organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Hy­dr­oxy­phen­yl)-4-nitro­benzamide

aDepartment of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan, bUniversität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany, and cDepartment of Materials and Metallurgical Engineering (DMME), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
*Correspondence e-mail: humaira_siddiqi@yahoo.com

(Received 2 March 2013; accepted 4 March 2013; online 9 March 2013)

The mol­ecular structure of the title compound, C13H10N2O4, shows an almost planar conformation as the benzene rings make a dihedral angle of 2.31 (7)°. The nitro group lies in plane with the benzamide ring, with a C—C—N—O torsion angle of 0.6 (2)°. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds link mol­ecules into sheets stacked along [10-1].

Related literature

For background to aromatic polyimides, see: Sheng et al. (2009[Sheng, S.-R., Pei, X.-L., Huang, Z.-Z., Liu, X.-L. & Song, C.-S. (2009). Eur. Polym. J. 45, 230-236.]). For the solubilizing role of ether and amide groups in polyimides, see: Litvinov et al. (2010[Litvinov, V. M., Persyn, O., Miri, V. & Lefebvre, J. M. (2010). Macromolecules, 43, 7668-7679.]). For a related structure, see: Raza et al. (2010[Raza, A. R., Nisar, B. & Tahir, M. N. (2010). Acta Cryst. E66, o2435.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10N2O4

  • Mr = 258.23

  • Monoclinic, P 21 /c

  • a = 7.5187 (5) Å

  • b = 12.5695 (9) Å

  • c = 11.7932 (8) Å

  • β = 90.033 (2)°

  • V = 1114.53 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 130 K

  • 0.50 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.944, Tmax = 0.986

  • 10323 measured reflections

  • 2657 independent reflections

  • 2255 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.122

  • S = 1.12

  • 2657 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O1i 0.84 1.94 2.7803 (17) 175
N1—H1A⋯O3ii 0.88 2.33 3.1664 (18) 159
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

Fairly high thermooxidative and outstanding thermal stability, exceptional mechanical and electrical properties and upright chemical resistance are some distinctions of aromatic polyimides that make them documented as high performance polymeric materials (Sheng et al., 2009). The reported title compound, (I), containing ether and amide groups, serve multiple purposes, such as a boost in solubility and upsurge thermal stability of the resulting polyimide (Litvinov et al., 2010). In this connection, the title compound was investigated.

The molecular structure of (I), Fig. 1, is approximately planar with the dihedral angle between the two benzene rings being 2.31 (7)°. Intermolecular N—H···O and O—H···O hydrogen bonds, Table 1, link molecules into sheets stacked approximately along [1 0 1], Fig. 2. The structure of the isomeric 2-hydroxy-N-(3-nitrophenyl)benzamide compound is known (Raza et al., 2010).

Related literature top

For background to aromatic polyimides, see: Sheng et al. (2009). For the solubilizing role of ether and amide groups in polyimides, see: Litvinov et al. (2010). For a related structure, see: Raza et al. (2010).

Experimental top

Reagent grade quality chemicals were used in this preparation. 4-Aminophenol (0.94 g, 8.6 mmol) in dry dichloromethane (30 ml), a few drops of N, N-dimethylformamide (DMF) and triethylamine (1.25 ml, 8.6 mmol) were placed in a 100 ml, three necked, round bottomed flask, equipped with a condenser, a nitrogen gas inlet tube, a thermometer and a magnetic stirrer. The mixture was stirred at 273–278 K for 30–45 minutes. A solution of 4-nitrobenzoyl chloride (1.59 g, 8.6 mmol) in dichloromethane (20 ml) was added drop-wise via a dropping funnel along with continuous stirring. The reaction mixture was then refluxed for 45 minutes. The flask contents were cooled to room temperature, poured into water and let to stand for 24 h. The resulting bright-yellow precipitate was filtered, washed with hot water and 5% NaOH solution. Finally, product was washed with hot water and dried under vacuum at 350 K. The crude product was recrystallized from ethanol and dichloromethane (2:1, v/v). Yield: 91%; m.p. 406–407 K.

Refinement top

Hydrogen atoms were clearly identified in difference syntheses, refined at idealized positions riding on the parent atoms with C—H 0.95, N—H 0.88 and O—H 0.84 Å, and with Uĩso(H) = 1.2Ueq(C,N,O)

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with anisotropic displacement parameters drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing viewed along c axis with hydrogen bonds as dotted lines. H-atoms not involved are omitted.
N-(4-Hydroxyphenyl)-4-nitrobenzamide top
Crystal data top
C13H10N2O4F(000) = 536
Mr = 258.23Dx = 1.539 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2515 reflections
a = 7.5187 (5) Åθ = 3.2–28.1°
b = 12.5695 (9) ŵ = 0.12 mm1
c = 11.7932 (8) ÅT = 130 K
β = 90.033 (2)°Prism, yellow
V = 1114.53 (13) Å30.50 × 0.16 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
2657 independent reflections
Radiation source: sealed tube2255 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 27.9°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 99
Tmin = 0.944, Tmax = 0.986k = 1616
10323 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: difference Fourier map
wR(F2) = 0.122H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.8505P]
where P = (Fo2 + 2Fc2)/3
2657 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C13H10N2O4V = 1114.53 (13) Å3
Mr = 258.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5187 (5) ŵ = 0.12 mm1
b = 12.5695 (9) ÅT = 130 K
c = 11.7932 (8) Å0.50 × 0.16 × 0.12 mm
β = 90.033 (2)°
Data collection top
Bruker SMART APEX
diffractometer
2657 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2255 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.986Rint = 0.030
10323 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.12Δρmax = 0.37 e Å3
2657 reflectionsΔρmin = 0.28 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.39417 (17)0.43715 (9)0.63125 (11)0.0247 (3)
O20.0650 (2)0.00255 (10)0.33969 (12)0.0320 (3)
O30.01095 (17)0.10678 (10)0.20187 (10)0.0239 (3)
O40.41630 (19)0.95533 (9)0.66718 (11)0.0284 (3)
H40.47040.95340.72950.043*
N10.23878 (18)0.54813 (10)0.51520 (12)0.0176 (3)
H1A0.16120.54840.45930.021*
N20.05435 (19)0.09059 (11)0.29598 (12)0.0195 (3)
C10.2983 (2)0.45176 (13)0.54794 (13)0.0166 (3)
C20.2378 (2)0.35909 (12)0.47682 (14)0.0166 (3)
C30.1658 (2)0.37062 (13)0.36841 (14)0.0190 (3)
H3A0.15790.43930.33510.023*
C40.1057 (2)0.28251 (13)0.30913 (14)0.0182 (3)
H4A0.05410.29010.23600.022*
C50.1225 (2)0.18327 (12)0.35856 (14)0.0176 (3)
C60.1982 (2)0.16825 (13)0.46470 (15)0.0197 (3)
H6A0.20980.09910.49620.024*
C70.2562 (2)0.25726 (13)0.52325 (14)0.0186 (3)
H7A0.30910.24910.59590.022*
C80.2858 (2)0.64971 (12)0.55977 (14)0.0166 (3)
C90.2564 (2)0.73771 (13)0.49077 (14)0.0188 (3)
H9A0.20550.72800.41770.023*
C100.3001 (2)0.83960 (13)0.52705 (15)0.0209 (4)
H10A0.27960.89910.47910.025*
C110.3742 (2)0.85379 (13)0.63415 (14)0.0193 (3)
C120.4006 (2)0.76651 (13)0.70399 (14)0.0190 (3)
H12A0.44980.77640.77740.023*
C130.3560 (2)0.66451 (13)0.66782 (14)0.0189 (3)
H13A0.37340.60530.71670.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0316 (7)0.0198 (6)0.0226 (6)0.0025 (5)0.0140 (5)0.0023 (5)
O20.0488 (9)0.0149 (6)0.0323 (8)0.0020 (5)0.0158 (6)0.0000 (5)
O30.0293 (7)0.0230 (6)0.0194 (6)0.0011 (5)0.0082 (5)0.0039 (5)
O40.0435 (8)0.0158 (6)0.0258 (7)0.0030 (5)0.0152 (6)0.0019 (5)
N10.0214 (7)0.0149 (6)0.0163 (7)0.0002 (5)0.0078 (5)0.0012 (5)
N20.0219 (7)0.0166 (7)0.0201 (7)0.0015 (5)0.0043 (6)0.0023 (5)
C10.0172 (8)0.0168 (8)0.0157 (7)0.0005 (6)0.0017 (6)0.0007 (6)
C20.0159 (8)0.0166 (8)0.0173 (8)0.0006 (6)0.0023 (6)0.0019 (6)
C30.0222 (8)0.0154 (7)0.0194 (8)0.0014 (6)0.0039 (6)0.0012 (6)
C40.0197 (8)0.0189 (8)0.0160 (8)0.0011 (6)0.0037 (6)0.0017 (6)
C50.0181 (8)0.0155 (7)0.0193 (8)0.0005 (6)0.0025 (6)0.0035 (6)
C60.0229 (8)0.0157 (8)0.0204 (8)0.0007 (6)0.0038 (6)0.0018 (6)
C70.0215 (8)0.0189 (8)0.0153 (8)0.0011 (6)0.0049 (6)0.0012 (6)
C80.0166 (8)0.0153 (7)0.0180 (8)0.0002 (6)0.0018 (6)0.0038 (6)
C90.0215 (8)0.0194 (8)0.0154 (8)0.0000 (6)0.0053 (6)0.0014 (6)
C100.0265 (9)0.0158 (8)0.0203 (8)0.0001 (6)0.0061 (7)0.0017 (6)
C110.0209 (8)0.0164 (8)0.0206 (8)0.0003 (6)0.0040 (6)0.0031 (6)
C120.0208 (8)0.0204 (8)0.0159 (8)0.0001 (6)0.0051 (6)0.0031 (6)
C130.0227 (8)0.0175 (8)0.0167 (8)0.0004 (6)0.0042 (6)0.0015 (6)
Geometric parameters (Å, º) top
O1—C11.232 (2)C4—H4A0.9500
O2—N21.2234 (19)C5—C61.388 (2)
O3—N21.2303 (18)C6—C71.385 (2)
O4—C111.3715 (19)C6—H6A0.9500
O4—H40.8400C7—H7A0.9500
N1—C11.348 (2)C8—C91.391 (2)
N1—C81.4252 (19)C8—C131.391 (2)
N1—H1A0.8800C9—C101.390 (2)
N2—C51.471 (2)C9—H9A0.9500
C1—C21.505 (2)C10—C111.392 (2)
C2—C31.396 (2)C10—H10A0.9500
C2—C71.399 (2)C11—C121.386 (2)
C3—C41.385 (2)C12—C131.392 (2)
C3—H3A0.9500C12—H12A0.9500
C4—C51.383 (2)C13—H13A0.9500
C11—O4—H4109.5C7—C6—H6A121.0
C1—N1—C8128.11 (13)C5—C6—H6A121.0
C1—N1—H1A115.9C6—C7—C2120.87 (15)
C8—N1—H1A115.9C6—C7—H7A119.6
O2—N2—O3123.76 (14)C2—C7—H7A119.6
O2—N2—C5118.84 (14)C9—C8—C13119.32 (15)
O3—N2—C5117.40 (14)C9—C8—N1117.21 (14)
O1—C1—N1123.81 (15)C13—C8—N1123.47 (14)
O1—C1—C2120.35 (14)C10—C9—C8121.01 (15)
N1—C1—C2115.83 (14)C10—C9—H9A119.5
C3—C2—C7119.45 (14)C8—C9—H9A119.5
C3—C2—C1123.16 (14)C9—C10—C11119.47 (15)
C7—C2—C1117.40 (14)C9—C10—H10A120.3
C4—C3—C2120.36 (15)C11—C10—H10A120.3
C4—C3—H3A119.8O4—C11—C12122.33 (15)
C2—C3—H3A119.8O4—C11—C10117.98 (14)
C5—C4—C3118.63 (15)C12—C11—C10119.68 (15)
C5—C4—H4A120.7C11—C12—C13120.82 (15)
C3—C4—H4A120.7C11—C12—H12A119.6
C4—C5—C6122.69 (15)C13—C12—H12A119.6
C4—C5—N2118.13 (14)C8—C13—C12119.67 (15)
C6—C5—N2119.17 (14)C8—C13—H13A120.2
C7—C6—C5117.95 (15)C12—C13—H13A120.2
C8—N1—C1—O16.9 (3)N2—C5—C6—C7178.04 (15)
C8—N1—C1—C2174.10 (15)C5—C6—C7—C20.4 (3)
O1—C1—C2—C3164.50 (16)C3—C2—C7—C62.3 (3)
N1—C1—C2—C316.5 (2)C1—C2—C7—C6177.81 (15)
O1—C1—C2—C715.4 (2)C1—N1—C8—C9158.93 (17)
N1—C1—C2—C7163.60 (15)C1—N1—C8—C1322.1 (3)
C7—C2—C3—C42.8 (2)C13—C8—C9—C101.7 (3)
C1—C2—C3—C4177.28 (15)N1—C8—C9—C10179.33 (16)
C2—C3—C4—C51.4 (2)C8—C9—C10—C110.1 (3)
C3—C4—C5—C60.5 (3)C9—C10—C11—O4179.79 (16)
C3—C4—C5—N2178.57 (15)C9—C10—C11—C121.1 (3)
O2—N2—C5—C4178.54 (16)O4—C11—C12—C13179.87 (16)
O3—N2—C5—C41.3 (2)C10—C11—C12—C130.8 (3)
O2—N2—C5—C60.6 (2)C9—C8—C13—C121.9 (3)
O3—N2—C5—C6179.59 (15)N1—C8—C13—C12179.11 (15)
C4—C5—C6—C71.0 (3)C11—C12—C13—C80.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O1i0.841.942.7803 (17)175
N1—H1A···O3ii0.882.333.1664 (18)159
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H10N2O4
Mr258.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)130
a, b, c (Å)7.5187 (5), 12.5695 (9), 11.7932 (8)
β (°) 90.033 (2)
V3)1114.53 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.50 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.944, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
10323, 2657, 2255
Rint0.030
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.122, 1.12
No. of reflections2657
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.28

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O1i0.841.942.7803 (17)175
N1—H1A···O3ii0.882.333.1664 (18)159
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The contribution to this project of the Higher Education Commission of Pakistan by providing financial assistance through the Inter­national Research Support Initiative Programme (IRSIP) is acknowledged by the authors.

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLitvinov, V. M., Persyn, O., Miri, V. & Lefebvre, J. M. (2010). Macromolecules, 43, 7668–7679.  Web of Science CrossRef CAS Google Scholar
First citationRaza, A. R., Nisar, B. & Tahir, M. N. (2010). Acta Cryst. E66, o2435.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheng, S.-R., Pei, X.-L., Huang, Z.-Z., Liu, X.-L. & Song, C.-S. (2009). Eur. Polym. J. 45, 230–236.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds