C26—C271.374 (4)
C8—H80.9300C26—H260.9300
C10—C131.498 (4)C27—H270.9300
C10—C111.526 (4)C28—H28A0.9600
C10—H100.9800C28—H28B0.9600
C11—C121.498 (4)C28—H28C0.9600
C8—S1—C988.34 (15)C18—C13—C10122.3 (3)
C9—N1—C7109.7 (2)C14—C13—C10119.6 (4)
C9—N2—N3119.3 (2)C15—C14—C13121.0 (5)
C9—N2—C10122.5 (3)C15—C14—H14119.5
N3—N2—C10113.1 (2)C13—C14—H14119.5
C12—N3—N2108.2 (2)C16—C15—C14121.5 (6)
N5—N4—C19108.9 (2)C16—C15—H15119.2
N4—N5—N6107.2 (2)C14—C15—H15119.2
C20—N6—N5111.0 (2)C15—C16—F1122.5 (8)
C20—N6—C22130.8 (3)C15—C16—C17121.0 (5)
N5—N6—C22118.1 (2)F1—C16—C17116.5 (8)
C6—C1—C2117.7 (3)C16—C17—C18118.1 (5)
C6—C1—C7121.9 (3)C16—C17—H17120.9
C2—C1—C7120.4 (3)C18—C17—H17120.9
C1—C2—C3120.1 (4)C13—C18—C17120.3 (4)
C1—C2—H2120.0C13—C18—H18119.8
C3—C2—H2120.0C17—C18—H18119.8
C4—C3—C2120.4 (4)N4—C19—C20109.1 (3)
C4—C3—H3119.8N4—C19—C12119.9 (3)
C2—C3—H3119.8C20—C19—C12131.0 (3)
C5—C4—C3119.2 (4)N6—C20—C19103.9 (3)
C5—C4—H4120.4N6—C20—C21125.5 (3)
C3—C4—H4120.4C19—C20—C21130.6 (3)
C6—C5—C4121.3 (4)C20—C21—H21A109.5
C6—C5—H5119.3C20—C21—H21B109.5
C4—C5—H5119.3H21A—C21—H21B109.5
C5—C6—C1121.3 (3)C20—C21—H21C109.5
C5—C6—H6119.4H21A—C21—H21C109.5
C1—C6—H6119.4H21B—C21—H21C109.5
C8—C7—N1114.8 (3)C27—C22—C23119.7 (3)
C8—C7—C1126.6 (3)C27—C22—N6120.9 (3)
N1—C7—C1118.6 (3)C23—C22—N6119.5 (3)
C7—C8—S1111.2 (2)C22—C23—C24118.7 (3)
C7—C8—H8124.4C22—C23—H23120.6
S1—C8—H8124.4C24—C23—H23120.6
N1—C9—N2122.9 (3)C25—C24—C23122.8 (3)
N1—C9—S1115.9 (2)C25—C24—H24118.6
N2—C9—S1121.1 (2)C23—C24—H24118.6
N2—C10—C13113.1 (3)C26—C25—C24116.3 (3)
N2—C10—C11100.4 (2)C26—C25—C28122.6 (4)
C13—C10—C11115.1 (3)C24—C25—C28121.1 (4)
N2—C10—H10109.3C25—C26—C27122.7 (4)
C13—C10—H10109.3C25—C26—H26118.6
C11—C10—H10109.3C27—C26—H26118.6
C12—C11—C10103.3 (3)C22—C27—C26119.8 (3)
C12—C11—H11A111.1C22—C27—H27120.1
C10—C11—H11A111.1C26—C27—H27120.1
C12—C11—H11B111.1C25—C28—H28A109.5
C10—C11—H11B111.1C25—C28—H28B109.5
H11A—C11—H11B109.1H28A—C28—H28B109.5
N3—C12—C19123.9 (3)C25—C28—H28C109.5
N3—C12—C11113.4 (3)H28A—C28—H28C109.5
C19—C12—C11122.7 (3)H28B—C28—H28C109.5
C18—C13—C14118.0 (4)
C9—N2—N3—C12164.7 (3)C11—C10—C13—C1880.7 (4)
C10—N2—N3—C129.1 (4)N2—C10—C13—C14149.4 (3)
C19—N4—N5—N61.0 (4)C11—C10—C13—C1496.0 (4)
N4—N5—N6—C200.7 (4)C18—C13—C14—C152.0 (6)
N4—N5—N6—C22178.1 (3)C10—C13—C14—C15174.9 (4)
C6—C1—C2—C30.7 (5)C13—C14—C15—C162.4 (9)
C7—C1—C2—C3179.5 (3)C14—C15—C16—F1179.2 (4)
C1—C2—C3—C40.5 (6)C14—C15—C16—C171.5 (10)
C2—C3—C4—C50.4 (7)C15—C16—C17—C180.2 (9)
C3—C4—C5—C61.1 (7)F1—C16—C17—C18178.1 (4)
C4—C5—C6—C10.8 (6)C14—C13—C18—C170.7 (6)
C2—C1—C6—C50.1 (5)C10—C13—C18—C17176.1 (3)
C7—C1—C6—C5178.8 (3)C16—C17—C18—C130.2 (6)
C9—N1—C7—C81.2 (4)N5—N4—C19—C201.0 (4)
C9—N1—C7—C1178.0 (2)N5—N4—C19—C12178.2 (3)
C6—C1—C7—C82.0 (5)N3—C12—C19—N4173.3 (3)
C2—C1—C7—C8179.4 (3)C11—C12—C19—N48.5 (5)
C6—C1—C7—N1177.2 (3)N3—C12—C19—C205.6 (6)
C2—C1—C7—N11.5 (4)C11—C12—C19—C20172.6 (3)
N1—C7—C8—S10.5 (4)N5—N6—C20—C190.1 (4)
C1—C7—C8—S1178.6 (2)C22—N6—C20—C19177.1 (3)
C9—S1—C8—C70.2 (2)N5—N6—C20—C21177.9 (3)
C7—N1—C9—N2175.1 (3)C22—N6—C20—C210.9 (5)
C7—N1—C9—S11.3 (3)N4—C19—C20—N60.5 (4)
N3—N2—C9—N1169.3 (3)C12—C19—C20—N6178.5 (3)
C10—N2—C9—N116.1 (5)N4—C19—C20—C21178.4 (3)
N3—N2—C9—S114.5 (4)C12—C19—C20—C210.7 (6)
C10—N2—C9—S1167.7 (2)C20—N6—C22—C2747.5 (5)
C8—S1—C9—N10.9 (2)N5—N6—C22—C27135.7 (3)
C8—S1—C9—N2175.6 (3)C20—N6—C22—C23132.9 (4)
C9—N2—C10—C1369.1 (4)N5—N6—C22—C2344.0 (4)
N3—N2—C10—C13136.2 (3)C27—C22—C23—C241.7 (5)
C9—N2—C10—C11167.7 (3)N6—C22—C23—C24178.7 (3)
N3—N2—C10—C1113.0 (3)C22—C23—C24—C250.1 (6)
N2—C10—C11—C1211.4 (3)C23—C24—C25—C261.1 (6)
C13—C10—C11—C12133.1 (3)C23—C24—C25—C28179.0 (3)
N2—N3—C12—C19177.9 (3)C24—C25—C26—C270.8 (6)
N2—N3—C12—C110.5 (4)C28—C25—C26—C27179.2 (3)
C10—C11—C12—N37.6 (4)C23—C22—C27—C261.9 (5)
C10—C11—C12—C19174.0 (3)N6—C22—C27—C26178.4 (3)
N2—C10—C13—C1833.9 (4)C25—C26—C27—C220.7 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C22–C27 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C18—H18···S1i0.932.873.743 (4)156
C24—H24···F1ii0.932.553.476 (5)177
C28—H28B···F1iii0.962.533.308 (5)138
C27—H27···Cg1i0.932.753.518 (4)141
C14—H14···Cg2ii0.932.853.756 (5)164
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y1/2, z+1/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC28H23FN6S
Mr494.58
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)17.7373 (18), 7.8367 (7), 19.4159 (18)
β (°) 109.323 (11)
V3)2546.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.901, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
16284, 5871, 2694
Rint0.038
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.232, 1.06
No. of reflections5871
No. of parameters328
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.38

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C22–C27 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C18—H18···S1i0.932.873.743 (4)156
C24—H24···F1ii0.932.553.476 (5)177
C28—H28B···F1iii0.962.533.308 (5)138
C27—H27···Cg1i0.932.753.518 (4)141
C14—H14···Cg2ii0.932.853.756 (5)164
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y1/2, z+1/2; (iii) x1, y, z.
 

Footnotes

Additional correspondence author, e-mail: bakrfatehy@yahoo.com.

Acknowledgements

We thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

References

First citationAbdel-Wahab, B. F., Abdel-Latif, E., Mohamed, H. A. & Awad, G. E. A. (2012). Eur. J. Med. Chem. 52, 263–268.  Web of Science CAS PubMed Google Scholar
First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDong, W.-J., Cui, F.-H., Gao, Z.-L., Li, R.-S., Shen, G.-L. & Dong, H.-S. (2011). J. Heterocycl. Chem. 48, 1154–1160.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds