metal-organic compounds
catena-Poly[[[diaqua(tetramethylethylenediamine-κ2N,N′)nickel(II)]-μ-sulfato-κ2O:O′] monohydrate]
aInstitut für Chemie, Naturwissenschaftliche Fakultät II, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120 Halle (Saale), Germany
*Correspondence e-mail: kurt.merzweiler@chemie.uni-halle.de
The title compound, {[Ni(SO4)(C6H16N2)(H2O)2]·H2O}n, contains a NiII atom that is coordinated nearly octahedrally by a chelating tetraethylenediamine (tmeda) ligand, two water molecules in a cis arrangement and two O atoms of two sulfate anions in a trans arrangement. The sulfate anions act as μ2-bridging ligands leading to a chain structure of alternating NiO4N2 octahedra and SO4 tetrahedra parallel to [001]. The polymeric chains are linked by O—H⋯O hydrogen bonds between coordinating water molecules and sulfate anions to give double strands. There is a lattice water molecule which is also involved in O—H⋯O hydrogen bonding between adjacent [Ni(SO4)(tmeda)(H2O)2] chains.
Related literature
For crystal structures of oligo- and polymeric nickel(II) tmeda complexes, see: Anderson et al. (2009); Erer et al. (2010). For related literature on one-dimensional metal sulfates, see: Behera & Rao (2006).
Experimental
Crystal data
|
Data collection: IPDS (Stoe & Cie, 1999); cell IPDS; data reduction: IPDS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536813006557/wm2722sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813006557/wm2722Isup2.hkl
3.7 ml (46 mmol) of pyridine were added to a solution of 2.0 g (7.6 mmol) of nickel sulfate hexahydrate in 50 ml of water. 1.2 ml (8.0 mmol) of tmeda were added and all volatile compounds removed under reduced pressure at 333 K. The resulting solid was recrystallized from water and washed with ether to obtain the title compound in a yield of 85% (2.1 g).
The hydrogen atoms of the tmeda ligand were positioned geometrically and were refined using a riding model with U(H) = 1.2 Ueq(C). Hydrogen atoms of the water molecules were located from difference Fourier maps and were refined with O—H distances fixed in the range of 0.83–0.84 Å and U(H) = 1.2Ueq(O).
Data collection: IPDS (Stoe & Cie, 1999); cell
IPDS (Stoe & Cie, 1999); data reduction: IPDS (Stoe & Cie, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The coordination sphere around the nickel(II) atom in the structure of compound (I). The asymmetric unit is marked by solid lines of corresponding bonds. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: ii) x, y, z-1]. | |
Fig. 2. Polyhedral representation of the structure of compound (I). NiN2O4 octahedra are blue, SO4 tetrahedra are yellow. | |
Fig. 3. Part of the hydrogen-bonding network (dashed lines) in the structure of compound (I). [Symmetry codes: i) x, y, -z+1; iii) -x, -y+1, z-0.5; iv) -x, -y + 1, z + 0.5.] |
[Ni(SO4)(C6H16N2)(H2O)2]·H2O | F(000) = 688 |
Mr = 325.03 | Dx = 1.612 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 8000 reflections |
a = 21.108 (4) Å | θ = 2.2–25.8° |
b = 9.9335 (19) Å | µ = 1.63 mm−1 |
c = 6.3879 (13) Å | T = 223 K |
V = 1339.4 (5) Å3 | Block, green |
Z = 4 | 0.48 × 0.11 × 0.11 mm |
Stoe IPDS diffractometer | 2585 independent reflections |
Radiation source: fine-focus sealed tube | 2291 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
area detector scans | θmax = 25.9°, θmin = 2.3° |
Absorption correction: numerical (IPDS; Stoe & Cie, 1999) | h = −25→25 |
Tmin = 0.648, Tmax = 0.841 | k = −12→12 |
10054 measured reflections | l = −7→7 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.023 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.052 | w = 1/[σ2(Fo2) + (0.0286P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
2585 reflections | Δρmax = 0.37 e Å−3 |
176 parameters | Δρmin = −0.31 e Å−3 |
7 restraints | Absolute structure: Flack (1983), 1167 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.005 (13) |
[Ni(SO4)(C6H16N2)(H2O)2]·H2O | V = 1339.4 (5) Å3 |
Mr = 325.03 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 21.108 (4) Å | µ = 1.63 mm−1 |
b = 9.9335 (19) Å | T = 223 K |
c = 6.3879 (13) Å | 0.48 × 0.11 × 0.11 mm |
Stoe IPDS diffractometer | 2585 independent reflections |
Absorption correction: numerical (IPDS; Stoe & Cie, 1999) | 2291 reflections with I > 2σ(I) |
Tmin = 0.648, Tmax = 0.841 | Rint = 0.054 |
10054 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.052 | Δρmax = 0.37 e Å−3 |
S = 1.04 | Δρmin = −0.31 e Å−3 |
2585 reflections | Absolute structure: Flack (1983), 1167 Friedel pairs |
176 parameters | Absolute structure parameter: −0.005 (13) |
7 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.24703 (13) | 0.7260 (3) | 0.0085 (5) | 0.0305 (6) | |
H1C | 0.2232 | 0.7845 | −0.0842 | 0.037* | |
H1B | 0.2424 | 0.6334 | −0.0371 | 0.037* | |
H1A | 0.2914 | 0.7511 | 0.0051 | 0.037* | |
C4 | 0.16332 (11) | 0.9525 (2) | 0.2039 (4) | 0.0224 (6) | |
H4B | 0.1637 | 1.0473 | 0.2462 | 0.027* | |
H4A | 0.1625 | 0.9489 | 0.0507 | 0.027* | |
C2 | 0.26524 (13) | 0.6637 (3) | 0.3636 (5) | 0.0329 (7) | |
H2C | 0.2506 | 0.6717 | 0.5070 | 0.039* | |
H2B | 0.3079 | 0.6996 | 0.3527 | 0.039* | |
H2A | 0.2653 | 0.5696 | 0.3229 | 0.039* | |
C3 | 0.22243 (11) | 0.8836 (3) | 0.2836 (5) | 0.0244 (6) | |
H3B | 0.2599 | 0.9279 | 0.2250 | 0.029* | |
H3A | 0.2244 | 0.8915 | 0.4364 | 0.029* | |
C5 | 0.05032 (14) | 0.9321 (3) | 0.1665 (5) | 0.0332 (7) | |
H5C | 0.0121 | 0.8923 | 0.2238 | 0.040* | |
H5B | 0.0552 | 0.9048 | 0.0216 | 0.040* | |
H5A | 0.0473 | 1.0294 | 0.1742 | 0.040* | |
C6 | 0.09619 (15) | 0.9283 (3) | 0.5084 (5) | 0.0316 (7) | |
H6C | 0.0580 | 0.8867 | 0.5626 | 0.038* | |
H6B | 0.0920 | 1.0254 | 0.5143 | 0.038* | |
H6A | 0.1322 | 0.9005 | 0.5922 | 0.038* | |
N1 | 0.22264 (8) | 0.7398 (2) | 0.2241 (4) | 0.0197 (5) | |
N2 | 0.10595 (9) | 0.8859 (2) | 0.2890 (3) | 0.0190 (5) | |
Ni | 0.125910 (11) | 0.67593 (3) | 0.25156 (6) | 0.01456 (8) | |
O1 | 0.11212 (10) | 0.69565 (19) | 0.9294 (3) | 0.0245 (5) | |
O2 | 0.13632 (9) | 0.6444 (2) | 0.5737 (3) | 0.0232 (5) | |
O3 | 0.02891 (8) | 0.6195 (2) | 0.7004 (3) | 0.0262 (4) | |
O4 | 0.10994 (9) | 0.46409 (19) | 0.8110 (3) | 0.0265 (4) | |
O5 | 0.15204 (9) | 0.47588 (19) | 0.2051 (3) | 0.0240 (4) | |
H1 | 0.1316 (12) | 0.424 (3) | 0.283 (4) | 0.029* | |
H2 | 0.1375 (14) | 0.463 (3) | 0.084 (3) | 0.029* | |
O6 | 0.03092 (8) | 0.6302 (2) | 0.2801 (3) | 0.0234 (4) | |
H3 | 0.0187 (12) | 0.557 (2) | 0.234 (6) | 0.028* | |
H4 | 0.0213 (14) | 0.634 (3) | 0.406 (3) | 0.028* | |
O7 | 0.08191 (10) | 0.2998 (2) | 0.4475 (3) | 0.0305 (5) | |
H5 | 0.0789 (16) | 0.343 (3) | 0.558 (4) | 0.037* | |
H6 | 0.0442 (10) | 0.309 (3) | 0.414 (5) | 0.037* | |
S | 0.09690 (2) | 0.60503 (5) | 0.75426 (13) | 0.01806 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0277 (15) | 0.0361 (17) | 0.0278 (15) | −0.0013 (12) | 0.0109 (12) | −0.0029 (14) |
C4 | 0.0255 (13) | 0.0152 (11) | 0.0265 (17) | −0.0026 (9) | 0.0032 (10) | 0.0009 (11) |
C2 | 0.0187 (13) | 0.0386 (18) | 0.0413 (17) | 0.0035 (12) | −0.0036 (12) | 0.0087 (16) |
C3 | 0.0203 (11) | 0.0238 (12) | 0.0290 (17) | −0.0054 (9) | 0.0000 (11) | −0.0024 (14) |
C5 | 0.0262 (14) | 0.0265 (15) | 0.0470 (18) | 0.0070 (12) | −0.0093 (12) | 0.0022 (14) |
C6 | 0.0396 (17) | 0.0267 (16) | 0.0284 (15) | 0.0031 (12) | 0.0099 (13) | −0.0099 (13) |
N1 | 0.0173 (9) | 0.0215 (10) | 0.0202 (13) | 0.0008 (7) | 0.0012 (10) | −0.0005 (11) |
N2 | 0.0178 (9) | 0.0203 (10) | 0.0188 (14) | −0.0005 (8) | 0.0008 (8) | −0.0001 (10) |
Ni | 0.01562 (12) | 0.01675 (14) | 0.01132 (12) | −0.00151 (11) | −0.00008 (17) | 0.00004 (18) |
O1 | 0.0349 (11) | 0.0235 (12) | 0.0151 (10) | −0.0064 (8) | −0.0011 (9) | −0.0023 (9) |
O2 | 0.0215 (10) | 0.0346 (12) | 0.0135 (9) | −0.0053 (8) | 0.0024 (7) | 0.0030 (9) |
O3 | 0.0192 (8) | 0.0360 (10) | 0.0235 (11) | −0.0042 (7) | 0.0023 (7) | 0.0020 (8) |
O4 | 0.0342 (10) | 0.0240 (10) | 0.0215 (11) | −0.0027 (8) | −0.0042 (7) | −0.0013 (8) |
O5 | 0.0335 (10) | 0.0216 (10) | 0.0170 (11) | −0.0004 (8) | −0.0007 (7) | 0.0005 (8) |
O6 | 0.0223 (8) | 0.0286 (9) | 0.0193 (11) | −0.0084 (6) | 0.0004 (9) | 0.0028 (11) |
O7 | 0.0331 (11) | 0.0285 (12) | 0.0298 (11) | 0.0014 (9) | 0.0020 (9) | −0.0013 (10) |
S | 0.0190 (2) | 0.0221 (3) | 0.0131 (2) | −0.00424 (19) | 0.0019 (4) | −0.0007 (4) |
C1—N1 | 1.477 (4) | C6—H6C | 0.9700 |
C1—H1C | 0.9700 | C6—H6B | 0.9700 |
C1—H1B | 0.9700 | C6—H6A | 0.9700 |
C1—H1A | 0.9700 | N1—Ni | 2.1453 (19) |
C4—N2 | 1.483 (3) | N2—Ni | 2.141 (2) |
C4—C3 | 1.511 (4) | Ni—O6 | 2.0639 (17) |
C4—H4B | 0.9800 | Ni—O5 | 2.084 (2) |
C4—H4A | 0.9800 | Ni—O1i | 2.088 (2) |
C2—N1 | 1.475 (4) | Ni—O2 | 2.0931 (19) |
C2—H2C | 0.9700 | O1—S | 1.471 (2) |
C2—H2B | 0.9700 | O1—Niii | 2.088 (2) |
C2—H2A | 0.9700 | O2—S | 1.4751 (19) |
C3—N1 | 1.478 (3) | O3—S | 1.4828 (18) |
C3—H3B | 0.9800 | O4—S | 1.472 (2) |
C3—H3A | 0.9800 | O5—H1 | 0.834 (18) |
C5—N2 | 1.484 (3) | O5—H2 | 0.841 (18) |
C5—H5C | 0.9700 | O6—H3 | 0.825 (17) |
C5—H5B | 0.9700 | O6—H4 | 0.830 (17) |
C5—H5A | 0.9700 | O7—H5 | 0.832 (18) |
C6—N2 | 1.477 (4) | O7—H6 | 0.829 (18) |
N1—C1—H1C | 109.5 | C2—N1—Ni | 112.29 (17) |
N1—C1—H1B | 109.5 | C1—N1—Ni | 112.36 (18) |
H1C—C1—H1B | 109.5 | C3—N1—Ni | 105.19 (13) |
N1—C1—H1A | 109.5 | C6—N2—C4 | 109.5 (2) |
H1C—C1—H1A | 109.5 | C6—N2—C5 | 107.6 (2) |
H1B—C1—H1A | 109.5 | C4—N2—C5 | 108.4 (2) |
N2—C4—C3 | 110.4 (2) | C6—N2—Ni | 114.27 (17) |
N2—C4—H4B | 109.6 | C4—N2—Ni | 103.46 (15) |
C3—C4—H4B | 109.6 | C5—N2—Ni | 113.46 (16) |
N2—C4—H4A | 109.6 | O6—Ni—O5 | 93.42 (8) |
C3—C4—H4A | 109.6 | O6—Ni—O1i | 88.42 (8) |
H4B—C4—H4A | 108.1 | O5—Ni—O1i | 89.20 (7) |
N1—C2—H2C | 109.5 | O6—Ni—O2 | 88.97 (8) |
N1—C2—H2B | 109.5 | O5—Ni—O2 | 88.25 (8) |
H2C—C2—H2B | 109.5 | O1i—Ni—O2 | 176.24 (7) |
N1—C2—H2A | 109.5 | O6—Ni—N2 | 90.77 (8) |
H2C—C2—H2A | 109.5 | O5—Ni—N2 | 175.58 (8) |
H2B—C2—H2A | 109.5 | O1i—Ni—N2 | 89.51 (8) |
N1—C3—C4 | 110.7 (2) | O2—Ni—N2 | 93.23 (8) |
N1—C3—H3B | 109.5 | O6—Ni—N1 | 175.51 (8) |
C4—C3—H3B | 109.5 | O5—Ni—N1 | 91.06 (8) |
N1—C3—H3A | 109.5 | O1i—Ni—N1 | 91.40 (9) |
C4—C3—H3A | 109.5 | O2—Ni—N1 | 91.41 (8) |
H3B—C3—H3A | 108.1 | N2—Ni—N1 | 84.74 (8) |
N2—C5—H5C | 109.5 | S—O1—Niii | 136.26 (12) |
N2—C5—H5B | 109.5 | S—O2—Ni | 138.52 (11) |
H5C—C5—H5B | 109.5 | Ni—O5—H1 | 111 (2) |
N2—C5—H5A | 109.5 | Ni—O5—H2 | 100 (2) |
H5C—C5—H5A | 109.5 | H1—O5—H2 | 105 (3) |
H5B—C5—H5A | 109.5 | Ni—O6—H3 | 117.8 (19) |
N2—C6—H6C | 109.5 | Ni—O6—H4 | 108 (2) |
N2—C6—H6B | 109.5 | H3—O6—H4 | 108 (3) |
H6C—C6—H6B | 109.5 | H5—O7—H6 | 95 (3) |
N2—C6—H6A | 109.5 | O1—S—O4 | 110.72 (12) |
H6C—C6—H6A | 109.5 | O1—S—O2 | 108.00 (10) |
H6B—C6—H6A | 109.5 | O4—S—O2 | 109.83 (12) |
C2—N1—C1 | 107.7 (2) | O1—S—O3 | 109.19 (12) |
C2—N1—C3 | 110.0 (2) | O4—S—O3 | 109.28 (11) |
C1—N1—C3 | 109.3 (2) | O2—S—O3 | 109.80 (11) |
N2—C4—C3—N1 | 58.5 (3) | C3—N1—Ni—O5 | −171.47 (18) |
C4—C3—N1—C2 | −158.6 (2) | C2—N1—Ni—O1i | −141.1 (2) |
C4—C3—N1—C1 | 83.4 (2) | C1—N1—Ni—O1i | −19.51 (19) |
C4—C3—N1—Ni | −37.4 (3) | C3—N1—Ni—O1i | 99.30 (18) |
C3—C4—N2—C6 | 77.5 (3) | C2—N1—Ni—O2 | 36.4 (2) |
C3—C4—N2—C5 | −165.5 (2) | C1—N1—Ni—O2 | 158.00 (19) |
C3—C4—N2—Ni | −44.8 (2) | C3—N1—Ni—O2 | −83.19 (19) |
C6—N2—Ni—O6 | 79.76 (18) | C2—N1—Ni—N2 | 129.6 (2) |
C4—N2—Ni—O6 | −161.23 (16) | C1—N1—Ni—N2 | −108.89 (19) |
C5—N2—Ni—O6 | −44.05 (19) | C3—N1—Ni—N2 | 9.93 (18) |
C6—N2—Ni—O1i | 168.18 (18) | O6—Ni—O2—S | 0.8 (2) |
C4—N2—Ni—O1i | −72.82 (15) | O5—Ni—O2—S | −92.6 (2) |
C5—N2—Ni—O1i | 44.37 (19) | N2—Ni—O2—S | 91.5 (2) |
C6—N2—Ni—O2 | −9.25 (18) | N1—Ni—O2—S | 176.3 (2) |
C4—N2—Ni—O2 | 109.75 (15) | Niii—O1—S—O4 | −18.4 (2) |
C5—N2—Ni—O2 | −133.06 (19) | Niii—O1—S—O2 | −138.68 (15) |
C6—N2—Ni—N1 | −100.37 (18) | Niii—O1—S—O3 | 102.0 (2) |
C4—N2—Ni—N1 | 18.63 (15) | Ni—O2—S—O1 | −135.26 (17) |
C5—N2—Ni—N1 | 135.8 (2) | Ni—O2—S—O4 | 103.9 (2) |
C2—N1—Ni—O5 | −51.8 (2) | Ni—O2—S—O3 | −16.3 (2) |
C1—N1—Ni—O5 | 69.72 (19) |
Symmetry codes: (i) x, y, z−1; (ii) x, y, z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H2···O4i | 0.84 (2) | 1.84 (2) | 2.672 (2) | 171 (3) |
O5—H1···O7 | 0.83 (2) | 1.93 (2) | 2.765 (3) | 176 (3) |
O6—H4···O3 | 0.83 (2) | 1.89 (2) | 2.687 (3) | 160 (3) |
O6—H3···O3iii | 0.83 (2) | 2.03 (2) | 2.829 (3) | 162 (3) |
O7—H5···O4 | 0.83 (2) | 2.12 (2) | 2.899 (3) | 157 (3) |
O7—H6···O3iii | 0.83 (2) | 2.18 (2) | 2.934 (3) | 151 (3) |
Symmetry codes: (i) x, y, z−1; (iii) −x, −y+1, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(SO4)(C6H16N2)(H2O)2]·H2O |
Mr | 325.03 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 223 |
a, b, c (Å) | 21.108 (4), 9.9335 (19), 6.3879 (13) |
V (Å3) | 1339.4 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.63 |
Crystal size (mm) | 0.48 × 0.11 × 0.11 |
Data collection | |
Diffractometer | Stoe IPDS diffractometer |
Absorption correction | Numerical (IPDS; Stoe & Cie, 1999) |
Tmin, Tmax | 0.648, 0.841 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10054, 2585, 2291 |
Rint | 0.054 |
(sin θ/λ)max (Å−1) | 0.615 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.052, 1.04 |
No. of reflections | 2585 |
No. of parameters | 176 |
No. of restraints | 7 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.37, −0.31 |
Absolute structure | Flack (1983), 1167 Friedel pairs |
Absolute structure parameter | −0.005 (13) |
Computer programs: IPDS (Stoe & Cie, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H2···O4i | 0.841 (18) | 1.839 (19) | 2.672 (2) | 171 (3) |
O5—H1···O7 | 0.834 (18) | 1.933 (18) | 2.765 (3) | 176 (3) |
O6—H4···O3 | 0.830 (17) | 1.89 (2) | 2.687 (3) | 160 (3) |
O6—H3···O3ii | 0.825 (17) | 2.033 (18) | 2.829 (3) | 162 (3) |
O7—H5···O4 | 0.832 (18) | 2.12 (2) | 2.899 (3) | 157 (3) |
O7—H6···O3ii | 0.829 (18) | 2.18 (2) | 2.934 (3) | 151 (3) |
Symmetry codes: (i) x, y, z−1; (ii) −x, −y+1, z−1/2. |
References
Anderson, J. C., Blake, A. J., Moreno, R. B., Raynel, G. & van Slageren, J. (2009). Dalton Trans. pp. 9153–9156. Web of Science CSD CrossRef Google Scholar
Behera, J. N. & Rao, C. N. R. (2006). Chem. Asian J. 1, 742–750. Web of Science CSD CrossRef PubMed CAS Google Scholar
Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Erer, H., Yeşilel, O. Z., Dege, N. & Alpaslan, Y. B. (2010). J. Inorg. Organomet. Polym. 20, 411–415. Web of Science CSD CrossRef CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (1999). IPDS Program Package. Stoe & Cie, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, {[Ni(H2O)2(C6H16N2)(SO4)].H2O}n, (I), forms a coordination polymer which consists of an alternating arrangement of [Ni(H2O)2(tmeda)]2+ (tmeda is tetraethylenediamine) cations and SO42- anions. The coordination around nickel(II) is roughly octahedral with a chelating tmeda ligand, two water molecules in cis positions and two oxygen atoms of the SO42- anions in a trans arrangement (Fig. 1). In a polyhedral description the chain consists of corner sharing NiN2O4 octahedra and SO4 tetrahedra (Fig. 2). The observed Ni—N (2.141 (2), 2.1453 (19) Å) and Ni—O(aqua) distances (2.0639 (17), 2.084 (2) Å) agree well with the values reported for other nickel(II) complexes containing tmeda and aqua ligands, e.g. [Ni6(CO3)4(tmeda)6]Cl4.CH2Cl2 (Anderson et al., 2009) and [Ni(C4O4)(tmeda)(H2O)2].H2O (Erer et al., 2010). A related chain structure consisting of corner-sharing NiO4(H2O)2 octahedra and SO4 tetrahedra has been observed in the compound [C2N2H10][Ni(SO4)2(H2O)2] (Behera & Rao, 2006). However, in contrast to compound (I) each NiO4(H2O)2 octahedron of the chain is connected to four SO4 tetrahedra.
The crystal packing of the [Ni(H2O)2(tmeda)]SO4 chains is supported by a network of hydrogen bridges (Figs. 2 and 3). Each of the water molecules attached to nickel forms an intrachain hydrogen bond of the type R11(6) or R11(6) to a sulfate oxygen atom. The lattice water molecule, which acts as a linker between the chains, forms two hydrogen bonds of the type R11(2) to sulfate oxygen atoms and a D11(2) hydrogen bond to a coordinating water molecule. Additonally, there are hydrogen bond motifs of the type R22(12) which are formed between coordinating water molecules and sulfate oxygen atoms of neighbouring chains. As a result of these interchain hydrogen bridges, double strands are formed which propagate parallel to [001]. The arrangement of the double strands corresponds to a distorted hexagonal rod packing.