metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[1,2-bis­­(eth­­oxy­carbon­yl)ethene-1,2-di­thiol­ato-κ2S,S′]bis­­(η5-penta­methyl­cyclo­penta­dien­yl)tetra-μ3-sulfido-diiron(IV)diiron(III)(3 FeFe)

aFaculty of Symbiotic Systems Science, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan, and bCenter for Practical and Project-Based Learning, Cluster of Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
*Correspondence e-mail: inomata@sss.fukushima-u.ac.jp

(Received 12 February 2013; accepted 26 February 2013; online 2 March 2013)

The title compound, [Fe4(C10H15)2(C8H10O4S2)2S4], contains a twisted Fe4S4 cubane-like core. A twofold rotation axis passes through the Fe4S4 core, completing the coordination of the four Fe atoms with two penta­methyl­cyclo­penta­dienyl ligands and two chelating dithiol­ate ligands. There are three short Fe—Fe and three long Fe⋯Fe contacts in the Fe4S4 core, suggesting bonding and non-bonding inter­actions, respectively. The Fe—S bonds in the Fe4S4 core range from 2.1523 (5) to 2.2667 (6) Å and are somewhat longer than the Fe—S bonds involving the dithiol­ate ligand.

Related literature

For details of the synthesis, see: Inomata et al. (1995[Inomata, S., Takano, H., Hiyama, K., Tobita, H. & Ogino, H. (1995). Organometallics, 14, 2112-2114.]). For related structures, see: Inomata et al. (1990[Inomata, S., Tobita, H. & Ogino, H. (1990). J. Am. Chem. Soc. 112, 6145-6146.], 1994[Inomata, S., Hiyama, K., Tobita, H. & Ogino, H. (1994). Inorg. Chem. 33, 5337-5342.]). For general background to compounds with iron–sulfur cubane-type clusters, see: Holm (1977[Holm, R. H. (1977). Acc. Chem. Res. 12, 427-434.]); Holm et al. (1990[Holm, R. H., Ciurli, S. & Weigel, J. A. (1990). Prog. Inorg. Chem. 38, 1-74.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe4(C10H15)2(C8H10O4S2)2S4]

  • Mr = 1090.65

  • Monoclinic, C 2/c

  • a = 23.4532 (5) Å

  • b = 10.4466 (2) Å

  • c = 18.3113 (3) Å

  • β = 90.6186 (7)°

  • V = 4486.14 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.69 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.560, Tmax = 0.714

  • 21429 measured reflections

  • 5111 independent reflections

  • 4694 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.080

  • S = 1.06

  • 5111 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Selected bond lengths (Å)

Fe1—Fe1i 3.3743 (3)
Fe1—Fe2 2.7253 (4)
Fe1—Fe2i 3.2683 (3)
Fe1—S1 2.1956 (5)
Fe1—S1i 2.2551 (5)
Fe1—S2 2.1749 (5)
Fe2—Fe2i 2.7619 (3)
Fe2—S1 2.2736 (5)
Fe2—S2 2.1523 (5)
Fe2—S2i 2.2667 (6)
Fe2—S3 2.1541 (5)
Fe2—S4 2.1934 (6)
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). CrystalStructure and RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: CrystalStructure (Rigaku, 2006[Rigaku (2006). CrystalStructure and RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

Iron-sulfur cubane-type clusters have extensively been investigated as model systems of metal-containing proteins (Holm, 1977; Holm et al., 1990). Among these compounds, the Fe4S4 core is usually surrounded by the same supporting ligand (L) yielding a moiety Fe4S4L4. However, mixed-ligand-type clusters are rather rare. Previously, we succeeded to prepare this type of iron-sulfur cluster from the reaction of (C5Me5)2Fe2(CO)4 ((Cp*)2Fe2(CO)4) with S8 and diphenylacetylene (Inomata et al., 1990; 1994). One of the products was [Fe4(Cp*)2(Ph2C2S2)23-S)4], in which two Cp* ligands and two diphenyldithiolate ligands are additionally bonded to the Fe4S4 core. In order to expand our research on this subject, we prepared a cluster containg bis(ethoxycarbonyl)dithiolate ligands instead of diphenyldithiolate ligands. Here we report the structural details of the title compound [Fe4(C10H15)2(C8H10O4S2)2S4] or [Fe4(Cp*)2{(EtO2C)2C2S2)}23-S)4], (I).

Compound (I) contains a twisted Fe4S4 cubane-like core surrounded by two Cp* ligands and two dithiolato ligands {(EtO2C)2C2S2} (Fig. 1). A crystallographic twofold rotation axis passes through the Fe4S4 core and completes the coordination environment of all iron atoms. There are three iron—iron bonds of 2.7253 (4) and 2.7619 (3) Å (Table 1). The remaining three Fe···Fe distances are very long (3.2683 (3) and 3.3743 (3) Å), indicating no bonding interactions (Table 1). The iron—sulfur distances in the Fe4S4 core range from 2.1523 (5) to 2.2667 (6) Å and are normal values (Table 1). On the other hand, the distances between iron and sulfur in the dithiolato ligand are somewhat short (2.1541 (5) and 2.1934 (6) Å) (Table 1).

Related literature top

For details of the synthesis, see: Inomata et al. (1995). For related structures, see: Inomata et al. (1990, 1994). For general background to compounds with iron–sulfur cubane-type clusters, see: Holm (1977); Holm et al. (1990).

Experimental top

The title cluster compound was prepared according to the literature method (Inomata et al., 1995) by using diethyl acetylenedicarboxylate instead of dimethyl acetylenedicarboxylate.

Refinement top

All hydrogen atoms were placed in calculated positions with C—H distances of 0.96 Å for H atoms on methyl groups and 0.97 Å for those on methylene groups. The Uiso(H) values were fixed at 1.2 times the Ueq(C) values of the carbon atoms to which they are covalently bonded.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2006).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and displacement ellipsoids at the 30% probability level. All hydrogen atoms were omitted for clarity. Solid lines indicate short Fe—Fe contacts.
Bis[1,2-bis(ethoxycarbonyl)ethene-1,2-dithiolato-κ2S,S']bis(η5-pentamethylcyclopentadienyl)tetra-µ3-sulfido-diiron(IV)diiron(III)(3 FeFe) top
Crystal data top
[Fe4(C10H15)2(C8H10O4S2)2S4]F(000) = 2248.00
Mr = 1090.65Dx = 1.615 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -C 2ycCell parameters from 18942 reflections
a = 23.4532 (5) Åθ = 3.1–27.5°
b = 10.4466 (2) ŵ = 1.69 mm1
c = 18.3113 (3) ÅT = 296 K
β = 90.6186 (7)°Block, black
V = 4486.14 (15) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4694 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.044
ω scansθmax = 27.5°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 3030
Tmin = 0.560, Tmax = 0.714k = 1313
21429 measured reflectionsl = 2323
5111 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.037P)2 + 5.9377P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.080(Δ/σ)max = 0.002
S = 1.06Δρmax = 0.50 e Å3
5111 reflectionsΔρmin = 0.33 e Å3
254 parameters
Crystal data top
[Fe4(C10H15)2(C8H10O4S2)2S4]V = 4486.14 (15) Å3
Mr = 1090.65Z = 4
Monoclinic, C2/cMo Kα radiation
a = 23.4532 (5) ŵ = 1.69 mm1
b = 10.4466 (2) ÅT = 296 K
c = 18.3113 (3) Å0.30 × 0.20 × 0.20 mm
β = 90.6186 (7)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5111 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
4694 reflections with I > 2σ(I)
Tmin = 0.560, Tmax = 0.714Rint = 0.044
21429 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030254 parameters
wR(F2) = 0.080H-atom parameters constrained
S = 1.06Δρmax = 0.50 e Å3
5111 reflectionsΔρmin = 0.33 e Å3
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.512641 (12)0.27575 (3)0.159470 (14)0.02745 (7)
Fe20.449295 (12)0.07723 (3)0.210955 (14)0.02769 (7)
S10.43972 (2)0.29022 (4)0.23321 (3)0.02894 (11)
S20.53399 (2)0.07354 (4)0.16691 (3)0.03038 (11)
S30.38310 (2)0.09718 (5)0.12928 (3)0.03767 (13)
S40.42061 (2)0.11994 (5)0.22914 (3)0.03867 (13)
O10.25875 (9)0.1373 (2)0.08613 (13)0.0745 (6)
O20.29459 (8)0.02895 (19)0.02550 (11)0.0590 (4)
O30.33671 (9)0.35409 (19)0.13925 (13)0.0668 (5)
O40.29995 (10)0.2666 (2)0.23969 (11)0.0675 (5)
C10.56426 (10)0.4192 (2)0.10976 (12)0.0416 (5)
C20.50644 (10)0.4620 (2)0.11373 (11)0.0382 (4)
C30.47177 (10)0.3774 (2)0.07124 (11)0.0388 (4)
C40.50767 (12)0.2819 (2)0.04178 (11)0.0414 (5)
C50.56502 (11)0.3076 (2)0.06575 (12)0.0442 (5)
C60.61503 (13)0.4854 (3)0.14245 (16)0.0642 (7)
C70.48533 (15)0.5815 (2)0.14991 (15)0.0594 (7)
C80.40936 (12)0.3974 (2)0.05670 (16)0.0555 (6)
C90.48970 (16)0.1760 (2)0.00894 (14)0.0658 (8)
C100.61697 (14)0.2362 (3)0.04239 (17)0.0709 (9)
C110.34615 (9)0.0459 (2)0.12687 (12)0.0364 (4)
C120.36250 (9)0.1409 (2)0.17332 (12)0.0351 (4)
C130.29508 (10)0.0580 (2)0.07860 (13)0.0425 (5)
C140.33153 (10)0.2667 (2)0.18025 (14)0.0430 (5)
C150.24678 (14)0.0240 (3)0.02537 (17)0.0716 (8)
C160.2579 (2)0.1231 (4)0.0829 (2)0.0961 (13)
C170.26445 (15)0.3807 (3)0.25262 (19)0.0764 (9)
C180.20954 (15)0.3640 (3)0.2128 (2)0.0809 (9)
H10.60290.56120.16750.077*
H20.64100.50840.10440.077*
H30.63380.42900.17640.077*
H40.51630.62230.17540.071*
H50.47020.63870.11360.071*
H60.45600.55990.18390.071*
H70.39500.32870.02690.067*
H80.40380.47720.03170.067*
H90.38940.39900.10220.067*
H100.52250.12650.02220.079*
H110.47250.21190.05210.079*
H120.46270.12180.01510.079*
H130.65020.27520.06380.085*
H140.61970.23890.00990.085*
H150.61440.14880.05820.085*
H160.21150.04250.00040.086*
H170.24390.06040.04730.086*
H180.24150.20330.06830.115*
H190.24090.09630.12840.115*
H200.29820.13310.08890.115*
H210.25760.39050.30450.092*
H220.28380.45670.23530.092*
H230.18260.32240.24400.097*
H240.19500.44630.19850.097*
H250.21550.31260.17010.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.03035 (15)0.02725 (14)0.02472 (14)0.00053 (10)0.00037 (11)0.00188 (10)
Fe20.02636 (14)0.02784 (15)0.02878 (14)0.00189 (10)0.00376 (10)0.00136 (10)
S10.0284 (2)0.0298 (2)0.0286 (2)0.00303 (17)0.00230 (18)0.00054 (17)
S20.0330 (2)0.0297 (2)0.0284 (2)0.00387 (18)0.00056 (18)0.00021 (17)
S30.0369 (2)0.0381 (2)0.0377 (2)0.0058 (2)0.0122 (2)0.0029 (2)
S40.0398 (2)0.0289 (2)0.0470 (2)0.0048 (2)0.0122 (2)0.0007 (2)
O10.0465 (10)0.0993 (16)0.0771 (13)0.0314 (11)0.0221 (9)0.0159 (12)
O20.0545 (10)0.0647 (11)0.0571 (10)0.0097 (9)0.0274 (8)0.0042 (9)
O30.0607 (12)0.0478 (10)0.0923 (15)0.0169 (9)0.0138 (10)0.0262 (10)
O40.0772 (14)0.0671 (12)0.0584 (11)0.0350 (11)0.0157 (10)0.0072 (9)
C10.0466 (12)0.0448 (12)0.0332 (10)0.0098 (9)0.0023 (9)0.0112 (8)
C20.0525 (12)0.0319 (9)0.0299 (9)0.0015 (9)0.0011 (8)0.0076 (7)
C30.0481 (12)0.0378 (10)0.0305 (9)0.0012 (9)0.0051 (8)0.0094 (8)
C40.0636 (14)0.0360 (10)0.0247 (9)0.0021 (9)0.0008 (9)0.0052 (7)
C50.0504 (13)0.0483 (12)0.0341 (10)0.0047 (10)0.0125 (9)0.0121 (9)
C60.0592 (16)0.0761 (19)0.0573 (15)0.0296 (15)0.0040 (13)0.0159 (14)
C70.092 (2)0.0336 (12)0.0527 (14)0.0044 (12)0.0071 (14)0.0020 (10)
C80.0519 (14)0.0576 (15)0.0567 (14)0.0024 (12)0.0162 (12)0.0211 (12)
C90.116 (2)0.0464 (14)0.0354 (12)0.0124 (15)0.0032 (14)0.0037 (10)
C100.072 (2)0.080 (2)0.0621 (17)0.0207 (16)0.0324 (15)0.0133 (15)
C110.0296 (9)0.0423 (11)0.0371 (10)0.0047 (8)0.0029 (8)0.0075 (8)
C120.0305 (9)0.0353 (10)0.0394 (10)0.0050 (8)0.0013 (8)0.0080 (8)
C130.0338 (11)0.0514 (12)0.0420 (11)0.0028 (9)0.0055 (9)0.0085 (9)
C140.0380 (11)0.0391 (11)0.0518 (12)0.0085 (9)0.0034 (9)0.0045 (9)
C150.0638 (18)0.093 (2)0.0575 (16)0.0007 (16)0.0333 (14)0.0024 (16)
C160.123 (3)0.090 (2)0.074 (2)0.005 (2)0.046 (2)0.006 (2)
C170.076 (2)0.081 (2)0.0722 (19)0.0367 (18)0.0011 (17)0.0134 (17)
C180.0600 (19)0.093 (2)0.090 (2)0.0129 (18)0.0156 (17)0.012 (2)
Geometric parameters (Å, º) top
Fe1—Fe1i3.3743 (3)C4—C91.502 (3)
Fe1—Fe22.7253 (4)C5—C101.495 (4)
Fe1—Fe2i3.2683 (3)C11—C121.360 (3)
Fe1—S12.1956 (5)C11—C131.486 (3)
Fe1—S1i2.2551 (5)C12—C141.508 (3)
Fe1—S22.1749 (5)C15—C161.503 (5)
Fe1—C12.136 (2)C17—C181.483 (5)
Fe1—C22.122 (2)C6—H10.960
Fe1—C32.150 (2)C6—H20.960
Fe1—C42.158 (2)C6—H30.960
Fe1—C52.147 (2)C7—H40.960
Fe2—Fe2i2.7619 (3)C7—H60.960
Fe2—S12.2736 (5)C7—H50.960
Fe2—S22.1523 (5)C8—H70.960
Fe2—S2i2.2667 (6)C8—H80.960
Fe2—S32.1541 (5)C8—H90.960
Fe2—S42.1934 (6)C9—H100.960
S3—C111.728 (2)C9—H110.960
S4—C121.709 (2)C9—H120.960
O1—C131.198 (3)C10—H130.960
O2—C131.330 (3)C10—H140.960
O2—C151.451 (3)C10—H150.960
O3—C141.189 (3)C15—H160.970
O4—C141.323 (3)C15—H170.970
O4—C171.474 (4)C16—H180.960
C1—C21.431 (3)C16—H190.960
C1—C51.417 (3)C16—H200.960
C1—C61.496 (3)C17—H210.970
C2—C31.426 (3)C17—H220.970
C2—C71.500 (3)C18—H230.960
C3—C41.416 (3)C18—H240.960
C3—C81.500 (3)C18—H250.960
C4—C51.435 (3)
Fe1···Fe1i3.3743 (3)Fe1···Fe22.7253 (4)
Fe2···Fe2i2.7619 (3)Fe1···Fe2i3.2683 (3)
Fe1i···Fe2i2.7253 (4)Fe1i···Fe23.2683 (3)
Fe2—Fe1—S153.736 (13)C2—C3—C4107.8 (2)
Fe2—Fe1—S1i90.938 (15)C2—C3—C8124.1 (2)
Fe2—Fe1—S250.595 (15)C4—C3—C8127.9 (2)
Fe2—Fe1—C1174.13 (6)Fe1—C4—C370.52 (11)
Fe2—Fe1—C2143.01 (6)Fe1—C4—C570.12 (12)
Fe2—Fe1—C3113.29 (6)Fe1—C4—C9127.37 (16)
Fe2—Fe1—C4110.15 (6)C3—C4—C5108.14 (19)
Fe2—Fe1—C5135.48 (6)C3—C4—C9126.2 (2)
S1—Fe1—S1i80.87 (2)C5—C4—C9125.6 (2)
S1—Fe1—S2102.04 (2)Fe1—C5—C170.25 (13)
S1—Fe1—C1131.50 (6)Fe1—C5—C470.93 (13)
S1—Fe1—C297.42 (6)Fe1—C5—C10128.82 (18)
S1—Fe1—C394.83 (6)C1—C5—C4108.0 (2)
S1—Fe1—C4125.31 (7)C1—C5—C10126.0 (2)
S1—Fe1—C5159.56 (6)C4—C5—C10125.7 (2)
S1i—Fe1—S284.20 (2)S3—C11—C12118.52 (16)
S1i—Fe1—C192.67 (6)S3—C11—C13119.31 (16)
S1i—Fe1—C2108.28 (5)C12—C11—C13122.0 (2)
S1i—Fe1—C3146.55 (6)S4—C12—C11119.90 (16)
S1i—Fe1—C4152.77 (7)S4—C12—C14116.30 (16)
S1i—Fe1—C5113.81 (6)C11—C12—C14123.80 (19)
S2—Fe1—C1125.22 (6)O1—C13—O2123.8 (2)
S2—Fe1—C2158.40 (6)O1—C13—C11124.1 (2)
S2—Fe1—C3128.84 (6)O2—C13—C11112.2 (2)
S2—Fe1—C495.83 (6)O3—C14—O4125.6 (2)
S2—Fe1—C593.85 (6)O3—C14—C12124.3 (2)
C1—Fe1—C239.26 (8)O4—C14—C12110.0 (2)
C1—Fe1—C365.39 (8)O2—C15—C16106.7 (2)
C1—Fe1—C465.05 (8)O4—C17—C18108.4 (2)
C1—Fe1—C538.65 (8)C1—C6—H1109.5
C2—Fe1—C338.99 (8)C1—C6—H2109.5
C2—Fe1—C464.89 (8)C1—C6—H3109.5
C2—Fe1—C565.17 (8)H1—C6—H2109.5
C3—Fe1—C438.37 (8)H1—C6—H3109.5
C3—Fe1—C564.99 (8)H2—C6—H3109.5
C4—Fe1—C538.95 (9)C2—C7—H4109.5
Fe1—Fe2—Fe2i73.111 (11)C2—C7—H6109.5
Fe1—Fe2—S151.138 (15)C2—C7—H5109.5
Fe1—Fe2—S251.334 (14)H4—C7—H6109.5
Fe1—Fe2—S2i105.375 (16)H4—C7—H5109.5
Fe1—Fe2—S394.456 (17)H6—C7—H5109.5
Fe1—Fe2—S4159.452 (19)C3—C8—H7109.5
Fe2i—Fe2—S189.620 (16)C3—C8—H8109.5
Fe2i—Fe2—S253.196 (16)C3—C8—H9109.5
Fe2i—Fe2—S2i49.487 (14)H7—C8—H8109.5
Fe2i—Fe2—S3165.837 (19)H7—C8—H9109.5
Fe2i—Fe2—S4100.674 (17)H8—C8—H9109.5
S1—Fe2—S2100.26 (2)C4—C9—H10109.5
S1—Fe2—S2i81.730 (19)C4—C9—H11109.5
S1—Fe2—S387.59 (2)C4—C9—H12109.5
S1—Fe2—S4149.40 (2)H10—C9—H11109.5
S2—Fe2—S2i102.65 (2)H10—C9—H12109.5
S2—Fe2—S3113.75 (2)H11—C9—H12109.5
S2—Fe2—S4109.02 (2)C5—C10—H13109.5
S2i—Fe2—S3143.35 (2)C5—C10—H14109.5
S2i—Fe2—S483.36 (2)C5—C10—H15109.5
S3—Fe2—S488.64 (2)H13—C10—H14109.5
Fe1—S1—Fe1i98.59 (2)H13—C10—H15109.5
Fe1—S1—Fe275.126 (18)H14—C10—H15109.5
Fe1i—S1—Fe292.386 (19)O2—C15—H16110.4
Fe1—S2—Fe278.071 (18)O2—C15—H17110.4
Fe1—S2—Fe2i94.73 (2)C16—C15—H16110.4
Fe2—S2—Fe2i77.32 (2)C16—C15—H17110.4
Fe2—S3—C11106.95 (7)H16—C15—H17108.6
Fe2—S4—C12105.87 (7)C15—C16—H18109.5
C13—O2—C15116.4 (2)C15—C16—H19109.5
C14—O4—C17117.0 (2)C15—C16—H20109.5
Fe1—C1—C269.86 (12)H18—C16—H19109.5
Fe1—C1—C571.10 (13)H18—C16—H20109.5
Fe1—C1—C6127.30 (17)H19—C16—H20109.5
C2—C1—C5107.7 (2)O4—C17—H21110.0
C2—C1—C6125.9 (2)O4—C17—H22110.0
C5—C1—C6126.4 (2)C18—C17—H21110.0
Fe1—C2—C170.88 (12)C18—C17—H22110.0
Fe1—C2—C371.55 (12)H21—C17—H22108.4
Fe1—C2—C7127.60 (15)C17—C18—H23109.5
C1—C2—C3108.28 (18)C17—C18—H24109.5
C1—C2—C7126.9 (2)C17—C18—H25109.5
C3—C2—C7124.6 (2)H23—C18—H24109.5
Fe1—C3—C269.46 (11)H23—C18—H25109.5
Fe1—C3—C471.12 (12)H24—C18—H25109.5
Fe1—C3—C8128.94 (16)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Fe4(C10H15)2(C8H10O4S2)2S4]
Mr1090.65
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)23.4532 (5), 10.4466 (2), 18.3113 (3)
β (°) 90.6186 (7)
V3)4486.14 (15)
Z4
Radiation typeMo Kα
µ (mm1)1.69
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.560, 0.714
No. of measured, independent and
observed [I > 2σ(I)] reflections
21429, 5111, 4694
Rint0.044
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 1.06
No. of reflections5111
No. of parameters254
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.33

Computer programs: RAPID-AUTO (Rigaku, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), CrystalStructure (Rigaku, 2006).

Selected bond lengths (Å) top
Fe1—Fe1i3.3743 (3)Fe2—Fe2i2.7619 (3)
Fe1—Fe22.7253 (4)Fe2—S12.2736 (5)
Fe1—Fe2i3.2683 (3)Fe2—S22.1523 (5)
Fe1—S12.1956 (5)Fe2—S2i2.2667 (6)
Fe1—S1i2.2551 (5)Fe2—S32.1541 (5)
Fe1—S22.1749 (5)Fe2—S42.1934 (6)
Symmetry code: (i) x+1, y, z+1/2.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHolm, R. H. (1977). Acc. Chem. Res. 12, 427–434.  CrossRef Web of Science Google Scholar
First citationHolm, R. H., Ciurli, S. & Weigel, J. A. (1990). Prog. Inorg. Chem. 38, 1–74.  CrossRef CAS Web of Science Google Scholar
First citationInomata, S., Hiyama, K., Tobita, H. & Ogino, H. (1994). Inorg. Chem. 33, 5337–5342.  CSD CrossRef CAS Web of Science Google Scholar
First citationInomata, S., Takano, H., Hiyama, K., Tobita, H. & Ogino, H. (1995). Organometallics, 14, 2112–2114.  CSD CrossRef CAS Web of Science Google Scholar
First citationInomata, S., Tobita, H. & Ogino, H. (1990). J. Am. Chem. Soc. 112, 6145–6146.  CSD CrossRef CAS Web of Science Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2006). CrystalStructure and RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds