organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o589-o590

2,2-Di­chloro-3,7,7,11-tetra­methyl-10-aza­tetra­cyclo­[6.5.0.01,3.09,11]trideca­ne

aLaboratoire de Chimie Biomoléculaire, Substances Naturelles et, Réactivité "Unité Associée au CNRST (URAC16)", Université Cadi Ayyad, Faculté des Sciences Semlalia, BP 2390, Bd My Abdellah, 40000 Marrakech, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Université Mohammed V-Agdal, Faculté des Sciences, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: berraho@uca.ma

(Received 18 March 2013; accepted 19 March 2013; online 28 March 2013)

The title compound, C16H25Cl2N, was synthesized from β-himachalene (3,5,5,9-tetra­methyl-2,4a,5,6,7,8-hexa­hydro-1H-benzocyclo­heptene), which was isolated from the essential oil of the Atlas cedar (Cedrus Atlantica). The mol­ecule is built up from fused six- and seven-membered rings linked to two three-membered rings. The six-membered ring shows a half-chair conformation, whereas the seven-membered ring displays a boat conformation. The dihedral angle between the mean planes through the six- and seven-membered rings is 59.8 (2)°. The two three-membered rings lie to one side and each is nearly perpendicular to the six-membered ring, forming dihedral angles of 83.2 (2) and 86.0 (2)°. The absolute structure was established unambiguously from anomalous dispersion effects. No specific inter­molecular inter­actions are noted in the crystal structure.

Related literature

For the isolation of β-himachalene, see: Joseph & Dev (1968[Joseph, T. C. & Dev, S. (1968). Tetrahedron, 24, 3841-3859.]); Plattier & Teisseire (1974[Plattier, M. & Teisseire, P. (1974). Recherche, 19, 131-144.]). For the reactivity of this sesquiterpene, see: Lassaba et al. (1998[Lassaba, E., Eljamili, H., Chekroun, A., Benharref, A., Chiaroni, A., Riche, C. & Lavergne, J.-P. (1998). Synth. Commun. 28, 2641-2651.]); Chekroun et al. (2000[Chekroun, A., Jarid, A., Benharref, A. & Boutalib, A. (2000). J. Org. Chem. 65, 4431-4434.]); El Jamili et al. (2002[El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645-6648.]); Sbai et al. (2002[Sbai, F., Dakir, M., Auhmani, A., El Jamili, H., Akssira, M., Benharref, A., Kenz, A. & Pierrot, M. (2002). Acta Cryst. C58, o518-o520.]); Dakir et al. (2004[Dakir, M., Auhmani, A., Ait Itto, M. Y., Mazoir, N., Akssira, M., Pierrot, M. & Benharref, A. (2004). Synth. Commun. 34, 2001-2008.]). For its biological activity, see: Daoubi et al. (2004[Daoubi, M., Duran-Patron, R., Hmamouchi, M., Hernandez-Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci. 60, 927-932.]). For a similar compound, see: Benharref et al. (2010[Benharref, A., El Ammari, L., Avignant, D., Oudahmane, A. & Berraho, M. (2010). Acta Cryst. E66, o3125.]). For puckering calculations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the Flack parameter refinement, see: Flack & Bernardinelli (2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]).

[Scheme 1]

Experimental

Crystal data
  • C16H25Cl2N

  • Mr = 302.27

  • Orthorhombic, P 21 21 21

  • a = 8.607 (3) Å

  • b = 13.222 (4) Å

  • c = 13.973 (4) Å

  • V = 1590.2 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 296 K

  • 0.43 × 0.31 × 0.28 mm

Data collection
  • Bruker X8 APEX Diffractometer

  • 22014 measured reflections

  • 3261 independent reflections

  • 2924 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.144

  • S = 1.06

  • 3261 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.37 e Å−3

  • Absolute structure: Flack & Bernardinelli (2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]), 1385 Friedel pairs

  • Flack parameter: 0.12 (9)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Our work lies within the framework of "value-adding" to the most abundant essential oils in Morocco, such as Cedrus atlantica. This oil is made up mainly (75%) of bicyclic sesquiterpenes hydrocarbons, among which is found the compound, β-himachalene (Joseph & Dev, 1968; Plattier & Teisseire, 1974). The reactivity of this sesquiterpene and its derivatives has been studied extensively by our team in order to prepare new products having biological properties (Lassaba et al., 1998; Chekroun et al., 2000; El Jamili et al., 2002; Sbai et al., 2002; Dakir et al., 2004). Indeed, these compounds were tested, using the food poisoning technique, for their potential anti-fungal activity against phytopathogen Botrytis cinerea (Daoubi et al., 2004). Thus the action of one equivalent of dichlorocarbene, generated in situ from chloroform in the presence of sodium hydroxide as base and n-benzyltriethylammonium chloride as catalyst, on β-himachalene produces only (1S,3R,8R)-2,2-dichloro-3,7,7,10-tetramethyltricyclo [6.4.0.01,3] dodec-9-ene (El Jamili et al., 2002). Treatment of the latter with one equivalent of meta-chloroperbenzoic acid (mCPBA) leads (1S,3R,8S,9R,10S)-2,2-dichloro-9β–10β-epoxy-3,7,7,10-tetramethyl-tricyclo[6.4.0.01,3]dodecane (Benharref et al., 2010). Treating said epoxide with sodium azide in the presence of ammonium chloride followed by Ph3P led to 2,2- dichloro-3,7,7,11-tetramethyl-10- aza-tetracyclo [6,5,0,01.3,09.11]tridecane with a yield of 82.5% from azido alcohol. The structure of this new product was determined by X-ray diffraction analysis.

The molecule contains a fused six- and seven-membered rings, which is fused to two three-membered rings as shown in Fig.1. The six-membered ring has a half chair conformation as indicated by the total puckering amplitude QT = 0.461 (3) Å and spherical polar angle θ = 133.2 (4)° and ϕ2 = 161.2 (5)°, whereas the seven-membered ring displays a boat conformation with QT = 1.157 (3) Å, θ2 = 88.24 (15)°, ϕ2 = -47.69 (15)° and ϕ3 = -106 (4)° (Cremer & Pople, 1975). The dihedral angle between the six and seven-membered rings is 59.8 (2)°. The three-membered rings (C1C2C3) and (C9N1C10) are nearly perpendicular to the six-membered ring (C1C8C9C11C12C13) with a dihedral angle of 86.0 (2) and 83.2 (2)°, respectively. Owing to the presence of Cl atoms, the absolute configuration could be fully confirmed from anomalous dispersion effects, by refining the Flack parameter as C1(S), C3(R), C8(R), C9(S), and C10(R).

Related literature top

For the isolation of β-himachalene, see: Joseph & Dev (1968); Plattier & Teisseire (1974). For the reactivity of this sesquiterpene, see: Lassaba et al. (1998); Chekroun et al. (2000); El Jamili et al. (2002); Sbai et al. (2002); Dakir et al. (2004). For its biological activity, see: Daoubi et al. (2004). For a similar compound, see: Benharref et al. (2010). For puckering calculations, see: Cremer & Pople (1975). For the Flack parameter refinement, see: Flack & Bernardinelli (2000).

Experimental top

A mixture of epoxide, (1S,3R,8S,9R,10S)-2,2-dichloro-9β–10β-epoxy- 3,7,7, 10-tetramethyl-tricyclo[6.4.0.01,3] dodecane (1.5 g, 5 mmol), NaN3 (3.4 g, 53.24 mmol), and NH4Cl (0.57 g, 10.65 mmol) in MeOH (30 ml) and water (2.5 ml) was heated to reflux two hours. The reaction mixture was cooled to room temperature, diluted with water (40 ml) and extracted with ethyle acetate (3 x 30 ml). The combined organic layers were washed with brine, dried (MgSO4), concentrated, and chromatographed (15% EtOAc in hexane) to provide 1.15 g (80%) of azido alcohol. To a solution of this azido alcohol (0.7 g, 2 mmol) in dry acetonitrile (20 ml) was added Ph3P (0.95 g, 3.6 mmol) and the reaction was heated to reflux for 1.5 h. The reaction mixture was cooled to room temperature, concentrated and chromatographed (4%MeOH in CH2Cl2) to provide 0.5 g (1.65 mmol) of 2,2- dichloro-3,7,7,11- tetramethyl-10-aza-tetracyclo[6,5,0,01.3,O9.11]tridecane with a yield of 82.5% from azido alcohol. The title compound was recrystallized from its ethyl acetate solution.

Refinement top

All H atoms were fixed geometrically and treated as riding with N—H = 0.86 Å, C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methine) with Uiso(H) = 1.2 Ueq(amine, methylene, methine) or Uiso(H) = 1.5 Ueq(methyl). The 1385 Friedel opposites reflections are not merged. Owing to poor agreement, one reflection, i.e. (0 1 1), was removed from the final cycles of refinement.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
2,2-Dichloro-3,7,7,11-tetramethyl-10-azatetracyclo[6.5.0.01,3.09,11]tridecane top
Crystal data top
C16H25Cl2NF(000) = 648
Mr = 302.27Dx = 1.263 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3261 reflections
a = 8.607 (3) Åθ = 2.8–26.4°
b = 13.222 (4) ŵ = 0.40 mm1
c = 13.973 (4) ÅT = 296 K
V = 1590.2 (8) Å3Block, colourless
Z = 40.43 × 0.31 × 0.28 mm
Data collection top
Bruker X8 APEX Diffractometer2924 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 26.4°, θmin = 2.8°
ϕ and ω scansh = 1010
22014 measured reflectionsk = 1616
3261 independent reflectionsl = 1715
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0883P)2 + 0.3114P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3261 reflectionsΔρmax = 0.33 e Å3
172 parametersΔρmin = 0.37 e Å3
0 restraintsAbsolute structure: Flack & Bernardinelli (2000), 1385 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.12 (9)
Crystal data top
C16H25Cl2NV = 1590.2 (8) Å3
Mr = 302.27Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.607 (3) ŵ = 0.40 mm1
b = 13.222 (4) ÅT = 296 K
c = 13.973 (4) Å0.43 × 0.31 × 0.28 mm
Data collection top
Bruker X8 APEX Diffractometer2924 reflections with I > 2σ(I)
22014 measured reflectionsRint = 0.048
3261 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.144Δρmax = 0.33 e Å3
S = 1.06Δρmin = 0.37 e Å3
3261 reflectionsAbsolute structure: Flack & Bernardinelli (2000), 1385 Friedel pairs
172 parametersAbsolute structure parameter: 0.12 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4201 (3)0.11081 (16)0.12828 (15)0.0369 (4)
C20.5296 (3)0.16233 (19)0.1977 (2)0.0484 (6)
C30.3732 (3)0.20831 (17)0.18198 (19)0.0434 (5)
C40.2502 (3)0.1978 (2)0.2585 (2)0.0565 (7)
H4A0.24720.25890.29680.068*
H4B0.27630.14180.30020.068*
C50.0892 (4)0.1794 (3)0.2136 (3)0.0702 (9)
H5A0.02220.14930.26160.084*
H5B0.04460.24420.19620.084*
C60.0895 (3)0.1110 (3)0.1247 (2)0.0659 (8)
H6A0.01760.10180.10470.079*
H6B0.14200.14720.07370.079*
C70.1632 (3)0.0070 (2)0.1324 (2)0.0580 (7)
C80.3404 (3)0.01312 (17)0.15959 (18)0.0417 (5)
H80.34550.01160.22960.050*
C90.4322 (4)0.07729 (18)0.1245 (2)0.0571 (7)
H90.38350.14320.13560.069*
C100.5372 (4)0.0736 (2)0.0465 (2)0.0587 (7)
C110.5738 (4)0.0256 (2)0.0032 (2)0.0586 (7)
H11A0.57040.01510.07180.070*
H11B0.67880.04580.01340.070*
C120.4628 (3)0.11134 (17)0.02269 (18)0.0463 (5)
H12A0.51100.17550.00690.056*
H12B0.36890.10500.01520.056*
C130.3622 (4)0.30807 (19)0.1274 (2)0.0622 (8)
H13A0.25530.32830.12290.093*
H13B0.40410.29950.06430.093*
H13C0.42010.35920.16070.093*
C140.0838 (5)0.0597 (4)0.2083 (4)0.1120 (17)
H14A0.13400.12450.21050.168*
H14B0.02370.06850.19190.168*
H14C0.09150.02770.26980.168*
C150.1378 (5)0.0448 (3)0.0346 (3)0.0918 (13)
H15A0.18270.11130.03580.138*
H15B0.18650.00550.01480.138*
H15C0.02850.04990.02190.138*
C160.5914 (7)0.1679 (2)0.0021 (3)0.0979 (15)
H16A0.66230.15070.05260.147*
H16B0.50370.20310.02850.147*
H16C0.64290.21060.04350.147*
N10.5979 (4)0.0721 (2)0.1464 (2)0.0727 (8)
H10.67350.06980.18660.087*
Cl10.69426 (9)0.22566 (7)0.15164 (8)0.0806 (3)
Cl20.57859 (12)0.10793 (7)0.30962 (6)0.0787 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0393 (10)0.0313 (9)0.0401 (11)0.0019 (9)0.0026 (9)0.0007 (8)
C20.0426 (13)0.0495 (13)0.0530 (14)0.0034 (10)0.0124 (11)0.0055 (12)
C30.0428 (12)0.0363 (11)0.0511 (13)0.0038 (9)0.0107 (10)0.0061 (10)
C40.0541 (15)0.0578 (15)0.0577 (16)0.0119 (13)0.0002 (13)0.0190 (12)
C50.0458 (15)0.0760 (19)0.089 (2)0.0104 (14)0.0044 (16)0.0241 (17)
C60.0408 (13)0.0736 (18)0.083 (2)0.0009 (13)0.0108 (14)0.0123 (16)
C70.0523 (16)0.0500 (14)0.0716 (19)0.0133 (12)0.0001 (14)0.0002 (13)
C80.0499 (13)0.0351 (10)0.0402 (11)0.0013 (9)0.0042 (10)0.0026 (9)
C90.0725 (18)0.0337 (11)0.0652 (16)0.0058 (11)0.0107 (15)0.0050 (11)
C100.081 (2)0.0435 (13)0.0513 (14)0.0133 (13)0.0098 (14)0.0016 (11)
C110.0768 (19)0.0514 (13)0.0476 (14)0.0046 (13)0.0133 (15)0.0026 (12)
C120.0583 (14)0.0389 (10)0.0417 (12)0.0006 (11)0.0012 (11)0.0066 (9)
C130.0754 (19)0.0315 (11)0.080 (2)0.0063 (12)0.0126 (16)0.0043 (12)
C140.073 (3)0.111 (3)0.152 (4)0.030 (2)0.025 (3)0.043 (3)
C150.086 (3)0.076 (2)0.113 (3)0.021 (2)0.016 (2)0.032 (2)
C160.158 (4)0.0552 (17)0.080 (2)0.038 (2)0.038 (3)0.0021 (16)
N10.0837 (19)0.0743 (16)0.0603 (14)0.0316 (14)0.0066 (14)0.0046 (13)
Cl10.0445 (4)0.0787 (5)0.1185 (8)0.0163 (3)0.0029 (4)0.0138 (5)
Cl20.0834 (6)0.0917 (6)0.0611 (4)0.0245 (5)0.0341 (4)0.0037 (4)
Geometric parameters (Å, º) top
C1—C21.514 (3)C9—N11.460 (5)
C1—C121.521 (3)C9—H90.9800
C1—C81.527 (3)C10—C161.495 (4)
C1—C31.545 (3)C10—N11.491 (4)
C2—C31.493 (3)C10—C111.517 (4)
C2—Cl11.767 (3)C11—C121.526 (4)
C2—Cl21.772 (3)C11—H11A0.9700
C3—C41.511 (4)C11—H11B0.9700
C3—C131.527 (4)C12—H12A0.9700
C4—C51.540 (4)C12—H12B0.9700
C4—H4A0.9700C13—H13A0.9600
C4—H4B0.9700C13—H13B0.9600
C5—C61.537 (5)C13—H13C0.9600
C5—H5A0.9700C14—H14A0.9600
C5—H5B0.9700C14—H14B0.9600
C6—C71.518 (4)C14—H14C0.9600
C6—H6A0.9700C15—H15A0.9600
C6—H6B0.9700C15—H15B0.9600
C7—C141.539 (5)C15—H15C0.9600
C7—C151.545 (5)C16—H16A0.9600
C7—C81.574 (4)C16—H16B0.9600
C8—C91.515 (3)C16—H16C0.9600
C8—H80.9800N1—H10.8600
C9—C101.416 (4)
C2—C1—C12118.0 (2)N1—C9—C8113.8 (2)
C2—C1—C8118.5 (2)C10—C9—H9115.3
C12—C1—C8112.99 (19)N1—C9—H9115.3
C2—C1—C358.42 (15)C8—C9—H9115.3
C12—C1—C3122.04 (19)C9—C10—C16121.3 (3)
C8—C1—C3116.70 (19)C9—C10—N160.2 (2)
C3—C2—C161.83 (16)C16—C10—N1109.1 (3)
C3—C2—Cl1118.46 (19)C9—C10—C11121.0 (2)
C1—C2—Cl1118.6 (2)C16—C10—C11116.7 (3)
C3—C2—Cl2120.6 (2)N1—C10—C11110.1 (3)
C1—C2—Cl2122.04 (18)C10—C11—C12113.8 (2)
Cl1—C2—Cl2108.84 (14)C10—C11—H11A108.8
C2—C3—C4119.4 (2)C12—C11—H11A108.8
C2—C3—C13118.8 (2)C10—C11—H11B108.8
C4—C3—C13112.9 (2)C12—C11—H11B108.8
C2—C3—C159.75 (15)H11A—C11—H11B107.7
C4—C3—C1116.7 (2)C1—C12—C11112.2 (2)
C13—C3—C1119.6 (2)C1—C12—H12A109.2
C3—C4—C5110.9 (2)C11—C12—H12A109.2
C3—C4—H4A109.5C1—C12—H12B109.2
C5—C4—H4A109.5C11—C12—H12B109.2
C3—C4—H4B109.5H12A—C12—H12B107.9
C5—C4—H4B109.5C3—C13—H13A109.5
H4A—C4—H4B108.0C3—C13—H13B109.5
C6—C5—C4114.9 (2)H13A—C13—H13B109.5
C6—C5—H5A108.5C3—C13—H13C109.5
C4—C5—H5A108.5H13A—C13—H13C109.5
C6—C5—H5B108.5H13B—C13—H13C109.5
C4—C5—H5B108.5C7—C14—H14A109.5
H5A—C5—H5B107.5C7—C14—H14B109.5
C7—C6—C5118.4 (3)H14A—C14—H14B109.5
C7—C6—H6A107.7C7—C14—H14C109.5
C5—C6—H6A107.7H14A—C14—H14C109.5
C7—C6—H6B107.7H14B—C14—H14C109.5
C5—C6—H6B107.7C7—C15—H15A109.5
H6A—C6—H6B107.1C7—C15—H15B109.5
C6—C7—C14112.5 (3)H15A—C15—H15B109.5
C6—C7—C15106.3 (3)C7—C15—H15C109.5
C14—C7—C15107.0 (3)H15A—C15—H15C109.5
C6—C7—C8112.1 (2)H15B—C15—H15C109.5
C14—C7—C8107.0 (3)C10—C16—H16A109.5
C15—C7—C8111.9 (3)C10—C16—H16B109.5
C9—C8—C1109.9 (2)H16A—C16—H16B109.5
C9—C8—C7112.8 (2)C10—C16—H16C109.5
C1—C8—C7114.2 (2)H16A—C16—H16C109.5
C9—C8—H8106.5H16B—C16—H16C109.5
C1—C8—H8106.5C9—N1—C1057.3 (2)
C7—C8—H8106.5C9—N1—H1151.3
C10—C9—N162.4 (2)C10—N1—H1151.3
C10—C9—C8123.7 (2)

Experimental details

Crystal data
Chemical formulaC16H25Cl2N
Mr302.27
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)8.607 (3), 13.222 (4), 13.973 (4)
V3)1590.2 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.43 × 0.31 × 0.28
Data collection
DiffractometerBruker X8 APEX Diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
22014, 3261, 2924
Rint0.048
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.144, 1.06
No. of reflections3261
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.37
Absolute structureFlack & Bernardinelli (2000), 1385 Friedel pairs
Absolute structure parameter0.12 (9)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBenharref, A., El Ammari, L., Avignant, D., Oudahmane, A. & Berraho, M. (2010). Acta Cryst. E66, o3125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChekroun, A., Jarid, A., Benharref, A. & Boutalib, A. (2000). J. Org. Chem. 65, 4431–4434.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDakir, M., Auhmani, A., Ait Itto, M. Y., Mazoir, N., Akssira, M., Pierrot, M. & Benharref, A. (2004). Synth. Commun. 34, 2001–2008.  Web of Science CrossRef CAS Google Scholar
First citationDaoubi, M., Duran-Patron, R., Hmamouchi, M., Hernandez-Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci. 60, 927–932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645–6648.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJoseph, T. C. & Dev, S. (1968). Tetrahedron, 24, 3841–3859.  CrossRef CAS Web of Science Google Scholar
First citationLassaba, E., Eljamili, H., Chekroun, A., Benharref, A., Chiaroni, A., Riche, C. & Lavergne, J.-P. (1998). Synth. Commun. 28, 2641–2651.  Web of Science CrossRef CAS Google Scholar
First citationPlattier, M. & Teisseire, P. (1974). Recherche, 19, 131–144.  CAS Google Scholar
First citationSbai, F., Dakir, M., Auhmani, A., El Jamili, H., Akssira, M., Benharref, A., Kenz, A. & Pierrot, M. (2002). Acta Cryst. C58, o518–o520.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o589-o590
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds