metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages m187-m188

2-Meth­­oxy­anilinium tri­chlorido­stannate(II)

aLaboratoire de Génie des Matériaux et Environnement, École Nationale d'Ingénieurs de Sfax, BP 1173, Sfax, Tunisia, and bService commun d'analyse par diffraction des rayons X, Université de Brest, 6 Avenue Victor Le Gorgeu, CS 93837, F-29238 Brest Cedex 3, France
*Correspondence e-mail: slah.kamoun@gmail.com

(Received 1 February 2013; accepted 21 February 2013; online 6 March 2013)

The title compound, (C7H10NO)[SnCl3], is a new compound with non-linear optical (NLO) properties. The structure is pseudocentrosymmetric; the absence of an inversion centre was proved by the Kurtz and Perry method showing a significant second harmonic generation (SHG) signal about ten times lower than that from potassium dihydrogenphosphate. The crystal structure exhibits alternating organic and inorganic layers parallel to the ab plane, which are stabilized by inter­molecular N—H⋯Cl inter­actions.

Related literature

For related structures, see: Zhang et al. (2009[Zhang, S. J., Lanty, G., Lauret, J. S., Deleporte, E., Audebert, P. & Galmiche, L. (2009). Acta Mater. 57, 3301-3309.]). For the effects of substituents on the inter­nal angles of the benzene ring, see: Domenicano & Murray-Rust (1979[Domenicano, A. & Murray-Rust, P. (1979). Tetrahedron Lett. 20, 2283-2286.]). For NLO and SHG, see: Kurtz & Perry (1968[Kurtz, S. K. & Perry, T. T. (1968). J. Appl. Phys. 39, 798-3813.]); Kamoun et al. (1995[Kamoun, S., Daoud, A., Elfakir, A., Quarton, M. & Ledoux, I. (1995). Solid State Commun. 94, 893-897.]). For ferroelectricity of related compounds, see: Ben Gozlen et al. (1994[Ben Gozlen, M. H., Kamoun, S., Paulush, H. & Pabst, I. (1994). Z. Kristallogr. 209, 382-382.]). For electric and dielectric properties of related compounds, see: Karoui et al. (2013[Karoui, S., Kamoun, S. & Jouini, A. (2013). J. Solid State Chem. 197, 60-68.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H10NO)[SnCl3]

  • Mr = 349.20

  • Orthorhombic, P 21 21 21

  • a = 7.2030 (2) Å

  • b = 8.3341 (3) Å

  • c = 19.5436 (6) Å

  • V = 1173.21 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.82 mm−1

  • T = 296 K

  • 0.41 × 0.34 × 0.10 mm

Data collection
  • Agilent Xcalibur (Sapphire2) diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.391, Tmax = 0.765

  • 8969 measured reflections

  • 2392 independent reflections

  • 2236 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.064

  • S = 1.14

  • 2392 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.69 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 986 Friedel pairs

  • Flack parameter: 0.03 (5)

Table 1
Selected bond lengths (Å)

Sn1—Cl1 2.5437 (15)
Sn1—Cl2 2.6489 (11)
Sn1—Cl3 2.5139 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯Cl1i 0.89 2.51 3.339 (4) 155
N1—H1C⋯Cl3ii 0.89 2.85 3.418 (4) 123
N1—H1A⋯Cl3iii 0.89 2.53 3.329 (4) 151
N1—H1B⋯Cl2 0.89 2.54 3.371 (6) 157
N1—H1B⋯Cl1 0.89 2.94 3.515 (4) 124
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg et al., 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Considerable attention has been devoted to inorganic-organic hybrid materials over recent years (Zhang et al., 2009). These hybrid materials have interesting physical properties such as ferroelectricity (Ben Gozlen et al., 1994), non-linear optics (Kamoun et al., 1995) as well as electrical conductivity and dielectric relaxation (Karoui et al., 2013). Herein we report the structure of a new non-linear optical material. The structure can be solved and refined in both P212121 and Pmnb, the refinement in the latter space group being of less quality than the one in P212121. The NLO response of C7H10NO.SnCl3 has been evaluated by performing SHG on a powder sample using the Kurtz and Perry powder technique (Kurtz & Perry, 1968). The NLO effenciency of C7H10NO.SnCl3 was found to be 10 times lower than KDP. [I2ω/(I ω)2] C7H10NO.SnCl3= 0.1[I2ω/(I ω)2]KDP, ruling out the possibility of the centrosymmetric space group.

The stereochemical activity of the non-bonding valence electrons on tin (II) in the title compound is evident in the asymmetric coordination environment adopted by this atom (Fig. 1). The primary coordination contacts from tin to the three chlorine atoms constitute the trichloro stannate anion [SnCl3]-. This anion is pyramidal with Sn—Cl distances of 2.5139 (15) Å, 2.5437 (15) Å, 2.6489 (11) Å (Table 1) and Cl—Sn—Cl bond angles of 93.82 (4), 85.52 (5) and 85.10 (5)°. One longer second contact (3.0075 (11) Å) to chlorine atoms on neighboring [SnCl3]- anions complete the fourfold coordinate geometry for tin and give rises to an infinite [SnCl3]nn- chain along the b axis (Fig. 2). Each chain is characterized by a short Sn—Sn bond length of 4.2078 (2) Å and a Sn—Cl—Sn bridge angle of 95.92 (3)°. The benzene ring is practically planar with the greatest deviation from the six-atoms least squares plane being 0.0009 Å. The dihedral angle between two benzene rings of the formula unit is 14°. No stabilization is provided by π-π stacking interactions between the benzene rings of the cations (centroid-centroid distances = 4.362 (4) Å). The torsion angle O1—C1—C2—N1 is 0.2 (8)° indicating that the N1—C2 and C1—O1 groups are in the same plane as the benzene rings. The methoxy group of the organic cation makes an angle of 4(1)° with the plane of the phenyl ring and is in short intramolecular contact with O1 (dN..O =2.621 (5) Å). The bond angles in the phenyl groups deviate significantly from the idealized value of 120° due to the effect of the substituent. In fact, it was established that the angular deformations of phenyl groups can be described as a sum of the effects of the different substituents (Domenicano & Murray-Rust, 1979). The benzene ring is regular with C—C—C angles in agreement with the expected sp2 hybridation. The major contribution to the cohesion and the stability of this ionic structure comes from intermolecular N—H···Cl hydrogen bond interactions which include five relatively long contacts, with H···Cl and N..Cl distances ranging from 2.510 to 2.938 Å and 3.329 (4) Å to 3.515 (4) Å, respectively (Table 2, Fig.2).

Related literature top

For related structures, see: Zhang et al. (2009). For the effects of substituents on the internal angles of the benzene ring, see: Domenicano & Murray-Rust (1979). For NLO and SHG, see: Kurtz & Perry (1968); Kamoun et al. (1995). For ferroelectricity of related compounds, see: Ben Gozlen et al. (1994). For electric and dielectric properties of related compounds, see: Karoui et al. (2013).

Experimental top

Crystals of (C7H10NO)[SnCl3] were obtained by dissolving 50 mmol of orthoanisidinium chloride and 50 mmol of stannous chloride in HCl (1M). Metallic tin was added to the obtained solution to avoid the oxidation of Sn(II) to Sn(IV). This solution was then put in desiccators over CaCl2. After several days, yellow parallelipipedic shaped monocrystals of appeared in the solution. They were collected and washed with diethyl ether. The NLO response of the title compound was measured as follows. A 1064 nm fundamental laser beam emitted by Q-switched Nd3+: YAG nanosecond laser (SAGA from Thales Laser) at a 10 Hz repetition rate and a Schott RG 1000 filter were used. The intensity of the incident beam was varied using a half-wave plate rotated between two crossed polarizers. The laser beam was directed onto both samples (KDP: KH2PO4 used as reference and C7H10NO.SnCl3) oriented at 45° incidence angle relative to the laser beam. The second harmonic signal at 532 nm was collected from the face of the sample at 90° compared with the incident beam. The variation of the second harmonic intensity scattered from KDP or C7H10NO.SnCl3 was recorded as a function of the second harmonic reference signal provided by NNP (N-4 nitrophenyl –prolinol) a high NLO material.

Refinement top

After introducing anisotropic thermal factors for the non hydrogen atoms and isotropic ones for H-atoms, the hydrogen atoms were localized and optimized to fixed positions; their contributions were isotropically introduced in the calculations but not refined. The H atoms bonded to the C and the N atoms were positioned geometrically (the C—H and N—H bonds were respectively fixed at 0.96 and 0.89), and allowed to ride on their parent atoms.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg et al., 1999) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with displacement ellipsoids drawn at the 50% probability level and H atoms represented by small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the [100] axis showing the hydrogen bonding network.
2-Methoxyanilinium trichloridostannate(II) top
Crystal data top
(C7H10NO)[SnCl3]Cell parameters from 8969 reflections
Mr = 349.20Dx = 1.977 Mg m3
Dm = 2.010 Mg m3
Dm measured by Flotation
Orthorhombic, P212121Melting point: 413 K
Hall symbol: P 2ac 2abMo Kα radiation, λ = 0.71073 Å
a = 7.2030 (2) ÅCell parameters from 8969 reflections
b = 8.3341 (3) Åθ = 2.1–27.0°
c = 19.5436 (6) ŵ = 2.82 mm1
V = 1173.21 (6) Å3T = 296 K
Z = 4Square, yellow
F(000) = 6720.41 × 0.34 × 0.10 mm
Data collection top
Agilent Xcalibur (Sapphire2)
diffractometer
2392 independent reflections
Radiation source: Enhance (Mo) X-ray Source2236 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 8.3622 pixels mm-1θmax = 26.4°, θmin = 3.0°
ω scansh = 89
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
k = 109
Tmin = 0.391, Tmax = 0.765l = 2424
8969 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0195P)2 + 2.2881P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.001
2392 reflectionsΔρmax = 0.89 e Å3
120 parametersΔρmin = 0.69 e Å3
0 restraintsAbsolute structure: Flack (1983), 986 Friedel pairs
0 constraintsAbsolute structure parameter: 0.03 (5)
Primary atom site location: structure-invariant direct methods
Crystal data top
(C7H10NO)[SnCl3]V = 1173.21 (6) Å3
Mr = 349.20Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.2030 (2) ŵ = 2.82 mm1
b = 8.3341 (3) ÅT = 296 K
c = 19.5436 (6) Å0.41 × 0.34 × 0.10 mm
Data collection top
Agilent Xcalibur (Sapphire2)
diffractometer
2392 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
2236 reflections with I > 2σ(I)
Tmin = 0.391, Tmax = 0.765Rint = 0.019
8969 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.064Δρmax = 0.89 e Å3
S = 1.14Δρmin = 0.69 e Å3
2392 reflectionsAbsolute structure: Flack (1983), 986 Friedel pairs
120 parametersAbsolute structure parameter: 0.03 (5)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.99329 (6)0.71816 (4)0.264736 (15)0.03985 (10)
Cl10.74503 (19)0.88251 (18)0.20427 (10)0.0480 (4)
Cl20.9729 (2)0.52707 (13)0.15669 (5)0.0476 (3)
Cl31.2567 (2)0.85165 (18)0.20246 (10)0.0462 (3)
C10.4660 (8)0.4713 (7)0.0448 (2)0.0460 (13)
C20.4807 (8)0.4108 (5)0.1105 (2)0.0391 (10)
C30.4722 (9)0.2504 (6)0.1238 (3)0.0514 (13)
H30.48230.21350.16860.062*
C40.4489 (10)0.1437 (8)0.0712 (3)0.068 (2)
H40.44310.03390.07950.082*
C50.4343 (11)0.2026 (10)0.0061 (4)0.084 (2)
H50.41850.13080.02980.101*
C60.4420 (10)0.3637 (9)0.0081 (3)0.070 (2)
H60.43120.39990.05290.084*
C70.4756 (17)0.7027 (9)0.0271 (3)0.099 (3)
H7A0.48650.81720.02340.148*
H7B0.36120.67630.04960.148*
H7C0.57790.66150.05330.148*
N10.5056 (8)0.5263 (4)0.16573 (16)0.0447 (8)
H1A0.43330.61120.15840.067*
H1B0.62370.55740.16720.067*
H1C0.47490.48090.20540.067*
O10.4774 (9)0.6327 (5)0.03995 (17)0.0666 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03921 (16)0.03849 (15)0.04186 (16)0.00094 (18)0.0010 (2)0.00600 (12)
Cl10.0361 (6)0.0544 (8)0.0536 (9)0.0062 (6)0.0035 (6)0.0039 (8)
Cl20.0745 (10)0.0346 (5)0.0337 (5)0.0027 (7)0.0002 (7)0.0003 (4)
Cl30.0350 (6)0.0483 (7)0.0551 (9)0.0056 (6)0.0058 (6)0.0033 (7)
C10.042 (4)0.060 (3)0.036 (2)0.003 (3)0.002 (2)0.000 (2)
C20.035 (3)0.048 (2)0.034 (2)0.001 (3)0.006 (2)0.0062 (17)
C30.057 (4)0.046 (3)0.051 (3)0.002 (3)0.010 (3)0.003 (2)
C40.086 (6)0.053 (3)0.067 (4)0.011 (3)0.009 (3)0.015 (3)
C50.100 (6)0.093 (6)0.060 (4)0.016 (4)0.001 (4)0.036 (4)
C60.083 (5)0.090 (5)0.036 (3)0.004 (4)0.007 (3)0.009 (3)
C70.151 (8)0.094 (5)0.052 (3)0.018 (8)0.002 (6)0.031 (3)
N10.060 (2)0.0428 (19)0.0314 (17)0.004 (3)0.000 (3)0.0015 (14)
O10.100 (4)0.061 (2)0.0394 (18)0.012 (3)0.003 (3)0.0159 (16)
Geometric parameters (Å, º) top
Sn1—Cl12.5437 (15)C4—H40.9300
Sn1—Cl22.6489 (11)C5—C61.372 (10)
Sn1—Cl32.5139 (15)C5—H50.9300
C1—O11.351 (6)C6—H60.9300
C1—C61.379 (8)C7—O11.435 (6)
C1—C21.384 (6)C7—H7A0.9600
C2—C31.363 (6)C7—H7B0.9600
C2—N11.458 (5)C7—H7C0.9600
C3—C41.370 (8)N1—H1A0.8900
C3—H30.9300N1—H1B0.8900
C4—C51.367 (10)N1—H1C0.8900
Cl3—Sn1—Cl193.87 (4)C6—C5—H5118.8
Cl3—Sn1—Cl285.52 (5)C5—C6—C1119.4 (6)
Cl1—Sn1—Cl285.10 (5)C5—C6—H6120.3
O1—C1—C6127.1 (5)C1—C6—H6120.3
O1—C1—C2115.0 (4)O1—C7—H7A109.5
C6—C1—C2117.9 (5)O1—C7—H7B109.5
C3—C2—C1122.1 (5)H7A—C7—H7B109.5
C3—C2—N1120.7 (4)O1—C7—H7C109.5
C1—C2—N1117.2 (4)H7A—C7—H7C109.5
C2—C3—C4119.9 (5)H7B—C7—H7C109.5
C2—C3—H3120.1C2—N1—H1A109.5
C4—C3—H3120.1C2—N1—H1B109.5
C5—C4—C3118.3 (6)H1A—N1—H1B109.5
C5—C4—H4120.8C2—N1—H1C109.5
C3—C4—H4120.8H1A—N1—H1C109.5
C4—C5—C6122.4 (6)H1B—N1—H1C109.5
C4—C5—H5118.8C1—O1—C7117.9 (5)
O1—C1—C2—C3179.9 (6)C3—C4—C5—C60.0 (12)
C6—C1—C2—C30.0 (9)C4—C5—C6—C10.2 (12)
O1—C1—C2—N10.2 (8)O1—C1—C6—C5179.7 (7)
C6—C1—C2—N1179.8 (5)C2—C1—C6—C50.2 (10)
C1—C2—C3—C40.2 (10)C6—C1—O1—C74.0 (12)
N1—C2—C3—C4180.0 (6)C2—C1—O1—C7176.0 (7)
C2—C3—C4—C50.1 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl1i0.892.513.339 (4)155
N1—H1C···Cl3ii0.892.853.418 (4)123
N1—H1A···Cl3iii0.892.533.329 (4)151
N1—H1B···Cl20.892.543.371 (6)157
N1—H1B···Cl10.892.943.515 (4)124
N1—H1A···O10.892.342.621 (5)98
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y1/2, z+1/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula(C7H10NO)[SnCl3]
Mr349.20
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)7.2030 (2), 8.3341 (3), 19.5436 (6)
V3)1173.21 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.82
Crystal size (mm)0.41 × 0.34 × 0.10
Data collection
DiffractometerAgilent Xcalibur (Sapphire2)
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Agilent, 2012)
Tmin, Tmax0.391, 0.765
No. of measured, independent and
observed [I > 2σ(I)] reflections
8969, 2392, 2236
Rint0.019
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.064, 1.14
No. of reflections2392
No. of parameters120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.69
Absolute structureFlack (1983), 986 Friedel pairs
Absolute structure parameter0.03 (5)

Computer programs: CrysAlis PRO (Agilent, 2012), CrysAlis RED (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg et al., 1999) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Sn1—Cl12.5437 (15)Sn1—Cl32.5139 (15)
Sn1—Cl22.6489 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl1i0.892.513.339 (4)155.2
N1—H1C···Cl3ii0.892.853.418 (4)122.8
N1—H1A···Cl3iii0.892.533.329 (4)150.5
N1—H1B···Cl20.892.543.371 (6)156.5
N1—H1B···Cl10.892.943.515 (4)124.1
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y1/2, z+1/2; (iii) x1, y, z.
 

Acknowledgements

The authors gratefully acknowledge the support of the Tunisian Ministry of Higher Education and Scientific Research and would like to thank I. Ledoux Rak for her support in the second harmonic generation tests.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBen Gozlen, M. H., Kamoun, S., Paulush, H. & Pabst, I. (1994). Z. Kristallogr. 209, 382–382.  Google Scholar
First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDomenicano, A. & Murray-Rust, P. (1979). Tetrahedron Lett. 20, 2283–2286.  CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKamoun, S., Daoud, A., Elfakir, A., Quarton, M. & Ledoux, I. (1995). Solid State Commun. 94, 893–897.  CrossRef CAS Web of Science Google Scholar
First citationKaroui, S., Kamoun, S. & Jouini, A. (2013). J. Solid State Chem. 197, 60–68.  Web of Science CSD CrossRef CAS Google Scholar
First citationKurtz, S. K. & Perry, T. T. (1968). J. Appl. Phys. 39, 798–3813.  CrossRef Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S. J., Lanty, G., Lauret, J. S., Deleporte, E., Audebert, P. & Galmiche, L. (2009). Acta Mater. 57, 3301–3309.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages m187-m188
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds