metal-organic compounds
catena-Poly[[copper(I)-μ-2,6-bis[4-(pyridin-2-yl)thiazol-2-yl]pyridine] hexafluoridophosphate acetonitrile monosolvate] from single-crystal synchrotron data
aSchool of Chemistry and Forensic Science, University of Technology, Sydney, PO Box 123, Broadway NSW 2007, Australia, and bMark Wainwright Analytical Centre, University of New South Wales, Anzac Parade, Sydney, New South Wales, 2052, Australia
*Correspondence e-mail: anthony.baker@uts.edu.au
The title complex, {[Cu(C21H13N5S2)]PF6·CH3CN}n, was formed immediately on adding together a methanol solution containing copper(I) ions and a methanol solution of 2,6-bis[4-(pyridin-2-yl)thiazol-2-yl]pyridine. Crystallographic studies of the complex reveal a coordination polymer with the ligand acting as a bis(bidentate) ligand with the pyridine N atom not coordinating a metal centre. The CuI atom is four-coordinate with approximately tetrahedral stereochemistry: the N4 donor set is provided by bipyridine-like moieties of the two heterocyclic ligands. Parallel chains of the coordination polymer run along the b-axis direction with the disordered (0.50:0.50 occupancy ratio) PF6− anions and acetonitrile solvent molecules located between the chains.
Experimental
Crystal data
|
Data collection: BLU-ICE (McPhillips et al., 2002); cell XDS (Kabsch, 1993); data reduction: XDS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536813006831/vm2190sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813006831/vm2190Isup2.hkl
The quinquedentate ligand 2,6-bis(4-(pyridin-2-yl)thiazol-2-yl)pyridine was prepared by adding a solution of 2-(bromoacetyl)pyridinium hydrobromide (5.6 g, 20 mmol) in hot ethanol (50 ml) to a solution of 2,6-di(thioamido)pyridine (2.0 g, 10 mmol) in hot ethanol (50 ml). The solution was heated for 5 min, a yellow precipitate of 2,6-bis(4-(pyridin-2-yl)thiazol-2-yl)pyridinium hydrobromide separated soon. The mixture was allowed to stand for 30 min s and the yellow precipitate was filtered and washed with sodium bicarbonate (5%) until effervescence ceased. Yield: 75%. The complex was prepared as follows: Tetrakis(acetonitrile)copper(I) hexafluorophosphate (200 mg, 0.54 mmol) in hot methanol (20 ml) was added to a solution of the ligand (214 mg, 0.54 mmol) in hot methanol (20 ml). The reaction mixture was heated on the water bath for 1 h. An orange solid formed during this time and once cooled the solid was collected, washed with cooled methanol and stored over silica gel (yield 164 mg, 50%). Crystals were grown by vapour diffusion of diethyl ether into a concentrated acetonitrile solution of the complex.
All the H-atoms were fixed stereochemically and included in the
using riding model option in SHELXL97. The PF6 anion was found to exhibit orientational disorder, which was modelled over two positions.H atoms were positioned geometrically with C—H = 0.93 - 0.96 Å. Uiso(H) values were set at 1.2Ueq (aromatic) or 1.5Ueq of the parent atom (methyl group).
Data collection: BLU-ICE (McPhillips et al., 2002); cell
XDS (Kabsch, 1993); data reduction: XDS (Kabsch, 1993); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).[Cu(C21H13N5S2)]PF6·C2H3N | F(000) = 1304 |
Mr = 649.05 | Dx = 1.702 Mg m−3 |
Monoclinic, P21/c | Synchrotron radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9980 reflections |
a = 12.525 (3) Å | θ = 2.5–22.5° |
b = 13.950 (3) Å | µ = 1.16 mm−1 |
c = 14.626 (3) Å | T = 100 K |
β = 97.72 (3)° | Thin plates, blue |
V = 2532.4 (9) Å3 | 0.03 × 0.02 × 0.01 mm |
Z = 4 |
3-BM1 Australian Synchrotron diffractometer | 3641 reflections with I > 2σ(I) |
Radiation source: Synchrotron BM | Rint = 0.024 |
Si<111> monochromator | θmax = 23.8°, θmin = 1.6° |
ϕ scans | h = −14→14 |
28022 measured reflections | k = −15→15 |
3890 independent reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.078 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0359P)2 + 3.8973P],P = (Fo2 + 2Fc2)/3 |
3890 reflections | (Δ/σ)max = 0.001 |
389 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.57 e Å−3 |
[Cu(C21H13N5S2)]PF6·C2H3N | V = 2532.4 (9) Å3 |
Mr = 649.05 | Z = 4 |
Monoclinic, P21/c | Synchrotron radiation, λ = 0.71073 Å |
a = 12.525 (3) Å | µ = 1.16 mm−1 |
b = 13.950 (3) Å | T = 100 K |
c = 14.626 (3) Å | 0.03 × 0.02 × 0.01 mm |
β = 97.72 (3)° |
3-BM1 Australian Synchrotron diffractometer | 3641 reflections with I > 2σ(I) |
28022 measured reflections | Rint = 0.024 |
3890 independent reflections | θmax = 23.8° |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.078 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.30 e Å−3 |
3890 reflections | Δρmin = −0.57 e Å−3 |
389 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.70815 (2) | 1.19154 (2) | 0.36895 (2) | 0.01965 (11) | |
N1 | 0.40269 (16) | 0.95445 (14) | 0.35587 (13) | 0.0159 (4) | |
C1 | 0.5696 (2) | 0.89759 (19) | 0.25992 (17) | 0.0211 (6) | |
H1 | 0.6257 | 0.8784 | 0.2285 | 0.025* | |
C2 | 0.4814 (2) | 0.83892 (18) | 0.26281 (17) | 0.0197 (5) | |
H2 | 0.4773 | 0.7794 | 0.2339 | 0.024* | |
C3 | 0.3990 (2) | 0.87086 (17) | 0.30999 (16) | 0.0165 (5) | |
C4 | 0.48924 (19) | 1.00992 (17) | 0.35293 (16) | 0.0162 (5) | |
C5 | 0.5735 (2) | 0.98545 (18) | 0.30444 (17) | 0.0197 (5) | |
H5 | 0.6311 | 1.0270 | 0.3020 | 0.024* | |
S1A | 0.21354 (5) | 0.84000 (5) | 0.39190 (4) | 0.02002 (16) | |
N1A | 0.27744 (16) | 0.73513 (14) | 0.26615 (14) | 0.0163 (4) | |
N2A | 0.17898 (16) | 0.59744 (15) | 0.15433 (14) | 0.0180 (4) | |
C1A | 0.3024 (2) | 0.81261 (17) | 0.31486 (16) | 0.0160 (5) | |
C2A | 0.18499 (19) | 0.69316 (17) | 0.28980 (17) | 0.0173 (5) | |
C3A | 0.1400 (2) | 0.74016 (19) | 0.35688 (17) | 0.0207 (5) | |
H3A | 0.0781 | 0.7207 | 0.3803 | 0.025* | |
C4A | 0.14469 (19) | 0.60735 (18) | 0.23785 (17) | 0.0173 (5) | |
C5A | 0.0784 (2) | 0.5404 (2) | 0.27187 (18) | 0.0239 (6) | |
H5A | 0.0574 | 0.5484 | 0.3300 | 0.029* | |
C6A | 0.0438 (2) | 0.4617 (2) | 0.21859 (19) | 0.0276 (6) | |
H6A | −0.0001 | 0.4157 | 0.2405 | 0.033* | |
C7A | 0.0757 (2) | 0.4527 (2) | 0.13181 (19) | 0.0275 (6) | |
H7A | 0.0520 | 0.4015 | 0.0937 | 0.033* | |
C8A | 0.1432 (2) | 0.52119 (18) | 0.10326 (18) | 0.0232 (6) | |
H8A | 0.1652 | 0.5142 | 0.0454 | 0.028* | |
S1B | 0.37811 (5) | 1.12599 (5) | 0.46088 (4) | 0.02089 (16) | |
N1B | 0.56301 (16) | 1.16578 (14) | 0.41446 (13) | 0.0154 (4) | |
N2B | 0.69867 (17) | 1.31538 (14) | 0.43946 (14) | 0.0193 (5) | |
C1B | 0.48752 (19) | 1.09985 (18) | 0.40534 (16) | 0.0165 (5) | |
C2B | 0.5353 (2) | 1.24125 (18) | 0.46810 (16) | 0.0173 (5) | |
C3B | 0.4376 (2) | 1.23154 (18) | 0.49859 (17) | 0.0207 (5) | |
H4B | 0.4076 | 1.2762 | 0.5349 | 0.025* | |
C4B | 0.6105 (2) | 1.32303 (18) | 0.48297 (17) | 0.0190 (5) | |
C5B | 0.5930 (2) | 1.40191 (19) | 0.53706 (18) | 0.0248 (6) | |
H5B | 0.5330 | 1.4047 | 0.5682 | 0.030* | |
C6B | 0.6670 (2) | 1.47623 (19) | 0.54353 (19) | 0.0290 (6) | |
H6B | 0.6566 | 1.5303 | 0.5785 | 0.035* | |
C7B | 0.7559 (2) | 1.46972 (19) | 0.49804 (18) | 0.0263 (6) | |
H7B | 0.8059 | 1.5193 | 0.5013 | 0.032* | |
C8B | 0.7696 (2) | 1.38795 (19) | 0.44740 (18) | 0.0239 (6) | |
H8B | 0.8305 | 1.3831 | 0.4176 | 0.029* | |
P1 | 0.91781 (5) | 0.77051 (5) | 0.06197 (5) | 0.02250 (17) | |
F1 | 1.02028 (15) | 0.72763 (13) | 0.02232 (14) | 0.0467 (5) | |
F2 | 0.9637 (5) | 0.7561 (5) | 0.1692 (5) | 0.0320 (13) | 0.50 |
F3 | 0.8706 (11) | 0.6650 (9) | 0.0595 (7) | 0.034 (2) | 0.50 |
F4 | 0.8738 (5) | 0.7876 (5) | −0.0432 (4) | 0.0503 (15) | 0.50 |
F5 | 0.9640 (8) | 0.8778 (6) | 0.0694 (4) | 0.0348 (15) | 0.50 |
F2' | 1.0012 (6) | 0.7796 (6) | 0.1511 (5) | 0.064 (2) | 0.50 |
F3' | 0.8878 (13) | 0.6654 (11) | 0.0896 (8) | 0.063 (4) | 0.50 |
F4' | 0.8345 (5) | 0.7575 (6) | −0.0299 (5) | 0.063 (2) | 0.50 |
F5' | 0.9533 (8) | 0.8721 (7) | 0.0272 (6) | 0.080 (3) | 0.50 |
F6 | 0.81523 (16) | 0.81302 (15) | 0.10063 (17) | 0.0572 (6) | |
C1AN | 0.1934 (3) | 0.1022 (3) | 0.2238 (2) | 0.0507 (9) | |
H1A1 | 0.1468 | 0.0772 | 0.1718 | 0.076* | |
H1A2 | 0.1637 | 0.1606 | 0.2442 | 0.076* | |
H1A3 | 0.2001 | 0.0562 | 0.2730 | 0.076* | |
C2AN | 0.2998 (3) | 0.1214 (2) | 0.19694 (19) | 0.0297 (7) | |
N1AN | 0.3824 (2) | 0.13309 (19) | 0.17597 (18) | 0.0368 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.02253 (19) | 0.01556 (18) | 0.02245 (18) | 0.00197 (12) | 0.00884 (13) | −0.00093 (12) |
N1 | 0.0184 (11) | 0.0143 (10) | 0.0151 (10) | 0.0000 (8) | 0.0026 (8) | 0.0017 (8) |
C1 | 0.0218 (13) | 0.0219 (14) | 0.0209 (13) | 0.0003 (11) | 0.0083 (10) | −0.0021 (11) |
C2 | 0.0243 (14) | 0.0154 (13) | 0.0195 (13) | −0.0016 (10) | 0.0031 (10) | −0.0016 (10) |
C3 | 0.0198 (13) | 0.0146 (12) | 0.0146 (12) | 0.0000 (10) | 0.0012 (10) | 0.0032 (10) |
C4 | 0.0214 (13) | 0.0130 (12) | 0.0137 (12) | −0.0013 (10) | 0.0000 (10) | 0.0016 (10) |
C5 | 0.0195 (13) | 0.0194 (13) | 0.0210 (13) | −0.0038 (10) | 0.0058 (10) | 0.0006 (10) |
S1A | 0.0198 (3) | 0.0213 (3) | 0.0196 (3) | 0.0006 (3) | 0.0054 (2) | −0.0028 (3) |
N1A | 0.0173 (10) | 0.0145 (11) | 0.0172 (10) | 0.0002 (8) | 0.0024 (8) | 0.0026 (9) |
N2A | 0.0174 (10) | 0.0165 (11) | 0.0199 (11) | 0.0017 (9) | 0.0022 (8) | 0.0025 (9) |
C1A | 0.0179 (12) | 0.0151 (13) | 0.0150 (12) | 0.0023 (10) | 0.0025 (10) | 0.0023 (10) |
C2A | 0.0157 (12) | 0.0173 (13) | 0.0188 (12) | 0.0003 (10) | 0.0016 (10) | 0.0047 (10) |
C3A | 0.0173 (13) | 0.0243 (14) | 0.0211 (13) | −0.0019 (11) | 0.0046 (10) | 0.0023 (11) |
C4A | 0.0148 (12) | 0.0160 (13) | 0.0207 (13) | 0.0019 (10) | 0.0009 (10) | 0.0041 (10) |
C5A | 0.0221 (14) | 0.0262 (14) | 0.0233 (13) | −0.0032 (11) | 0.0029 (11) | 0.0052 (11) |
C6A | 0.0258 (14) | 0.0227 (14) | 0.0337 (15) | −0.0093 (11) | 0.0023 (12) | 0.0069 (12) |
C7A | 0.0317 (15) | 0.0188 (14) | 0.0310 (15) | −0.0073 (12) | 0.0004 (12) | −0.0022 (12) |
C8A | 0.0272 (14) | 0.0199 (14) | 0.0226 (13) | −0.0005 (11) | 0.0036 (11) | −0.0002 (11) |
S1B | 0.0197 (3) | 0.0201 (3) | 0.0244 (3) | −0.0023 (3) | 0.0085 (3) | −0.0034 (3) |
N1B | 0.0189 (11) | 0.0132 (10) | 0.0146 (10) | 0.0000 (8) | 0.0038 (8) | 0.0009 (8) |
N2B | 0.0225 (11) | 0.0152 (11) | 0.0197 (11) | 0.0005 (9) | 0.0010 (9) | 0.0010 (9) |
C1B | 0.0181 (12) | 0.0178 (13) | 0.0141 (12) | 0.0018 (10) | 0.0039 (10) | 0.0021 (10) |
C2B | 0.0230 (13) | 0.0148 (12) | 0.0142 (12) | 0.0020 (10) | 0.0025 (10) | 0.0001 (10) |
C3B | 0.0231 (14) | 0.0186 (13) | 0.0212 (13) | 0.0005 (11) | 0.0059 (10) | −0.0051 (11) |
C4B | 0.0229 (13) | 0.0166 (13) | 0.0172 (12) | 0.0019 (10) | 0.0013 (10) | 0.0019 (10) |
C5B | 0.0294 (15) | 0.0196 (14) | 0.0253 (14) | 0.0035 (11) | 0.0037 (11) | −0.0033 (11) |
C6B | 0.0404 (17) | 0.0173 (14) | 0.0288 (15) | 0.0022 (12) | 0.0022 (13) | −0.0060 (11) |
C7B | 0.0336 (16) | 0.0153 (13) | 0.0283 (15) | −0.0057 (11) | −0.0021 (12) | −0.0008 (11) |
C8B | 0.0236 (14) | 0.0212 (14) | 0.0269 (14) | −0.0031 (11) | 0.0030 (11) | 0.0038 (11) |
P1 | 0.0214 (4) | 0.0218 (4) | 0.0244 (4) | 0.0027 (3) | 0.0035 (3) | 0.0035 (3) |
F1 | 0.0402 (11) | 0.0389 (11) | 0.0688 (13) | 0.0088 (8) | 0.0354 (10) | 0.0116 (9) |
F2 | 0.046 (4) | 0.029 (2) | 0.021 (2) | 0.009 (2) | 0.003 (2) | 0.0040 (16) |
F3 | 0.033 (4) | 0.020 (4) | 0.051 (5) | −0.010 (3) | 0.016 (3) | −0.016 (4) |
F4 | 0.064 (5) | 0.061 (4) | 0.023 (2) | 0.018 (3) | −0.008 (3) | 0.011 (2) |
F5 | 0.046 (3) | 0.017 (2) | 0.046 (3) | −0.001 (2) | 0.024 (3) | −0.002 (3) |
F2' | 0.053 (5) | 0.092 (6) | 0.039 (4) | 0.035 (4) | −0.018 (3) | −0.038 (4) |
F3' | 0.051 (6) | 0.043 (5) | 0.103 (10) | 0.004 (4) | 0.037 (6) | 0.032 (6) |
F4' | 0.031 (3) | 0.113 (6) | 0.041 (3) | 0.001 (3) | −0.010 (2) | 0.001 (3) |
F5' | 0.038 (3) | 0.030 (4) | 0.176 (9) | 0.006 (3) | 0.027 (6) | 0.054 (6) |
F6 | 0.0392 (11) | 0.0510 (13) | 0.0864 (16) | 0.0157 (9) | 0.0267 (11) | −0.0079 (11) |
C1AN | 0.0362 (19) | 0.077 (3) | 0.0421 (19) | −0.0020 (18) | 0.0159 (15) | 0.0064 (19) |
C2AN | 0.0368 (18) | 0.0305 (16) | 0.0215 (14) | 0.0006 (13) | 0.0026 (13) | 0.0061 (12) |
N1AN | 0.0347 (16) | 0.0418 (16) | 0.0340 (14) | −0.0042 (12) | 0.0049 (12) | 0.0149 (12) |
Cu1—N2Ai | 1.992 (2) | C8A—H8A | 0.9300 |
Cu1—N2B | 2.024 (2) | S1B—C3B | 1.708 (3) |
Cu1—N1B | 2.050 (2) | S1B—C1B | 1.723 (2) |
Cu1—N1Ai | 2.098 (2) | N1B—C1B | 1.313 (3) |
N1—C4 | 1.337 (3) | N1B—C2B | 1.385 (3) |
N1—C3 | 1.343 (3) | N2B—C8B | 1.342 (3) |
C1—C2 | 1.380 (4) | N2B—C4B | 1.351 (3) |
C1—C5 | 1.386 (4) | C2B—C3B | 1.364 (4) |
C1—H1 | 0.9300 | C2B—C4B | 1.476 (4) |
C2—C3 | 1.390 (4) | C3B—H4B | 0.9300 |
C2—H2 | 0.9300 | C4B—C5B | 1.390 (4) |
C3—C1A | 1.467 (3) | C5B—C6B | 1.385 (4) |
C4—C5 | 1.391 (4) | C5B—H5B | 0.9300 |
C4—C1B | 1.472 (3) | C6B—C7B | 1.375 (4) |
C5—H5 | 0.9300 | C6B—H6B | 0.9300 |
S1A—C3A | 1.710 (3) | C7B—C8B | 1.383 (4) |
S1A—C1A | 1.730 (2) | C7B—H7B | 0.9300 |
N1A—C1A | 1.309 (3) | C8B—H8B | 0.9300 |
N1A—C2A | 1.382 (3) | P1—F2' | 1.562 (7) |
N1A—Cu1ii | 2.098 (2) | P1—F3' | 1.580 (16) |
N2A—C8A | 1.342 (3) | P1—F4 | 1.581 (6) |
N2A—C4A | 1.355 (3) | P1—F3 | 1.585 (13) |
N2A—Cu1ii | 1.992 (2) | P1—F6 | 1.587 (2) |
C2A—C3A | 1.363 (4) | P1—F5' | 1.589 (9) |
C2A—C4A | 1.470 (4) | P1—F1 | 1.5941 (18) |
C3A—H3A | 0.9300 | P1—F4' | 1.597 (7) |
C4A—C5A | 1.385 (4) | P1—F5 | 1.603 (9) |
C5A—C6A | 1.382 (4) | P1—F2 | 1.609 (7) |
C5A—H5A | 0.9300 | C1AN—C2AN | 1.464 (4) |
C6A—C7A | 1.387 (4) | C1AN—H1A1 | 0.9600 |
C6A—H6A | 0.9300 | C1AN—H1A2 | 0.9600 |
C7A—C8A | 1.377 (4) | C1AN—H1A3 | 0.9600 |
C7A—H7A | 0.9300 | C2AN—N1AN | 1.130 (4) |
N2Ai—Cu1—N2B | 137.85 (9) | S1B—C3B—H4B | 124.7 |
N2Ai—Cu1—N1B | 128.37 (8) | N2B—C4B—C5B | 122.1 (2) |
N2B—Cu1—N1B | 82.47 (8) | N2B—C4B—C2B | 114.5 (2) |
N2Ai—Cu1—N1Ai | 82.95 (8) | C5B—C4B—C2B | 123.3 (2) |
N2B—Cu1—N1Ai | 104.53 (8) | C6B—C5B—C4B | 118.5 (3) |
N1B—Cu1—N1Ai | 123.28 (8) | C6B—C5B—H5B | 120.8 |
C4—N1—C3 | 117.4 (2) | C4B—C5B—H5B | 120.8 |
C2—C1—C5 | 119.2 (2) | C7B—C6B—C5B | 119.7 (3) |
C2—C1—H1 | 120.4 | C7B—C6B—H6B | 120.1 |
C5—C1—H1 | 120.4 | C5B—C6B—H6B | 120.1 |
C1—C2—C3 | 118.4 (2) | C6B—C7B—C8B | 118.7 (3) |
C1—C2—H2 | 120.8 | C6B—C7B—H7B | 120.7 |
C3—C2—H2 | 120.8 | C8B—C7B—H7B | 120.7 |
N1—C3—C2 | 123.3 (2) | N2B—C8B—C7B | 122.7 (3) |
N1—C3—C1A | 115.5 (2) | N2B—C8B—H8B | 118.6 |
C2—C3—C1A | 121.3 (2) | C7B—C8B—H8B | 118.6 |
N1—C4—C5 | 123.3 (2) | F2'—P1—F3' | 91.0 (5) |
N1—C4—C1B | 114.1 (2) | F2'—P1—F4 | 155.0 (4) |
C5—C4—C1B | 122.7 (2) | F3'—P1—F4 | 109.0 (5) |
C1—C5—C4 | 118.4 (2) | F2'—P1—F3 | 107.4 (5) |
C1—C5—H5 | 120.8 | F3'—P1—F3 | 16.8 (6) |
C4—C5—H5 | 120.8 | F4—P1—F3 | 92.2 (5) |
C3A—S1A—C1A | 89.57 (12) | F2'—P1—F6 | 98.9 (3) |
C1A—N1A—C2A | 111.1 (2) | F3'—P1—F6 | 91.4 (6) |
C1A—N1A—Cu1ii | 135.01 (17) | F4—P1—F6 | 95.6 (3) |
C2A—N1A—Cu1ii | 107.09 (15) | F3—P1—F6 | 92.2 (5) |
C8A—N2A—C4A | 117.4 (2) | F2'—P1—F5' | 90.6 (5) |
C8A—N2A—Cu1ii | 128.23 (18) | F3'—P1—F5' | 174.9 (7) |
C4A—N2A—Cu1ii | 113.89 (16) | F4—P1—F5' | 68.3 (4) |
N1A—C1A—C3 | 124.7 (2) | F3—P1—F5' | 160.2 (5) |
N1A—C1A—S1A | 114.16 (18) | F6—P1—F5' | 93.2 (3) |
C3—C1A—S1A | 121.09 (18) | F2'—P1—F1 | 81.6 (3) |
C3A—C2A—N1A | 114.7 (2) | F3'—P1—F1 | 88.6 (6) |
C3A—C2A—C4A | 128.1 (2) | F4—P1—F1 | 84.0 (3) |
N1A—C2A—C4A | 117.2 (2) | F3—P1—F1 | 87.7 (5) |
C2A—C3A—S1A | 110.47 (19) | F6—P1—F1 | 179.52 (13) |
C2A—C3A—H3A | 124.8 | F5'—P1—F1 | 86.8 (3) |
S1A—C3A—H3A | 124.8 | F2'—P1—F4' | 177.9 (4) |
N2A—C4A—C5A | 122.2 (2) | F3'—P1—F4' | 87.6 (5) |
N2A—C4A—C2A | 114.9 (2) | F4—P1—F4' | 25.2 (2) |
C5A—C4A—C2A | 122.9 (2) | F3—P1—F4' | 71.1 (5) |
C6A—C5A—C4A | 119.4 (2) | F6—P1—F4' | 82.8 (3) |
C6A—C5A—H5A | 120.3 | F5'—P1—F4' | 90.7 (4) |
C4A—C5A—H5A | 120.3 | F1—P1—F4' | 96.8 (3) |
C5A—C6A—C7A | 118.8 (2) | F2'—P1—F5 | 70.9 (4) |
C5A—C6A—H6A | 120.6 | F3'—P1—F5 | 161.0 (4) |
C7A—C6A—H6A | 120.6 | F4—P1—F5 | 90.0 (3) |
C8A—C7A—C6A | 118.6 (3) | F3—P1—F5 | 177.2 (5) |
C8A—C7A—H7A | 120.7 | F6—P1—F5 | 86.0 (3) |
C6A—C7A—H7A | 120.7 | F5'—P1—F5 | 22.4 (4) |
N2A—C8A—C7A | 123.6 (2) | F1—P1—F5 | 94.2 (3) |
N2A—C8A—H8A | 118.2 | F4'—P1—F5 | 110.7 (4) |
C7A—C8A—H8A | 118.2 | F2'—P1—F2 | 23.9 (3) |
C3B—S1B—C1B | 89.68 (12) | F3'—P1—F2 | 72.6 (4) |
C1B—N1B—C2B | 111.0 (2) | F4—P1—F2 | 178.4 (3) |
C1B—N1B—Cu1 | 138.40 (17) | F3—P1—F2 | 89.4 (4) |
C2B—N1B—Cu1 | 110.56 (16) | F6—P1—F2 | 84.2 (2) |
C8B—N2B—C4B | 118.3 (2) | F5'—P1—F2 | 110.2 (4) |
C8B—N2B—Cu1 | 127.22 (18) | F1—P1—F2 | 96.2 (2) |
C4B—N2B—Cu1 | 114.53 (17) | F4'—P1—F2 | 156.0 (3) |
N1B—C1B—C4 | 126.1 (2) | F5—P1—F2 | 88.4 (3) |
N1B—C1B—S1B | 114.28 (18) | C2AN—C1AN—H1A1 | 109.5 |
C4—C1B—S1B | 119.61 (18) | C2AN—C1AN—H1A2 | 109.5 |
C3B—C2B—N1B | 114.4 (2) | H1A1—C1AN—H1A2 | 109.5 |
C3B—C2B—C4B | 127.6 (2) | C2AN—C1AN—H1A3 | 109.5 |
N1B—C2B—C4B | 117.9 (2) | H1A1—C1AN—H1A3 | 109.5 |
C2B—C3B—S1B | 110.60 (19) | H1A2—C1AN—H1A3 | 109.5 |
C2B—C3B—H4B | 124.7 | N1AN—C2AN—C1AN | 177.8 (4) |
C5—C1—C2—C3 | 0.5 (4) | N2B—Cu1—N1B—C1B | 176.7 (3) |
C4—N1—C3—C2 | 2.0 (3) | N1Ai—Cu1—N1B—C1B | 74.2 (3) |
C4—N1—C3—C1A | −179.8 (2) | N2Ai—Cu1—N1B—C2B | 147.28 (15) |
C1—C2—C3—N1 | −2.6 (4) | N2B—Cu1—N1B—C2B | −0.84 (16) |
C1—C2—C3—C1A | 179.3 (2) | N1Ai—Cu1—N1B—C2B | −103.31 (16) |
C3—N1—C4—C5 | 0.6 (3) | N2Ai—Cu1—N2B—C8B | 39.4 (3) |
C3—N1—C4—C1B | −179.6 (2) | N1B—Cu1—N2B—C8B | −178.7 (2) |
C2—C1—C5—C4 | 1.9 (4) | N1Ai—Cu1—N2B—C8B | −56.2 (2) |
N1—C4—C5—C1 | −2.6 (4) | N2Ai—Cu1—N2B—C4B | −140.17 (17) |
C1B—C4—C5—C1 | 177.7 (2) | N1B—Cu1—N2B—C4B | 1.73 (17) |
C2A—N1A—C1A—C3 | 176.6 (2) | N1Ai—Cu1—N2B—C4B | 124.25 (17) |
Cu1ii—N1A—C1A—C3 | −37.1 (4) | C2B—N1B—C1B—C4 | 179.8 (2) |
C2A—N1A—C1A—S1A | −0.7 (3) | Cu1—N1B—C1B—C4 | 2.3 (4) |
Cu1ii—N1A—C1A—S1A | 145.62 (16) | C2B—N1B—C1B—S1B | 0.3 (3) |
N1—C3—C1A—N1A | 171.2 (2) | Cu1—N1B—C1B—S1B | −177.16 (14) |
C2—C3—C1A—N1A | −10.5 (4) | N1—C4—C1B—N1B | 179.0 (2) |
N1—C3—C1A—S1A | −11.7 (3) | C5—C4—C1B—N1B | −1.2 (4) |
C2—C3—C1A—S1A | 166.63 (19) | N1—C4—C1B—S1B | −1.5 (3) |
C3A—S1A—C1A—N1A | 0.76 (19) | C5—C4—C1B—S1B | 178.24 (19) |
C3A—S1A—C1A—C3 | −176.6 (2) | C3B—S1B—C1B—N1B | −0.1 (2) |
C1A—N1A—C2A—C3A | 0.2 (3) | C3B—S1B—C1B—C4 | −179.6 (2) |
Cu1ii—N1A—C2A—C3A | −155.55 (18) | C1B—N1B—C2B—C3B | −0.5 (3) |
C1A—N1A—C2A—C4A | 177.6 (2) | Cu1—N1B—C2B—C3B | 177.75 (17) |
Cu1ii—N1A—C2A—C4A | 21.8 (2) | C1B—N1B—C2B—C4B | −178.3 (2) |
N1A—C2A—C3A—S1A | 0.3 (3) | Cu1—N1B—C2B—C4B | −0.1 (3) |
C4A—C2A—C3A—S1A | −176.7 (2) | N1B—C2B—C3B—S1B | 0.4 (3) |
C1A—S1A—C3A—C2A | −0.6 (2) | C4B—C2B—C3B—S1B | 178.0 (2) |
C8A—N2A—C4A—C5A | 2.3 (3) | C1B—S1B—C3B—C2B | −0.2 (2) |
Cu1ii—N2A—C4A—C5A | −170.47 (19) | C8B—N2B—C4B—C5B | −1.8 (4) |
C8A—N2A—C4A—C2A | −178.9 (2) | Cu1—N2B—C4B—C5B | 177.81 (19) |
Cu1ii—N2A—C4A—C2A | 8.3 (3) | C8B—N2B—C4B—C2B | 178.2 (2) |
C3A—C2A—C4A—N2A | 155.6 (2) | Cu1—N2B—C4B—C2B | −2.2 (3) |
N1A—C2A—C4A—N2A | −21.4 (3) | C3B—C2B—C4B—N2B | −176.0 (2) |
C3A—C2A—C4A—C5A | −25.6 (4) | N1B—C2B—C4B—N2B | 1.5 (3) |
N1A—C2A—C4A—C5A | 157.4 (2) | C3B—C2B—C4B—C5B | 4.0 (4) |
N2A—C4A—C5A—C6A | −1.4 (4) | N1B—C2B—C4B—C5B | −178.5 (2) |
C2A—C4A—C5A—C6A | 179.9 (2) | N2B—C4B—C5B—C6B | 2.3 (4) |
C4A—C5A—C6A—C7A | −0.7 (4) | C2B—C4B—C5B—C6B | −177.7 (2) |
C5A—C6A—C7A—C8A | 1.8 (4) | C4B—C5B—C6B—C7B | −1.0 (4) |
C4A—N2A—C8A—C7A | −1.1 (4) | C5B—C6B—C7B—C8B | −0.6 (4) |
Cu1ii—N2A—C8A—C7A | 170.5 (2) | C4B—N2B—C8B—C7B | 0.0 (4) |
C6A—C7A—C8A—N2A | −1.0 (4) | Cu1—N2B—C8B—C7B | −179.53 (19) |
N2Ai—Cu1—N1B—C1B | −35.2 (3) | C6B—C7B—C8B—N2B | 1.2 (4) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C21H13N5S2)]PF6·C2H3N |
Mr | 649.05 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 12.525 (3), 13.950 (3), 14.626 (3) |
β (°) | 97.72 (3) |
V (Å3) | 2532.4 (9) |
Z | 4 |
Radiation type | Synchrotron, λ = 0.71073 Å |
µ (mm−1) | 1.16 |
Crystal size (mm) | 0.03 × 0.02 × 0.01 |
Data collection | |
Diffractometer | 3-BM1 Australian Synchrotron diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 28022, 3890, 3641 |
Rint | 0.024 |
θmax (°) | 23.8 |
(sin θ/λ)max (Å−1) | 0.568 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.078, 1.08 |
No. of reflections | 3890 |
No. of parameters | 389 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.30, −0.57 |
Computer programs: BLU-ICE (McPhillips et al., 2002), XDS (Kabsch, 1993), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), publCIF (Westrip, 2010).
Acknowledgements
The authors thank the Australian Synchrotron Facility, Melbourne, for the X-ray data.
References
Baker, A. T. & Matthews, J. P. (1999). Aust. J. Chem. 52, 339–342. Web of Science CrossRef CAS Google Scholar
Kabsch, W. (1993). J. Appl. Cryst. 26, 795–800. CrossRef CAS Web of Science IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
McPhillips, T. M., McPhillips, S. E., Chiu, H.-J., Cohen, A. E., Deacon, A. M., Ellis, P. J., Garman, E., Gonzalez, A., Sauter, N. K., Phizackerley, R. P., Soltis, S. M. & Kuhn, P. (2002). J. Synchrotron Rad. 9, 401–406. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
We have prepared and studied many analogues of 2,2'-bipyridine and 2,2':6',2"-terpyridine (Baker and Matthews, 1999 and references therein) and have extended this work to the preparation of ligands analogous to quinquepyridine. For metal complexes of these quinquepyridine analogues, a number of features have been observed. The interpolation of a five-membered heterocycle appears to reduce the capacity of the ligands to employ all five donor atoms and we have seen several examples where the ligands act in a bis(bidentate) mode [2 + 2]. In such cases the ligands bridge between metal centres in binuclear complexes. Herein we report a coordination polymer shown in Scheme 1, again where the ligand binds in [2 + 2] mode. A thermal ellipsoid plot is shown in Fig. 1. Each copper centre has approximately tetrahedral stereochemistry as shown in Fig. 1. The principal cause of distortion being the bite angles of the bidentate ligand N2B—Cu1—N1B (82.47 (8)°) and N2Ai—Cu1—N1Ai (82.95 (8)°) (symmetry code: (i) -x + 1, y + 1/2, -z + 1/2) are considerably less than the ideal tetrahedral angle. Two 'thiazolylpyridine' moieties coordinate each copper(I) centre with the relevant bond lengths being Cu—N1Ai 2.098 (2) Å, Cu—N1B 2.050 (2) Å, Cu—N2A 1.992 (2) Å and Cu—N2B 2.024 (2) Å. The Cu—N bond lengths are similar but the Cu—Npyridinyl bonds are slightly shorter than the Cu—Nthiazolyl bonds. This indicates a slightly stronger interaction of the metal atom with the pyridinyl moiety, in line with base strength. A single chain of the coordination polymer, thus created, is depicted in Fig. 2 and packing of these chains that include PF6- anions and solvent molecules of acetonitriles are shown in Fig. 3.