organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o562-o563

(Z)-3-(3,4-Dimeth­­oxy­benzyl­­idene)-2,3-di­hydro-1,5-benzo­thia­zepin-4(5H)-one

aDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India, bDepartment of Physics, Bharathidasan Engineering College, Nattrampalli, Vellore 635 854, India, and cDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India
*Correspondence e-mail: smurugavel27@gmail.com

(Received 16 March 2013; accepted 18 March 2013; online 23 March 2013)

In the title compound, C18H17NO3S, the seven-membered thia­zepine ring adopts a slightly distorted sofa conformation. The dihedral angle between the mean plane of the benzothia­zepine ring system and the benzene ring is 5.9 (1)°. The mol­ecular conformation is stabilized by an intra­molecular C—H⋯S hydrogen bond, which generates an S(7) ring motif. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds link inversion-related mol­ecules into dimers, incorporating R12(6) and R22(8) ring motifs; the acceptor O atom is bifurcated. These dimers are further linked by C—H⋯O hydrogen bonds, forming supra­molecular tapes running along the a axis. These are connected into the three-dimensional architecture by C—H⋯π inter­actions.

Related literature

For the pharmaceutical properties of thia­zepine derivatives, see: Tomascovic et al. (2000[Tomascovic, L. L., Arneri, R. S., Brundic, A. H., Nagl, A., Mintas, M. & Sandtrom, J. (2000). Helv. Chim. Acta, 83, 479-493.]); Rajsner et al. (1971[Rajsner, M., Protiva, M. & Metysova, J. (1971). Czech. Patent Appl. CS 143737.]); Metys et al. (1965[Metys, J., Metysova, J. & Votava, Z. (1965). Acta Biol. Med. Ger. 15, 871-873.]). For related structures, see: Lakshmanan et al. (2012[Lakshmanan, D., Murugavel, S., Selvakumar, R. & Bakthadoss, M. (2012). Acta Cryst. E68, o2130.]); Selvakumar et al. (2012[Selvakumar, R., Bakthadoss, M., Lakshmanan, D. & Murugavel, S. (2012). Acta Cryst. E68, o2126.]); Murugavel et al. (2013[Murugavel, S., Manikandan, N., Selvakumar, R. & Bakthadoss, M. (2013). Acta Cryst. E69, o564.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17NO3S

  • Mr = 327.39

  • Triclinic, [P \overline 1]

  • a = 7.0249 (4) Å

  • b = 10.7949 (7) Å

  • c = 10.8826 (7) Å

  • α = 91.783 (3)°

  • β = 97.562 (2)°

  • γ = 108.512 (2)°

  • V = 773.42 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.23 × 0.21 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.950, Tmax = 0.967

  • 14052 measured reflections

  • 3082 independent reflections

  • 2545 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.121

  • S = 1.06

  • 3082 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯S1 0.93 2.76 3.605 (2) 151
N1—H1⋯O1i 0.86 2.12 2.967 (2) 170
C6—H6⋯O1i 0.93 2.52 3.318 (2) 144
C5—H5⋯O3ii 0.93 2.46 3.377 (3) 167
C17—H17CCg1iii 0.96 2.84 3.724 (2) 154
C18—H18ACg1iv 0.96 2.90 3.841 (3) 166
Symmetry codes: (i) -x, -y+1, -z+2; (ii) x-2, y-1, z; (iii) -x+1, -y+1, -z+1; (iv) x+1, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound is used as an intermediate for the synthesis of dosulepin, which is an antidepressant of the tricyclic family. Dosulepin prevents reabsorbing of serotonin and noradrenaline in the brain, helps to prolong the mood lightening effect of any released noradrenaline and serotonin, thus relieving depression. The dibenzo[c,e]thiazepin derivatives exhibit chiroptical properties (Tomascovic et al., 2000). Dibenzo[b,e]thiazepin-5,5-dioxide derivatives possess anti-histamine and anti-allergenic activities (Rajsner et al., 1971). Benzene thiazepin derivatives are identified as a new type of effective anti-histamine compounds (Metys et al., 1965). In view of this biological importance, the crystal structure of the title compound has been carried out and the results are presented here.

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The seven membered thiazepine ring (N1/S1/C1/C2/C7/C8/C9) adopts slightly distorted sofa conformation as indicated by puckering parameters (Cremer & Pople, 1975): QT = 0.7878 (17) Å, ϕ2 = 57.8 (2)° and ϕ3 = 16.3 (2)°. The atom O1 deviates by 0.463 (1) Å from the least-squares plane of the thiazepin ring. The dihedral angle between the benzothiazepin ring system and the benzene ring is 5.9 (1)°. The sum of angles at N1 atom of the thiazepin ring (359.9°) is in accordance with sp2 hybridization. The geometric parameters of the title molecule agree well with those reported for similar structures (Selvakumar et al., 2012, Lakshmanan et al., 2012).

The molecular conformation is stabilized by an intramolecular C12—H12···S1 hydrogen bond, which generates an S(7) ring motif (Bernstein et al., 1995). In the crystal, intermolecular bifurcated acceptor N1—H1···O1i and C6—H6···O1i (Table 1) hydrogen bonds link inverted-related molecules into dimers, incorporating R12(6) and R22(8) ring motifs. These dimers are further linked by C5—H5···O3ii (Table 1) hydrogen bonds forming supramolecular tapes running along the a axis (Fig. 2). The crystal packing is further stabilized by C17—H17C···Cg interactions, in which atom C17 acts as a hydrogen bond donor via H17C, to a symmetry related C2–C7 benzene ring (Table 1), thereby generating cyclic centrosymmetric dimers. This dimers are further linked by C18—H18A···Cgiv (Table 1) interactions into supramolecular tapes running along the b axis (Fig. 3 and Table 1; Cg is the centroid of the C2–C7 benzene ring).

Related literature top

For the pharmaceutical properties of thiazepine derivatives, see: Tomascovic et al. (2000); Rajsner et al. (1971); Metys et al. (1965). For related structures, see: Lakshmanan et al. (2012); Selvakumar et al. (2012); Murugavel et al. (2013). For ring-puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of (Z)-methyl 2-(bromomethyl)-3-(3,4-dimethoxyphenyl)acrylate 2 mmol) and o-aminothiophenol (2 mmol) in the presence of potassium tert-butoxide (4.8 mmol) in dry THF (10 ml) was stirred at room temperature for 1 h. After the completion of the reaction as indicated by TLC, the reaction mixture was concentrated and the resulting crude mass was diluted with water (20 ml) and extracted with ethyl acetate (3 x 20 ml). The organic layer was washed with brine (2 x 20 ml) and dried over anhydrous sodium sulfate. The organic layer was concentrated, which successfully provide the crude final product ((Z)-3-(3,4-dimethoxybenzylidene)-2,3-dihydrobenzo[b][1,4]). The final product was purified by column chromatography on silica gel to afford the title compound in good yield (46%). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of its ethylacetate solution at room temperature.

Refinement top

All the H atoms were positioned geometrically with C—H = 0.93–0.97 Å and N—H = 0.86 Å and constrained to ride on their parent atom, and with Uiso(H)=1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms. Owing to poor agreement, one reflection, i.e. (0 0 1), was omitted from the final cycles of refinement.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing displacement ellipsoids at the 50% probability level. H atoms are presented as a small spheres of arbitrary radii.
[Figure 2] Fig. 2. Supramolecular tape formation in the crystal packing of the title compound whereby bifurcated hydrogen bonds link inverted molecules into dimers sustained by N—H···O and C—H···O (cyan dashed lines) contacts are linked via C—H···O contacts (magenta dashed lines) along the a axis [Symmetry codes: (i) -x, 1-y, -z; (v) -2+x, -1+y, z; (v) -2-x, -y, 2-z; (vi) -4+x, -2+y, z; (vii) -4-x, -1-y, 2-z].
[Figure 3] Fig. 3. Supramolecular tape formation along the b axis by C—H···π interactions in the crystal structure of the title compound. Cg is the centroid of the (C2–C7) benzene ring. [Symmetry codes: (iii) 1-x, 1-y, 1-z; (iv) 1+x, 1+y, z; (viii) 2-x, 2-y, 1-z].
(Z)-3-(3,4-Dimethoxybenzylidene)-2,3-dihydro-1,5-benzothiazepin-4(5H)-one top
Crystal data top
C18H17NO3SZ = 2
Mr = 327.39F(000) = 344
Triclinic, P1Dx = 1.406 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0249 (4) ÅCell parameters from 3172 reflections
b = 10.7949 (7) Åθ = 2.0–26.4°
c = 10.8826 (7) ŵ = 0.22 mm1
α = 91.783 (3)°T = 293 K
β = 97.562 (2)°Block, colourless
γ = 108.512 (2)°0.23 × 0.21 × 0.15 mm
V = 773.42 (8) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3082 independent reflections
Radiation source: fine-focus sealed tube2545 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 10.0 pixels mm-1θmax = 26.4°, θmin = 2.0°
ω scansh = 78
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1313
Tmin = 0.950, Tmax = 0.967l = 1313
14052 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0639P)2 + 0.2592P]
where P = (Fo2 + 2Fc2)/3
3082 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C18H17NO3Sγ = 108.512 (2)°
Mr = 327.39V = 773.42 (8) Å3
Triclinic, P1Z = 2
a = 7.0249 (4) ÅMo Kα radiation
b = 10.7949 (7) ŵ = 0.22 mm1
c = 10.8826 (7) ÅT = 293 K
α = 91.783 (3)°0.23 × 0.21 × 0.15 mm
β = 97.562 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3082 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2545 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.967Rint = 0.032
14052 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.06Δρmax = 0.20 e Å3
3082 reflectionsΔρmin = 0.27 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4597 (3)0.39262 (18)0.80434 (17)0.0376 (4)
H1A0.41480.32830.86370.045*
H1B0.60260.40690.80210.045*
C20.0821 (3)0.24463 (18)0.69445 (17)0.0380 (4)
C30.0277 (3)0.1295 (2)0.6198 (2)0.0540 (6)
H30.02830.10520.55400.065*
C40.2145 (4)0.0518 (2)0.6406 (2)0.0652 (7)
H40.28500.02340.58880.078*
C50.2977 (3)0.0860 (2)0.7392 (2)0.0570 (6)
H50.42390.03350.75500.068*
C60.1924 (3)0.19819 (19)0.81356 (19)0.0431 (5)
H60.24900.21970.88030.052*
C70.0035 (3)0.28146 (16)0.79304 (16)0.0329 (4)
C80.2416 (2)0.50716 (17)0.89652 (15)0.0301 (4)
C90.4315 (2)0.51723 (17)0.84463 (15)0.0313 (4)
C100.5649 (3)0.63650 (18)0.83993 (16)0.0353 (4)
H100.53260.70630.87350.042*
C110.7565 (3)0.67060 (18)0.78813 (16)0.0355 (4)
C120.7840 (3)0.6025 (2)0.68579 (18)0.0456 (5)
H120.67760.53060.64740.055*
C130.9667 (3)0.6391 (2)0.63934 (18)0.0452 (5)
H130.98140.59140.57060.054*
C141.1265 (3)0.74520 (18)0.69391 (17)0.0364 (4)
C151.1008 (3)0.81763 (18)0.79546 (18)0.0385 (4)
C160.9179 (3)0.78086 (18)0.84029 (18)0.0387 (4)
H160.90140.83060.90690.046*
C171.3474 (3)0.7111 (2)0.5578 (2)0.0515 (5)
H17A1.32160.62270.58040.077*
H17B1.48590.74700.54410.077*
H17C1.25840.71190.48310.077*
C181.2396 (4)1.0180 (2)0.9218 (2)0.0565 (6)
H18A1.13601.04940.88110.085*
H18B1.36481.08940.94070.085*
H18C1.19980.98130.99730.085*
N10.0766 (2)0.39577 (14)0.87516 (14)0.0350 (3)
H10.00380.39510.92850.042*
O10.23130 (18)0.59672 (12)0.96500 (12)0.0388 (3)
O21.31183 (19)0.78823 (14)0.65586 (13)0.0472 (4)
O31.2663 (2)0.92142 (15)0.84312 (17)0.0639 (5)
S10.31690 (7)0.33116 (5)0.65216 (5)0.04745 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0290 (9)0.0432 (10)0.0405 (10)0.0104 (8)0.0101 (7)0.0031 (8)
C20.0332 (9)0.0374 (9)0.0402 (10)0.0048 (8)0.0125 (7)0.0046 (8)
C30.0504 (12)0.0454 (11)0.0578 (13)0.0012 (9)0.0200 (10)0.0176 (10)
C40.0557 (14)0.0474 (13)0.0768 (17)0.0076 (10)0.0229 (12)0.0235 (11)
C50.0394 (11)0.0432 (11)0.0765 (16)0.0072 (9)0.0224 (10)0.0082 (10)
C60.0354 (10)0.0397 (10)0.0529 (12)0.0059 (8)0.0189 (8)0.0014 (8)
C70.0286 (9)0.0314 (9)0.0375 (9)0.0070 (7)0.0084 (7)0.0007 (7)
C80.0266 (8)0.0357 (9)0.0274 (8)0.0078 (7)0.0075 (6)0.0004 (7)
C90.0253 (8)0.0399 (9)0.0274 (8)0.0082 (7)0.0066 (6)0.0016 (7)
C100.0294 (9)0.0417 (10)0.0324 (9)0.0075 (7)0.0086 (7)0.0038 (7)
C110.0293 (9)0.0406 (10)0.0351 (9)0.0072 (7)0.0102 (7)0.0014 (7)
C120.0316 (10)0.0527 (12)0.0405 (10)0.0037 (8)0.0099 (8)0.0100 (9)
C130.0381 (10)0.0542 (12)0.0366 (10)0.0033 (9)0.0148 (8)0.0115 (8)
C140.0284 (9)0.0411 (10)0.0388 (10)0.0065 (7)0.0142 (7)0.0015 (8)
C150.0304 (9)0.0337 (9)0.0481 (11)0.0034 (7)0.0141 (8)0.0038 (8)
C160.0356 (10)0.0360 (9)0.0435 (10)0.0066 (8)0.0175 (8)0.0052 (8)
C170.0429 (11)0.0603 (13)0.0533 (13)0.0135 (10)0.0249 (9)0.0065 (10)
C180.0549 (13)0.0365 (10)0.0703 (15)0.0005 (9)0.0220 (11)0.0138 (10)
N10.0284 (7)0.0387 (8)0.0366 (8)0.0058 (6)0.0151 (6)0.0049 (6)
O10.0323 (6)0.0386 (7)0.0436 (7)0.0058 (5)0.0156 (5)0.0079 (5)
O20.0335 (7)0.0492 (8)0.0555 (9)0.0030 (6)0.0238 (6)0.0091 (6)
O30.0391 (8)0.0495 (8)0.0898 (12)0.0093 (6)0.0316 (8)0.0320 (8)
S10.0377 (3)0.0537 (3)0.0418 (3)0.0013 (2)0.0190 (2)0.0143 (2)
Geometric parameters (Å, º) top
C1—C91.482 (2)C10—H100.9300
C1—S11.8058 (19)C11—C121.384 (3)
C1—H1A0.9700C11—C161.399 (3)
C1—H1B0.9700C12—C131.386 (3)
C2—C31.401 (3)C12—H120.9300
C2—C71.402 (2)C13—C141.375 (3)
C2—S11.7471 (18)C13—H130.9300
C3—C41.367 (3)C14—O21.361 (2)
C3—H30.9300C14—C151.398 (3)
C4—C51.381 (3)C15—O31.361 (2)
C4—H40.9300C15—C161.379 (2)
C5—C61.372 (3)C16—H160.9300
C5—H50.9300C17—O21.428 (2)
C6—C71.397 (2)C17—H17A0.9600
C6—H60.9300C17—H17B0.9600
C7—N11.413 (2)C17—H17C0.9600
C8—O11.229 (2)C18—O31.402 (2)
C8—N11.368 (2)C18—H18A0.9600
C8—C91.490 (2)C18—H18B0.9600
C9—C101.337 (2)C18—H18C0.9600
C10—C111.470 (2)N1—H10.8600
C9—C1—S1110.58 (13)C16—C11—C10119.12 (16)
C9—C1—H1A109.5C11—C12—C13121.42 (18)
S1—C1—H1A109.5C11—C12—H12119.3
C9—C1—H1B109.5C13—C12—H12119.3
S1—C1—H1B109.5C14—C13—C12120.63 (17)
H1A—C1—H1B108.1C14—C13—H13119.7
C3—C2—C7118.76 (17)C12—C13—H13119.7
C3—C2—S1115.26 (14)O2—C14—C13125.04 (16)
C7—C2—S1125.97 (14)O2—C14—C15115.91 (16)
C4—C3—C2122.1 (2)C13—C14—C15119.05 (16)
C4—C3—H3118.9O3—C15—C16125.11 (17)
C2—C3—H3118.9O3—C15—C14115.09 (15)
C3—C4—C5119.4 (2)C16—C15—C14119.80 (17)
C3—C4—H4120.3C15—C16—C11121.66 (17)
C5—C4—H4120.3C15—C16—H16119.2
C6—C5—C4119.4 (2)C11—C16—H16119.2
C6—C5—H5120.3O2—C17—H17A109.5
C4—C5—H5120.3O2—C17—H17B109.5
C5—C6—C7122.66 (18)H17A—C17—H17B109.5
C5—C6—H6118.7O2—C17—H17C109.5
C7—C6—H6118.7H17A—C17—H17C109.5
C6—C7—C2117.63 (16)H17B—C17—H17C109.5
C6—C7—N1114.53 (15)O3—C18—H18A109.5
C2—C7—N1127.83 (16)O3—C18—H18B109.5
O1—C8—N1117.55 (14)H18A—C18—H18B109.5
O1—C8—C9120.94 (15)O3—C18—H18C109.5
N1—C8—C9121.42 (15)H18A—C18—H18C109.5
C10—C9—C1124.92 (16)H18B—C18—H18C109.5
C10—C9—C8118.22 (16)C8—N1—C7139.93 (14)
C1—C9—C8116.85 (15)C8—N1—H1110.0
C9—C10—C11127.81 (17)C7—N1—H1110.0
C9—C10—H10116.1C14—O2—C17117.20 (15)
C11—C10—H10116.1C15—O3—C18118.52 (15)
C12—C11—C16117.39 (16)C2—S1—C199.66 (9)
C12—C11—C10123.42 (17)
C7—C2—C3—C40.5 (4)C11—C12—C13—C140.2 (3)
S1—C2—C3—C4179.5 (2)C12—C13—C14—O2179.52 (19)
C2—C3—C4—C51.0 (4)C12—C13—C14—C151.4 (3)
C3—C4—C5—C60.8 (4)O2—C14—C15—O30.4 (3)
C4—C5—C6—C70.8 (4)C13—C14—C15—O3179.59 (19)
C5—C6—C7—C22.2 (3)O2—C14—C15—C16179.92 (17)
C5—C6—C7—N1176.7 (2)C13—C14—C15—C160.9 (3)
C3—C2—C7—C62.0 (3)O3—C15—C16—C11178.25 (19)
S1—C2—C7—C6179.12 (15)C14—C15—C16—C111.2 (3)
C3—C2—C7—N1176.80 (19)C12—C11—C16—C152.7 (3)
S1—C2—C7—N12.1 (3)C10—C11—C16—C15179.90 (18)
S1—C1—C9—C10100.97 (18)O1—C8—N1—C7165.2 (2)
S1—C1—C9—C880.36 (17)C9—C8—N1—C718.2 (3)
O1—C8—C9—C1021.0 (2)C6—C7—N1—C8177.9 (2)
N1—C8—C9—C10162.49 (16)C2—C7—N1—C80.9 (4)
O1—C8—C9—C1157.79 (16)C13—C14—O2—C175.1 (3)
N1—C8—C9—C118.8 (2)C15—C14—O2—C17175.83 (18)
C1—C9—C10—C114.2 (3)C16—C15—O3—C1817.0 (3)
C8—C9—C10—C11177.11 (16)C14—C15—O3—C18163.5 (2)
C9—C10—C11—C1234.0 (3)C3—C2—S1—C1145.03 (17)
C9—C10—C11—C16149.01 (19)C7—C2—S1—C136.02 (19)
C16—C11—C12—C132.2 (3)C9—C1—S1—C285.92 (14)
C10—C11—C12—C13179.28 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···S10.932.763.605 (2)151
N1—H1···O1i0.862.122.967 (2)170
C6—H6···O1i0.932.523.318 (2)144
C5—H5···O3ii0.932.463.377 (3)167
C17—H17C···Cg1iii0.962.843.724 (2)154
C18—H18A···Cg1iv0.962.903.841 (3)166
Symmetry codes: (i) x, y+1, z+2; (ii) x2, y1, z; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H17NO3S
Mr327.39
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.0249 (4), 10.7949 (7), 10.8826 (7)
α, β, γ (°)91.783 (3), 97.562 (2), 108.512 (2)
V3)773.42 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.23 × 0.21 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.950, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
14052, 3082, 2545
Rint0.032
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.121, 1.06
No. of reflections3082
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.27

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···S10.932.763.605 (2)151
N1—H1···O1i0.862.122.967 (2)170
C6—H6···O1i0.932.523.318 (2)144
C5—H5···O3ii0.932.463.377 (3)167
C17—H17C···Cg1iii0.962.843.724 (2)154
C18—H18A···Cg1iv0.962.903.841 (3)166
Symmetry codes: (i) x, y+1, z+2; (ii) x2, y1, z; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: bhakthadoss@yahoo.com.

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLakshmanan, D., Murugavel, S., Selvakumar, R. & Bakthadoss, M. (2012). Acta Cryst. E68, o2130.  CSD CrossRef IUCr Journals Google Scholar
First citationMetys, J., Metysova, J. & Votava, Z. (1965). Acta Biol. Med. Ger. 15, 871–873.  CAS PubMed Web of Science Google Scholar
First citationMurugavel, S., Manikandan, N., Selvakumar, R. & Bakthadoss, M. (2013). Acta Cryst. E69, o564.  CSD CrossRef IUCr Journals Google Scholar
First citationRajsner, M., Protiva, M. & Metysova, J. (1971). Czech. Patent Appl. CS 143737.  Google Scholar
First citationSelvakumar, R., Bakthadoss, M., Lakshmanan, D. & Murugavel, S. (2012). Acta Cryst. E68, o2126.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomascovic, L. L., Arneri, R. S., Brundic, A. H., Nagl, A., Mintas, M. & Sandtrom, J. (2000). Helv. Chim. Acta, 83, 479–493.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o562-o563
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds