metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(Di­methyl­amino)­pyridinium tetra­chloridoferrate(III)

aLaboratoire de Chimie Appliquée et Technologie des Matériaux LCATM, Université Oum El Bouaghi, Algeria, bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria, cUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Faculté des Sciences Exactes, Université Mentouri Constantine 25000, Algeria, and dCentre de Diffractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 27 February 2013; accepted 3 March 2013; online 9 March 2013)

The title salt, (C7H11N2)[FeCl4], consists of one essentially planar (the r.m.s. deviation for all non-H atoms being 0.004 Å) 4-(dimethyl­amino)­pyridinium cation and a tetra­hedral tetra­chloridoferrate(III) anion. The cations and anions are arranged in layers parallel to (010). Besides electrostatic inter­actions, the crystal packing features N—H⋯Cl and C—H⋯Cl hydrogen bonds between cations and anions, forming a three-dimensional network.

Related literature

For background to hybrid compounds based on protonated substituted N-heterocyclic ligands, see: Bouacida (2008[Bouacida, S. (2008). PhD thesis, Montouri-Constantine University, Algeria.]); Bouacida et al. (2007[Bouacida, S., Merazig, H., Benard-Rocherulle, P. & Rizzoli, C. (2007). Acta Cryst. E63, m379-m381.], 2009[Bouacida, S., Belhouas, R., Kechout, H., Merazig, H. & Bénard-Rocherullé, P. (2009). Acta Cryst. E65, o628-o629.]). For a related structure, see: Nenwa et al. (2010[Nenwa, J., Belombe, M. M., Ngoune, J. & Fokwa, B. P. T. (2010). Acta Cryst. E66, m1410.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H11N2)[FeCl4]

  • Mr = 320.83

  • Monoclinic, P 21 /n

  • a = 9.0360 (2) Å

  • b = 14.0492 (5) Å

  • c = 10.2077 (3) Å

  • β = 98.7259 (9)°

  • V = 1280.85 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.98 mm−1

  • T = 100 K

  • 0.17 × 0.12 × 0.04 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.789, Tmax = 0.924

  • 11192 measured reflections

  • 2925 independent reflections

  • 2146 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.081

  • S = 1.03

  • 2925 reflections

  • 133 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.94 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯Cl2i 0.79 (3) 2.60 (3) 3.369 (3) 165 (3)
C4—H4⋯Cl1i 0.95 2.74 3.604 (3) 152
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

In the course of previuos studies on intermolecular hydrogen-bonding interactions in transition metal hybrid complexes with N-heterocyclic ligands (Bouacida, 2008; Bouacida et al., 2007, 2009), we report here on synthesis and structural characterization of a new organic/inorganic hybrid, involving Fe(III) and 4-(dimethylamino)pyridine, (C7H11N2)+.[FeCl4]-, (I). The molecular geometry of the constituents and the atom-numbering scheme of (I) are shown in Fig. 1.

The asymmetric unit of (I) consists of tetrahedral [FeCl4]- anions and one protoned 4-(dimethylamino)pyridine cation that is essentially planar; its r.m.s. deviation for all non-H atoms is 0.0043 Å, with a maximum deviation from the mean plane of -0.0094 (2) Å for the C4 atom. The packing of the ionic entities is realized by alternating layers of cations and anions parallel to (010) whereby the dimethylaminopyridinium molecules are oriented in a zig-zag fashion parallel to the (210) and (210) planes, respectively (Fig. 2). The crystal packing is stabilized by N—H···Cl and C—H···Cl hydrogen bonds involving the chloride atoms of the anions as acceptors (Table 1, Fig. 3). All these interactions link the layers together, forming a three-dimensional network and reinforcing the cohesion of the ionic structure.

A similar complex with a 4-(dimethylamino)pyridinium cation but a different metal-based anion, viz. (C7H11N2)+[Cr(C2O4)2(H2O)2]-, has been reported recently (Nenwa et al., 2010).

Related literature top

For background to hybrid compounds based on protonated substituted N-heterocyclic ligands, see: Bouacida (2008); Bouacida et al. (2007, 2009). For a related structure, see: Nenwa et al. (2010).

Experimental top

4-(dimethylamino)pyridine and iron(III) chloride hexahydrate were mixed in an equimolar ratio in acidified water (HCl, 37%wt). The solution was kept at room temperature for ten days after which crystals suitable for X-ray diffraction could be isolated.

Refinement top

H atoms were localized from Fourier maps but introduced in calculated positions and treated as riding on their parent C atoms with C—H = 0.98 Å (methyl) or C—H = 0.95 Å (aromatic), and with Uiso(H) = 1.2 Ueq(Caryl)and Uiso(H) = 1.5 Ueq(Cmethyl). H3 attached to the pyridinium N atom was refined without constraints.

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing diagram viewed along [001] showing alterning layers of 4-(dimethylamino)pyridinium cations and [FeCl4] tetrahedraparallel to (010).
[Figure 3] Fig. 3. Packing diagram viewed along [100] showing N—H···Cl and C—H···Cl hydrogen-bonding interactions as dashed lines.
4-(Dimethylamino)pyridinium tetrachloridoferrate(III) top
Crystal data top
(C7H11N2)[FeCl4]F(000) = 644
Mr = 320.83Dx = 1.664 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2278 reflections
a = 9.0360 (2) Åθ = 2.9–26.5°
b = 14.0492 (5) ŵ = 1.98 mm1
c = 10.2077 (3) ÅT = 100 K
β = 98.7259 (9)°Plate, orange
V = 1280.85 (7) Å30.17 × 0.12 × 0.04 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2925 independent reflections
Radiation source: sealed tube2146 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
h = 811
Tmin = 0.789, Tmax = 0.924k = 1818
11192 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0258P)2 + 0.6542P]
where P = (Fo2 + 2Fc2)/3
2925 reflections(Δ/σ)max = 0.001
133 parametersΔρmax = 0.94 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
(C7H11N2)[FeCl4]V = 1280.85 (7) Å3
Mr = 320.83Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.0360 (2) ŵ = 1.98 mm1
b = 14.0492 (5) ÅT = 100 K
c = 10.2077 (3) Å0.17 × 0.12 × 0.04 mm
β = 98.7259 (9)°
Data collection top
Bruker APEXII CCD
diffractometer
2925 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
2146 reflections with I > 2σ(I)
Tmin = 0.789, Tmax = 0.924Rint = 0.041
11192 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.94 e Å3
2925 reflectionsΔρmin = 0.56 e Å3
133 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.02427 (4)0.25669 (2)0.72252 (3)0.02371 (11)
Cl10.16650 (8)0.13001 (5)0.71136 (7)0.0449 (2)
Cl20.11905 (7)0.25489 (4)0.91821 (6)0.03315 (17)
Cl30.11063 (8)0.25245 (5)0.56193 (7)0.03676 (18)
Cl40.15646 (8)0.38804 (5)0.70930 (7)0.03842 (18)
C10.3730 (3)0.42873 (17)0.8197 (3)0.0281 (6)
H10.3810.42140.9130.034*
C20.4618 (3)0.37690 (19)0.7516 (3)0.0374 (7)
H20.53220.33380.79760.045*
N30.4513 (3)0.38586 (19)0.6189 (3)0.0445 (7)
H30.506 (4)0.355 (2)0.582 (3)0.059 (11)*
C40.3518 (3)0.4461 (2)0.5506 (3)0.0417 (7)
H40.34530.45010.4570.05*
C50.2614 (3)0.50068 (19)0.6130 (3)0.0331 (6)
H50.19350.54360.56350.04*
C60.2677 (3)0.49407 (17)0.7526 (2)0.0260 (6)
N70.1790 (2)0.54643 (15)0.8167 (2)0.0305 (5)
C80.1866 (3)0.5381 (2)0.9603 (3)0.0407 (7)
H8A0.16060.47310.98290.061*
H8B0.1160.58290.99080.061*
H8C0.28840.55291.00360.061*
C90.0706 (3)0.6131 (2)0.7463 (3)0.0448 (8)
H9A0.12360.66170.70240.067*
H9B0.01430.64370.80950.067*
H9C0.00130.57860.67970.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0239 (2)0.0260 (2)0.02024 (19)0.00208 (14)0.00016 (14)0.00140 (15)
Cl10.0505 (4)0.0485 (4)0.0315 (4)0.0268 (3)0.0077 (3)0.0074 (3)
Cl20.0327 (3)0.0370 (4)0.0261 (3)0.0089 (3)0.0072 (3)0.0047 (3)
Cl30.0380 (4)0.0417 (4)0.0330 (4)0.0003 (3)0.0131 (3)0.0032 (3)
Cl40.0419 (4)0.0406 (4)0.0322 (4)0.0157 (3)0.0035 (3)0.0016 (3)
C10.0269 (13)0.0283 (14)0.0287 (14)0.0048 (11)0.0035 (11)0.0028 (11)
C20.0331 (15)0.0305 (15)0.050 (2)0.0057 (12)0.0092 (13)0.0032 (13)
N30.0481 (16)0.0367 (15)0.0554 (18)0.0106 (12)0.0295 (14)0.0140 (13)
C40.0578 (19)0.0419 (17)0.0266 (16)0.0218 (15)0.0103 (14)0.0071 (13)
C50.0404 (16)0.0321 (15)0.0255 (14)0.0088 (12)0.0002 (12)0.0008 (11)
C60.0276 (14)0.0264 (13)0.0235 (13)0.0107 (11)0.0022 (11)0.0001 (10)
N70.0314 (12)0.0300 (12)0.0299 (13)0.0015 (9)0.0036 (10)0.0003 (10)
C80.0467 (17)0.0427 (17)0.0360 (17)0.0037 (14)0.0167 (14)0.0030 (13)
C90.0347 (16)0.0370 (17)0.061 (2)0.0049 (13)0.0025 (14)0.0062 (15)
Geometric parameters (Å, º) top
Fe1—Cl32.1870 (7)C4—H40.95
Fe1—Cl12.1882 (7)C5—C61.420 (3)
Fe1—Cl42.1912 (7)C5—H50.95
Fe1—Cl22.2097 (7)C6—N71.331 (3)
C1—C21.351 (4)N7—C81.462 (3)
C1—C61.421 (3)N7—C91.463 (3)
C1—H10.95C8—H8A0.98
C2—N31.350 (4)C8—H8B0.98
C2—H20.95C8—H8C0.98
N3—C41.349 (4)C9—H9A0.98
N3—H30.79 (3)C9—H9B0.98
C4—C51.348 (4)C9—H9C0.98
Cl3—Fe1—Cl1109.18 (3)C6—C5—H5119.9
Cl3—Fe1—Cl4109.72 (3)N7—C6—C5121.4 (2)
Cl1—Fe1—Cl4111.80 (3)N7—C6—C1122.0 (2)
Cl3—Fe1—Cl2111.12 (3)C5—C6—C1116.6 (2)
Cl1—Fe1—Cl2107.27 (3)C6—N7—C8120.6 (2)
Cl4—Fe1—Cl2107.73 (3)C6—N7—C9121.4 (2)
C2—C1—C6120.4 (3)C8—N7—C9118.0 (2)
C2—C1—H1119.8N7—C8—H8A109.5
C6—C1—H1119.8N7—C8—H8B109.5
N3—C2—C1120.6 (3)H8A—C8—H8B109.5
N3—C2—H2119.7N7—C8—H8C109.5
C1—C2—H2119.7H8A—C8—H8C109.5
C4—N3—C2121.1 (3)H8B—C8—H8C109.5
C4—N3—H3121 (3)N7—C9—H9A109.5
C2—N3—H3118 (3)N7—C9—H9B109.5
C5—C4—N3121.1 (3)H9A—C9—H9B109.5
C5—C4—H4119.4N7—C9—H9C109.5
N3—C4—H4119.4H9A—C9—H9C109.5
C4—C5—C6120.1 (3)H9B—C9—H9C109.5
C4—C5—H5119.9
C6—C1—C2—N30.4 (4)C2—C1—C6—N7179.8 (2)
C1—C2—N3—C40.4 (4)C2—C1—C6—C50.4 (3)
C2—N3—C4—C51.3 (4)C5—C6—N7—C8179.6 (2)
N3—C4—C5—C61.3 (4)C1—C6—N7—C80.2 (4)
C4—C5—C6—N7179.4 (2)C5—C6—N7—C90.1 (4)
C4—C5—C6—C10.4 (3)C1—C6—N7—C9179.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···Cl2i0.79 (3)2.60 (3)3.369 (3)165 (3)
C4—H4···Cl1i0.952.743.604 (3)152
Symmetry code: (i) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula(C7H11N2)[FeCl4]
Mr320.83
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.0360 (2), 14.0492 (5), 10.2077 (3)
β (°) 98.7259 (9)
V3)1280.85 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.98
Crystal size (mm)0.17 × 0.12 × 0.04
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2011)
Tmin, Tmax0.789, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
11192, 2925, 2146
Rint0.041
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.081, 1.03
No. of reflections2925
No. of parameters133
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.94, 0.56

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2011), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···Cl2i0.79 (3)2.60 (3)3.369 (3)165 (3)
C4—H4···Cl1i0.95002.74003.604 (3)152.00
Symmetry code: (i) x+1/2, y+1/2, z1/2.
 

Acknowledgements

We are grateful to all personel of the LCATM laboratory, Université Oum El Bouaghi, Algeria, for their assistance. Thanks are due to MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algeria) for financial support via the PNR program.

References

First citationBouacida, S. (2008). PhD thesis, Montouri–Constantine University, Algeria.  Google Scholar
First citationBouacida, S., Belhouas, R., Kechout, H., Merazig, H. & Bénard-Rocherullé, P. (2009). Acta Cryst. E65, o628–o629.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBouacida, S., Merazig, H., Benard-Rocherulle, P. & Rizzoli, C. (2007). Acta Cryst. E63, m379–m381.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNenwa, J., Belombe, M. M., Ngoune, J. & Fokwa, B. P. T. (2010). Acta Cryst. E66, m1410.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds