metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages m191-m192

Di­aqua­bis­­(2-hy­dr­oxy­benzoato-κO1)bis­­(nicotinamide-κN1)cadmium–di­aqua­bis­­(2-hy­dr­oxy­benzoato-κ2O1,O1′)(nico­tin­amide-κN)cadmium–water (1/2/4)

aDepartment of Physics, Sakarya University, 54187 Esentepe, Sakarya, Turkey, bKafkas University, Department of Chemistry, 63100 Kars, Turkey, and cHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 28 February 2013; accepted 4 March 2013; online 9 March 2013)

The crystal structure of the title compound, [Cd(C7H5O3)2(C6H6NO)2(H2O)2]·2[Cd(C7H5O3)2(C6H6NO)(H2O)2]·4H2O, consists of two kinds of CdII complexes (A and B) and lattice water mol­ecules. In complex A, [Cd(C7H5O3)2(C6H6NO)2(H2O)2], the CdII cation is located on an inversion center and is coordinated by two salicylate anions, two nicotinamide (NA) ligands and two water mol­ecules in a slightly distorted octa­hedral geometry. In complex B, [Cd(C7H5O3)2(C6H6NO)(H2O)2], the CdII cation is coordinated by two salicylate anions, one nicotinamide (NA) ligand and two water mol­ecules in an irregular seven-coordinate geometry. There are extensive intra­molecular O—H⋯O and weak C—H⋯O hydrogen bonds as well as extensive inter­molecular O—H⋯O and N—H⋯O hydrogen bonding in the crystal structure. ππ stacking between the pyridine and benzene rings, between the benzene rings, between the benzene and pyridine rings and between the pyridine rings [centroid–centroid distances = 3.5989 (10), 3.6005 (10), 3.5800 (9) and 3.5205 (10) Å, respectively] further stabilize the crystal structure. A weak N—H⋯π inter­action also occurs. One of the lattice water mol­ecules is disordered over two positions with an occupancy ratio of 0.70:0.30.

Related literature

For related structures, see: Greenaway et al. (1984[Greenaway, F. T., Pezeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67-71.]); Hökelek & Necefoğlu (1996[Hökelek, T. & Necefouglu, H. (1996). Acta Cryst. C52, 1128-1131.]); Hökelek et al. (2009a[Hökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009a). Acta Cryst. E65, m1416-m1417.],b[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m627-m628.],c[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m1037-m1038.],d[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009d). Acta Cryst. E65, m1365-m1366.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C7H5O3)2(C6H6NO)2(H2O)2]·2[Cd(C7H5O3)2(C6H6NO)(H2O)2]·4H2O

  • Mr = 1828.56

  • Triclinic, [P \overline 1]

  • a = 10.3446 (2) Å

  • b = 13.5779 (3) Å

  • c = 14.6586 (3) Å

  • α = 71.226 (3)°

  • β = 71.364 (3)°

  • γ = 69.221 (2)°

  • V = 1772.85 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.99 mm−1

  • T = 100 K

  • 0.42 × 0.32 × 0.29 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.691, Tmax = 0.751

  • 31862 measured reflections

  • 8814 independent reflections

  • 8335 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.050

  • S = 1.07

  • 8814 reflections

  • 545 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O2 2.3279 (11)
Cd1—O5 2.3200 (12)
Cd1—N1 2.3118 (13)
Cd2—O6 2.5814 (13)
Cd2—O7 2.2795 (11)
Cd2—O9 2.2675 (11)
Cd2—O10 2.6839 (12)
Cd2—O13 2.3486 (12)
Cd2—O14 2.2953 (12)
Cd2—N3 2.2824 (13)

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O11i 0.88 2.21 3.025 (2) 154
N2—H2B⋯O1ii 0.88 2.23 3.054 (2) 156
N4—H4B⋯O13iii 0.88 2.13 2.937 (2) 151
O3—H3⋯O2 0.84 1.81 2.548 (2) 146
O5—H51⋯O7iv 0.78 (3) 1.95 (3) 2.722 (2) 172 (3)
O5—H52⋯O1v 0.82 (3) 1.89 (3) 2.687 (2) 165 (3)
O8—H81⋯O6 0.84 1.83 2.569 (2) 146
O11—H111⋯O5vi 0.84 2.52 3.048 (2) 122
O11—H111⋯O9 0.84 1.79 2.535 (2) 146
O13—H131⋯O3vi 0.76 (3) 2.02 (3) 2.760 (2) 165 (2)
O13—H132⋯O4vii 0.79 (3) 1.88 (3) 2.656 (2) 168 (3)
O14—H141⋯O15ii 0.78 (3) 1.92 (3) 2.693 (2) 178.1 (5)
O14—H142⋯O10viii 0.84 (3) 1.89 (3) 2.720 (2) 178 (4)
O15—H15A⋯O16A 0.86 (2) 1.95 (2) 2.764 (4) 156 (2)
O15—H15A⋯O16B 0.86 (2) 1.93 (2) 2.689 (5) 146 (2)
O15—H15B⋯O12 0.84 (3) 2.08 (3) 2.880 (2) 159 (3)
O16A—H161⋯O8vii 0.83 (5) 2.53 (5) 3.139 (4) 132 (4)
O16A—H162⋯O1ix 0.89 (4) 2.14 (3) 2.965 (4) 153 (5)
O16B—H164⋯O8 0.91 (2) 1.91 (2) 2.748 (2) 153 (3)
C28—H28⋯O6 0.95 2.35 3.101 (2) 136
N4—H4ACg1 0.88 2.69 3.470 (2) 148
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x+1, y, z; (iii) -x+1, -y+1, -z+2; (iv) x-1, y-1, z; (v) -x, -y, -z+1; (vi) x+1, y+1, z; (vii) -x+1, -y+1, -z+1; (viii) -x+2, -y+1, -z+2; (ix) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing study on transition metal complexes of benzoate and nicotinamide, (NA), herein we report the synthesis and the structure of the title cocrystal diaquabis(salicylato-κO)bis(nicotinamide-κN) cadmium(II),(A), and diaquabis(salicylato-κ2O;O') (nicotinamide-κN)cadmium(II)dihydrate, (B).

The components of the title compound, [Cd(C7H5O3)2(C6H6NO)2 (H2O)2], (A), and [Cd(C7H5O3)2(C6H6NO)(H2O)2].2(H2O), (B), are mononuclear complexes. In complex A, the CdII cation is located on an inversion center and is coordinated by two salicylate anions, two nicotinamide (NA) ligands and two water molecules in a slightly distorted octahedral geometry (Fig. 1). In complex B, the CdII cation is coordinated by two salicylate anions, one nicotinamide (NA) ligand and two water molecules completing the irregular seven-coordination geometry (Fig. 1). There are extensive intramolecular O—H···O and weak C—H···O hydrogen bonding, beside of the extensive intermolecular O—H···O and N—H···O hydrogen bonding (Table 2) in the crystal structure.

The average Cd—O bond lengths (Table 1) are 2.3240 (12) and 2.4094 (12) Å for (A) and (B), respectively, and the Cd atoms are displaced out of the least-squares planes of the carboxylate groups: Cd1 atom for (O1/C1/O2) by 0.7250 (1) Å, Cd2 atom for (O6/C14/O7) and (O9/C21/O10) by -0.3415 (1) and -0.1105 (1) Å, respectively. In (B), the O6—Cd2—O7 and O9—Cd2—O10 angles are 53.45 (4) and 51.97 (4) °, respectively. The corresponding O—M—O (where M is a metal) angles are 52.91 (4)° and 53.96 (4)° in [Cd(C8H5O3)2(C6H6N2O)2(H2O)].H2O (Hökelek et al., 2009a), 60.70 (4)° in [Co(C9H10NO2)2(C6H6N2O)(H2O)2] (Hökelek et al., 2009b), 58.45 (9)° in [Mn(C9H10NO2)2- (C6H6N2O)(H2O)2] (Hökelek et al., 2009c), 60.03 (6)° in [Zn(C8H8NO2)2(C6H6N2O)2].H2O (Hökelek et al., 2009d), 58.3 (3)° in [Zn2(DENA)2(C7H5O3)4].2H2O (Hökelek & Necefoğlu, 1996) and 55.2 (1)° in [Cu(Asp)2(py)2] (where Asp is acetylsalicylate and py is pyridine) (Greenaway et al., 1984).

The dihedral angles between the planar carboxylate groups and the adjacent benzene rings A (C2—C7), C (C15—C20) and D (C22—C27) are 16.26 (17), 5.32 (16) and 3.53 (12) °, respectively, while those between rings A, B (N1/C8—C12) and C, D, E (N3/C28—C32), F (Cd2/O6/O7/C14), G (Cd2/O9/O10/C21) are A/B = 73.75 (4), C/D = 24.80 (6), C/E = 30.95 (6), D/E = 6.88 (6) and F/G = 25.62 (5) °.

In the crystal structure, extensive O—H···O and N—H···O hydrogen bonding (Table 2) may be effective in the stabilization of the structure. π···π contacts between the pyridine and benzene rings Cg2—Cg3i, between the benzene rings Cg3—Cg3i, between the benzene and pyridine rings Cg4—Cg5ii and between the pyridine rings Cg5—Cg5iii, [symmetry codes: (i) -x, 1 - y, 1 - z, (ii) -x, 1 - y, -z, (iii) 1 - x, 1 - y, -z, where Cg2, Cg3, Cg4 and Cg5 are the centroids of the rings B (N1/C8—C12), C (C15—C20), D (C22—C27) and E (N3/C28—C32), respectively] may further stabilize the structure, with centroid-centroid distances of 3.5989 (10), 3.6005 (10), 3.5800 (9) and 3.5205 (10) Å, respectively]. A weak C-H···π interaction also occurs in the crsytal.

Related literature top

For related structures, see: Greenaway et al. (1984); Hökelek & Necefoğlu (1996); Hökelek et al. (2009a,b,c,d).

Experimental top

The title compound was prepared by the reaction of 3CdSO4.8H2O (1.283 g, 5 mmol) in H2O (50 ml) and NA (1.220 g, 10 mmol) in H2O (20 ml) with sodium salicylate (1.601 g, 10 mmol) in H2O (200 ml). The mixture was filtered and set aside to crystallize at ambient temperature for two weeks, giving colorless single crystals.

Refinement top

Water H atoms were located in a difference Fourier map and refined isotropically. The C, N and O -bound H-atoms were positioned geometrically with C—H = 0.95, N—H = 0.88 and O—H = 0.84 Å for aromatic, NH2 and OH H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C,N,O), where k = 1.5 for OH H-atoms and k = 1.2 for all other H-atoms. During the refinement process the disordered O16A, H161, H162 and O16B, H163, H164 atoms were refined with occupancies ratios of 0.70:0.30.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.Only one of the disordered water molecules is shown for clarity. Primed atoms are generated by the symmetry operator: (') - x, - y, - z.
Diaquabis(2-hydroxybenzoato-κO1)bis(nicotinamide-κN1)cadmium–diaquabis(2-hydroxybenzoato-κ2O1,O1')(nicotinamide-κN)cadmium–water (1/2/4) top
Crystal data top
[Cd(C7H5O3)2(C6H6NO)2(H2O)2]·2[Cd(C7H5O3)2(C6H6NO) (H2O)2]·4H2OZ = 1
Mr = 1828.56F(000) = 926
Triclinic, P1Dx = 1.713 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3446 (2) ÅCell parameters from 9969 reflections
b = 13.5779 (3) Åθ = 2.3–28.4°
c = 14.6586 (3) ŵ = 0.99 mm1
α = 71.226 (3)°T = 100 K
β = 71.364 (3)°Block, colorless
γ = 69.221 (2)°0.42 × 0.32 × 0.29 mm
V = 1772.85 (7) Å3
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
8814 independent reflections
Radiation source: fine-focus sealed tube8335 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 28.4°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1313
Tmin = 0.691, Tmax = 0.751k = 1718
31862 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.050H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0186P)2 + 1.5957P]
where P = (Fo2 + 2Fc2)/3
8814 reflections(Δ/σ)max = 0.020
545 parametersΔρmax = 0.78 e Å3
12 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Cd(C7H5O3)2(C6H6NO)2(H2O)2]·2[Cd(C7H5O3)2(C6H6NO) (H2O)2]·4H2Oγ = 69.221 (2)°
Mr = 1828.56V = 1772.85 (7) Å3
Triclinic, P1Z = 1
a = 10.3446 (2) ÅMo Kα radiation
b = 13.5779 (3) ŵ = 0.99 mm1
c = 14.6586 (3) ÅT = 100 K
α = 71.226 (3)°0.42 × 0.32 × 0.29 mm
β = 71.364 (3)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
8814 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
8335 reflections with I > 2σ(I)
Tmin = 0.691, Tmax = 0.751Rint = 0.019
31862 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01912 restraints
wR(F2) = 0.050H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.78 e Å3
8814 reflectionsΔρmin = 0.55 e Å3
545 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.00000.00000.50000.01311 (4)
Cd20.877004 (11)0.624380 (8)0.830132 (7)0.01203 (3)
O10.31150 (13)0.19557 (12)0.54455 (9)0.0269 (3)
O20.16718 (12)0.06304 (10)0.63352 (8)0.0180 (2)
O30.27174 (12)0.03188 (9)0.80840 (9)0.0194 (2)
H30.20760.01890.75780.029*
O40.49310 (12)0.13733 (10)0.28241 (8)0.0201 (2)
O50.08538 (14)0.16188 (10)0.60766 (9)0.0178 (2)
H510.044 (3)0.205 (2)0.6227 (19)0.039 (7)*
H520.156 (3)0.184 (2)0.566 (2)0.038 (7)*
O60.77699 (14)0.61782 (10)0.69250 (9)0.0224 (2)
O70.96639 (14)0.67201 (10)0.66363 (8)0.0211 (2)
O80.70522 (15)0.59461 (12)0.54991 (11)0.0310 (3)
H810.69440.60140.60710.046*
O90.98282 (12)0.74204 (9)0.83579 (8)0.0164 (2)
O100.90014 (12)0.66520 (9)0.99076 (8)0.0182 (2)
O111.13543 (13)0.86917 (10)0.78926 (8)0.0189 (2)
H1111.09090.83370.77970.028*
O120.58701 (14)0.36892 (11)0.80202 (9)0.0258 (3)
O130.67334 (13)0.77253 (10)0.84526 (9)0.0162 (2)
H1310.700 (2)0.820 (2)0.8404 (17)0.025 (6)*
H1320.630 (3)0.792 (2)0.8042 (19)0.031 (6)*
O141.07045 (13)0.47416 (10)0.83130 (9)0.0174 (2)
H1411.146 (3)0.480 (2)0.803 (2)0.038 (7)*
H1421.078 (3)0.431 (2)0.886 (2)0.035 (6)*
O150.33286 (16)0.49084 (15)0.73091 (12)0.0383 (4)
H15A0.331 (3)0.532 (2)0.6724 (14)0.056 (9)*
H15B0.416 (2)0.454 (2)0.736 (2)0.055*
O16A0.3642 (4)0.5663 (3)0.5283 (3)0.0691 (10)0.70
H1610.330 (5)0.563 (4)0.486 (3)0.070*0.70
H1620.377 (5)0.632 (2)0.510 (3)0.070*0.70
O16B0.4434 (6)0.5903 (5)0.5461 (4)0.0407 (12)0.30
H1630.478 (9)0.541 (6)0.518 (7)0.055*0.30
H1640.516 (6)0.615 (7)0.543 (7)0.055*0.30
N10.16652 (14)0.06569 (10)0.51738 (10)0.0141 (2)
N20.59990 (15)0.17238 (12)0.37443 (10)0.0201 (3)
H2A0.67120.18310.32370.024*
H2B0.59850.17860.43270.024*
N30.75275 (14)0.50506 (10)0.93253 (10)0.0137 (2)
N40.47937 (16)0.27600 (12)0.94629 (11)0.0205 (3)
H4A0.44030.25140.91620.025*
H4B0.46400.25781.01130.025*
C10.28699 (17)0.13245 (14)0.62445 (12)0.0171 (3)
C20.40629 (16)0.13224 (13)0.71493 (11)0.0146 (3)
C30.39584 (16)0.04683 (13)0.79939 (11)0.0147 (3)
C40.51546 (17)0.03905 (13)0.87677 (11)0.0165 (3)
H40.50960.02160.93190.020*
C50.64234 (17)0.11948 (13)0.87315 (12)0.0171 (3)
H50.72350.11400.92600.021*
C60.65202 (17)0.20861 (13)0.79242 (12)0.0166 (3)
H60.73810.26550.79140.020*
C70.53499 (17)0.21351 (13)0.71370 (11)0.0159 (3)
H70.54240.27320.65780.019*
C80.27348 (16)0.09059 (12)0.44208 (11)0.0141 (3)
H80.27800.08420.37840.017*
C90.37801 (16)0.12524 (12)0.45284 (11)0.0133 (3)
C100.37015 (17)0.13455 (12)0.54640 (11)0.0152 (3)
H100.43990.15770.55670.018*
C110.25952 (17)0.10974 (13)0.62432 (11)0.0166 (3)
H110.25210.11590.68870.020*
C120.15991 (17)0.07589 (12)0.60704 (11)0.0156 (3)
H120.08400.05920.66060.019*
C130.49426 (16)0.14670 (12)0.36310 (11)0.0149 (3)
C140.88452 (18)0.64560 (12)0.63308 (11)0.0174 (3)
C150.91699 (18)0.64417 (12)0.52719 (11)0.0171 (3)
C160.82761 (19)0.61560 (13)0.49183 (13)0.0205 (3)
C170.8645 (2)0.60858 (14)0.39349 (13)0.0255 (4)
H170.80430.58910.36930.031*
C180.9885 (2)0.62997 (14)0.33131 (13)0.0274 (4)
H181.01340.62420.26460.033*
C191.0772 (2)0.65980 (15)0.36474 (13)0.0255 (4)
H191.16160.67550.32110.031*
C201.04131 (19)0.66644 (14)0.46248 (12)0.0207 (3)
H201.10190.68640.48590.025*
C210.96738 (16)0.72866 (12)0.92860 (11)0.0130 (3)
C221.03321 (15)0.79060 (12)0.95921 (11)0.0124 (3)
C231.11546 (16)0.85634 (12)0.88791 (11)0.0140 (3)
C241.18204 (17)0.90993 (13)0.91789 (12)0.0177 (3)
H241.23830.95370.86970.021*
C251.16626 (18)0.89943 (13)1.01733 (12)0.0187 (3)
H251.21120.93661.03720.022*
C261.08496 (18)0.83482 (13)1.08907 (12)0.0183 (3)
H261.07410.82801.15750.022*
C271.02046 (16)0.78079 (13)1.05937 (11)0.0150 (3)
H270.96620.73601.10820.018*
C280.69587 (16)0.45880 (12)0.89278 (11)0.0147 (3)
H280.70590.47910.82310.018*
C290.62276 (16)0.38230 (12)0.94916 (11)0.0136 (3)
C300.60890 (16)0.35230 (12)1.05111 (11)0.0146 (3)
H300.56010.30001.09170.018*
C310.66750 (17)0.39997 (13)1.09260 (11)0.0156 (3)
H310.65920.38101.16210.019*
C320.73819 (16)0.47544 (12)1.03128 (11)0.0148 (3)
H320.77820.50781.06010.018*
C330.56221 (17)0.34110 (13)0.89312 (12)0.0173 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01042 (7)0.01605 (8)0.01411 (7)0.00624 (6)0.00107 (5)0.00409 (5)
Cd20.01288 (6)0.01225 (5)0.01173 (5)0.00601 (4)0.00242 (4)0.00147 (4)
O10.0173 (6)0.0418 (8)0.0148 (5)0.0056 (6)0.0013 (5)0.0033 (5)
O20.0125 (5)0.0234 (6)0.0191 (5)0.0054 (5)0.0004 (4)0.0093 (5)
O30.0150 (6)0.0182 (6)0.0216 (6)0.0033 (5)0.0025 (4)0.0037 (4)
O40.0148 (6)0.0300 (6)0.0164 (5)0.0068 (5)0.0036 (4)0.0060 (5)
O50.0169 (6)0.0215 (6)0.0154 (5)0.0100 (5)0.0015 (4)0.0019 (4)
O60.0267 (7)0.0206 (6)0.0168 (5)0.0099 (5)0.0013 (5)0.0029 (4)
O70.0314 (7)0.0205 (6)0.0131 (5)0.0117 (5)0.0055 (5)0.0012 (4)
O80.0296 (7)0.0337 (7)0.0319 (7)0.0148 (6)0.0089 (6)0.0023 (6)
O90.0177 (6)0.0203 (6)0.0145 (5)0.0094 (5)0.0030 (4)0.0046 (4)
O100.0191 (6)0.0188 (6)0.0190 (5)0.0118 (5)0.0062 (4)0.0017 (4)
O110.0224 (6)0.0246 (6)0.0129 (5)0.0149 (5)0.0023 (4)0.0010 (4)
O120.0301 (7)0.0368 (7)0.0179 (6)0.0202 (6)0.0014 (5)0.0079 (5)
O130.0166 (6)0.0159 (6)0.0172 (5)0.0053 (5)0.0064 (4)0.0020 (4)
O140.0162 (6)0.0175 (6)0.0157 (5)0.0047 (5)0.0033 (4)0.0006 (4)
O150.0264 (8)0.0539 (10)0.0326 (8)0.0164 (7)0.0057 (6)0.0029 (7)
O16A0.0534 (18)0.069 (2)0.066 (2)0.0221 (16)0.0284 (15)0.0282 (16)
O16B0.040 (3)0.043 (3)0.036 (3)0.012 (3)0.016 (2)0.004 (2)
N10.0136 (6)0.0134 (6)0.0158 (6)0.0050 (5)0.0040 (5)0.0021 (5)
N20.0150 (7)0.0312 (8)0.0176 (6)0.0129 (6)0.0009 (5)0.0061 (6)
N30.0114 (6)0.0122 (6)0.0176 (6)0.0039 (5)0.0031 (5)0.0033 (5)
N40.0248 (7)0.0245 (7)0.0193 (6)0.0165 (6)0.0025 (6)0.0064 (5)
C10.0149 (7)0.0233 (8)0.0161 (7)0.0082 (6)0.0010 (6)0.0080 (6)
C20.0136 (7)0.0183 (7)0.0148 (7)0.0069 (6)0.0014 (5)0.0070 (6)
C30.0140 (7)0.0153 (7)0.0177 (7)0.0045 (6)0.0035 (6)0.0075 (6)
C40.0188 (8)0.0166 (7)0.0156 (7)0.0079 (6)0.0023 (6)0.0042 (6)
C50.0164 (7)0.0214 (8)0.0167 (7)0.0096 (6)0.0017 (6)0.0093 (6)
C60.0142 (7)0.0192 (8)0.0187 (7)0.0046 (6)0.0029 (6)0.0086 (6)
C70.0165 (7)0.0182 (7)0.0155 (7)0.0063 (6)0.0037 (6)0.0055 (6)
C80.0135 (7)0.0152 (7)0.0144 (7)0.0048 (6)0.0043 (5)0.0026 (5)
C90.0110 (7)0.0120 (7)0.0161 (7)0.0026 (5)0.0043 (5)0.0019 (5)
C100.0146 (7)0.0155 (7)0.0174 (7)0.0049 (6)0.0063 (6)0.0029 (6)
C110.0187 (8)0.0178 (7)0.0140 (7)0.0057 (6)0.0052 (6)0.0027 (6)
C120.0155 (7)0.0148 (7)0.0154 (7)0.0055 (6)0.0027 (6)0.0018 (5)
C130.0122 (7)0.0138 (7)0.0165 (7)0.0021 (6)0.0040 (5)0.0018 (5)
C140.0246 (8)0.0112 (7)0.0135 (7)0.0039 (6)0.0032 (6)0.0015 (5)
C150.0234 (8)0.0123 (7)0.0130 (7)0.0029 (6)0.0048 (6)0.0015 (5)
C160.0250 (9)0.0133 (7)0.0225 (8)0.0030 (6)0.0099 (7)0.0013 (6)
C170.0386 (11)0.0167 (8)0.0250 (8)0.0024 (7)0.0191 (8)0.0041 (6)
C180.0436 (11)0.0180 (8)0.0150 (7)0.0017 (8)0.0111 (7)0.0040 (6)
C190.0307 (10)0.0221 (8)0.0149 (7)0.0034 (7)0.0009 (7)0.0017 (6)
C200.0253 (9)0.0185 (8)0.0156 (7)0.0048 (7)0.0042 (6)0.0024 (6)
C210.0100 (7)0.0119 (7)0.0163 (7)0.0020 (5)0.0033 (5)0.0030 (5)
C220.0097 (7)0.0120 (6)0.0151 (7)0.0028 (5)0.0029 (5)0.0032 (5)
C230.0130 (7)0.0130 (7)0.0152 (7)0.0036 (6)0.0032 (5)0.0026 (5)
C240.0176 (8)0.0149 (7)0.0219 (8)0.0085 (6)0.0047 (6)0.0017 (6)
C250.0200 (8)0.0160 (7)0.0246 (8)0.0060 (6)0.0084 (6)0.0064 (6)
C260.0197 (8)0.0191 (8)0.0166 (7)0.0033 (6)0.0054 (6)0.0063 (6)
C270.0130 (7)0.0151 (7)0.0152 (7)0.0037 (6)0.0018 (5)0.0030 (5)
C280.0135 (7)0.0150 (7)0.0155 (7)0.0047 (6)0.0016 (5)0.0042 (5)
C290.0100 (7)0.0129 (7)0.0179 (7)0.0032 (5)0.0014 (5)0.0055 (5)
C300.0116 (7)0.0129 (7)0.0181 (7)0.0043 (6)0.0020 (5)0.0027 (5)
C310.0146 (7)0.0157 (7)0.0159 (7)0.0044 (6)0.0036 (6)0.0026 (6)
C320.0130 (7)0.0147 (7)0.0180 (7)0.0041 (6)0.0049 (6)0.0039 (6)
C330.0159 (7)0.0191 (8)0.0190 (7)0.0069 (6)0.0016 (6)0.0075 (6)
Geometric parameters (Å, º) top
Cd1—O22.3279 (11)C1—C21.495 (2)
Cd1—O2i2.3279 (11)C2—C71.397 (2)
Cd1—O52.3200 (12)C2—C31.401 (2)
Cd1—O5i2.3200 (12)C3—C41.396 (2)
Cd1—N12.3118 (13)C4—C51.381 (2)
Cd1—N1i2.3118 (13)C4—H40.9500
Cd2—O62.5814 (13)C5—C61.394 (2)
Cd2—O72.2795 (11)C5—H50.9500
Cd2—O92.2675 (11)C6—C71.384 (2)
Cd2—O102.6839 (12)C6—H60.9500
Cd2—O132.3486 (12)C7—H70.9500
Cd2—O142.2953 (12)C8—H80.9500
Cd2—N32.2824 (13)C9—C81.390 (2)
O1—C11.249 (2)C9—C131.501 (2)
O2—C11.280 (2)C10—C91.392 (2)
O3—C31.3608 (19)C10—H100.9500
O3—H30.8400C11—C101.385 (2)
O4—C131.2338 (19)C11—H110.9500
O5—H510.78 (3)C12—C111.384 (2)
O5—H520.83 (3)C12—H120.9500
O6—C141.267 (2)C14—C151.485 (2)
O7—C141.268 (2)C15—C201.399 (2)
O8—C161.349 (2)C15—C161.401 (2)
O8—H810.8400C16—C171.394 (2)
O9—C211.2774 (18)C17—C181.381 (3)
O10—C211.2535 (18)C17—H170.9500
O11—C231.3552 (18)C18—C191.388 (3)
O11—H1110.8400C18—H180.9500
O12—C331.232 (2)C19—C201.385 (2)
O13—H1310.76 (2)C19—H190.9500
O13—H1320.79 (3)C20—H200.9500
O14—H1410.78 (3)C21—C221.489 (2)
O14—H1420.83 (3)C22—C271.398 (2)
O15—H15A0.863 (16)C22—C231.408 (2)
O15—H15B0.843 (17)C23—C241.397 (2)
O16A—O16B1.108 (7)C24—C251.379 (2)
O16A—H1610.829 (19)C24—H240.9500
O16A—H1620.895 (17)C25—C261.396 (2)
O16A—H1631.08 (8)C25—H250.9500
O16B—H1620.92 (5)C26—C271.382 (2)
O16B—H1630.81 (2)C26—H260.9500
O16B—H1640.909 (19)C27—H270.9500
N1—C81.342 (2)C28—C291.393 (2)
N1—C121.343 (2)C28—H280.9500
N2—C131.329 (2)C29—C301.390 (2)
N2—H2A0.8800C29—C331.501 (2)
N2—H2B0.8800C30—C311.387 (2)
N3—C281.3405 (19)C30—H300.9500
N3—C321.345 (2)C31—C321.383 (2)
N4—C331.338 (2)C31—H310.9500
N4—H4A0.8800C32—H320.9500
N4—H4B0.8800
O2—Cd1—O2i180.0C6—C7—C2121.19 (15)
O5—Cd1—O289.71 (4)C6—C7—H7119.4
O5i—Cd1—O290.29 (4)N1—C8—C9123.14 (14)
O5—Cd1—O2i90.29 (4)N1—C8—H8118.4
O5i—Cd1—O2i89.71 (4)C9—C8—H8118.4
O5—Cd1—O5i180.00 (6)C8—C9—C10117.94 (14)
N1—Cd1—O291.83 (4)C8—C9—C13117.52 (13)
N1i—Cd1—O288.17 (4)C10—C9—C13124.51 (14)
N1—Cd1—O2i88.17 (4)C9—C10—H10120.4
N1i—Cd1—O2i91.83 (4)C11—C10—C9119.25 (14)
N1—Cd1—O588.80 (4)C11—C10—H10120.4
N1i—Cd1—O591.20 (4)C10—C11—H11120.5
N1—Cd1—O5i91.20 (4)C12—C11—C10119.01 (14)
N1i—Cd1—O5i88.80 (4)C12—C11—H11120.5
N1—Cd1—N1i180.00 (5)N1—C12—C11122.49 (14)
O7—Cd2—O653.45 (4)N1—C12—H12118.8
O7—Cd2—O1399.00 (4)C11—C12—H12118.8
O7—Cd2—O1486.39 (5)O4—C13—N2121.54 (15)
O7—Cd2—N3135.25 (4)O4—C13—C9120.59 (14)
O9—Cd2—O6130.94 (4)N2—C13—C9117.83 (14)
O9—Cd2—O783.88 (4)O6—C14—O7120.68 (14)
O9—Cd2—O1051.97 (4)O6—C14—C15119.54 (15)
O9—Cd2—O1382.42 (4)O7—C14—C15119.77 (15)
O9—Cd2—O1497.85 (4)C16—C15—C14120.68 (15)
O9—Cd2—N3140.77 (4)C20—C15—C14120.08 (15)
O13—Cd2—O681.90 (4)C20—C15—C16119.17 (15)
O14—Cd2—O6101.78 (4)O8—C16—C15122.18 (16)
O14—Cd2—O13174.60 (4)O8—C16—C17118.09 (16)
N3—Cd2—O685.89 (4)C17—C16—C15119.72 (17)
N3—Cd2—O1391.82 (4)C16—C17—H17120.0
N3—Cd2—O1484.56 (5)C18—C17—C16120.01 (17)
C1—O2—Cd1122.27 (10)C18—C17—H17120.0
C3—O3—H3109.5C17—C18—C19121.02 (16)
Cd1—O5—H51116.4 (19)C17—C18—H18119.5
Cd1—O5—H5294.7 (18)C19—C18—H18119.5
H52—O5—H51103 (3)C18—C19—H19120.4
C14—O6—Cd285.62 (10)C20—C19—C18119.16 (17)
C14—O7—Cd299.61 (10)C20—C19—H19120.4
C16—O8—H81109.5C15—C20—H20119.5
C21—O9—Cd2103.02 (9)C19—C20—C15120.90 (17)
C23—O11—H111109.5C19—C20—H20119.5
Cd2—O13—H131105.6 (18)O9—C21—C22117.30 (13)
Cd2—O13—H132116.8 (18)O10—C21—O9120.87 (14)
H131—O13—H132105 (2)O10—C21—C22121.83 (13)
Cd2—O14—H141119.8 (19)C23—C22—C21120.72 (13)
Cd2—O14—H142117.3 (17)C27—C22—C21120.76 (13)
H142—O14—H141108 (2)C27—C22—C23118.45 (14)
H15A—O15—H15B112 (3)O11—C23—C22122.46 (13)
H162—O16A—H161106 (3)O11—C23—C24117.49 (14)
H163—O16B—H164106 (5)C24—C23—C22120.04 (14)
C8—N1—Cd1122.70 (10)C23—C24—H24119.9
C8—N1—C12118.15 (13)C25—C24—C23120.11 (14)
C12—N1—Cd1119.10 (10)C25—C24—H24119.9
C13—N2—H2A120.0C24—C25—C26120.68 (15)
C13—N2—H2B120.0C24—C25—H25119.7
H2A—N2—H2B120.0C26—C25—H25119.7
C28—N3—Cd2118.96 (10)C25—C26—H26120.4
C28—N3—C32117.99 (13)C27—C26—C25119.19 (14)
C32—N3—Cd2123.00 (10)C27—C26—H26120.4
C33—N4—H4A120.0C22—C27—H27119.2
C33—N4—H4B120.0C26—C27—C22121.52 (14)
H4A—N4—H4B120.0C26—C27—H27119.2
O1—C1—O2124.22 (15)N3—C28—C29122.91 (14)
O1—C1—C2118.68 (15)N3—C28—H28118.5
O2—C1—C2117.00 (14)C29—C28—H28118.5
C3—C2—C1121.07 (14)C28—C29—C33115.98 (14)
C7—C2—C1120.12 (14)C30—C29—C28118.44 (14)
C7—C2—C3118.61 (14)C30—C29—C33125.56 (14)
O3—C3—C2122.00 (14)C29—C30—H30120.6
O3—C3—C4117.82 (14)C31—C30—C29118.87 (14)
C4—C3—C2120.17 (15)C31—C30—H30120.6
C3—C4—H4120.0C30—C31—H31120.5
C5—C4—C3120.01 (15)C32—C31—C30118.99 (14)
C5—C4—H4120.0C32—C31—H31120.5
C4—C5—C6120.42 (15)N3—C32—C31122.80 (14)
C4—C5—H5119.8N3—C32—H32118.6
C6—C5—H5119.8C31—C32—H32118.6
C5—C6—H6120.3O12—C33—N4122.50 (15)
C7—C6—C5119.38 (15)O12—C33—C29120.23 (14)
C7—C6—H6120.3N4—C33—C29117.26 (14)
C2—C7—H7119.4
O5—Cd1—O2—C1151.77 (12)C7—C2—C3—O3176.12 (13)
O5i—Cd1—O2—C128.23 (12)C7—C2—C3—C45.3 (2)
N1—Cd1—O2—C1119.44 (12)C1—C2—C7—C6172.72 (14)
N1i—Cd1—O2—C160.56 (12)C3—C2—C7—C62.3 (2)
O2—Cd1—N1—C8155.47 (12)O3—C3—C4—C5177.09 (14)
O2i—Cd1—N1—C824.53 (12)C2—C3—C4—C54.3 (2)
O2—Cd1—N1—C1227.03 (12)C3—C4—C5—C60.1 (2)
O2i—Cd1—N1—C12152.97 (12)C4—C5—C6—C72.9 (2)
O5—Cd1—N1—C8114.85 (12)C5—C6—C7—C21.8 (2)
O5i—Cd1—N1—C865.15 (12)C10—C9—C8—N10.2 (2)
O5—Cd1—N1—C1262.64 (12)C13—C9—C8—N1177.96 (14)
O5i—Cd1—N1—C12117.36 (12)C8—C9—C13—O42.5 (2)
O7—Cd2—O6—C144.53 (9)C8—C9—C13—N2175.32 (14)
O9—Cd2—O6—C1439.56 (11)C10—C9—C13—O4179.50 (15)
O13—Cd2—O6—C14112.11 (10)C10—C9—C13—N22.7 (2)
O14—Cd2—O6—C1471.89 (10)C11—C10—C9—C80.3 (2)
N3—Cd2—O6—C14155.46 (10)C11—C10—C9—C13178.28 (15)
O6—Cd2—O7—C144.58 (9)C12—C11—C10—C90.2 (2)
O9—Cd2—O7—C14158.73 (10)N1—C12—C11—C100.3 (2)
O13—Cd2—O7—C1477.43 (10)O6—C14—C15—C161.9 (2)
O14—Cd2—O7—C14102.97 (10)O6—C14—C15—C20175.00 (15)
N3—Cd2—O7—C1424.42 (13)O7—C14—C15—C16179.77 (15)
O6—Cd2—O9—C21159.44 (9)O7—C14—C15—C203.3 (2)
O7—Cd2—O9—C21172.93 (10)C14—C15—C16—O84.0 (2)
O13—Cd2—O9—C2187.11 (10)C14—C15—C16—C17176.23 (15)
O14—Cd2—O9—C2187.45 (10)C20—C15—C16—O8179.05 (15)
N3—Cd2—O9—C213.57 (13)C20—C15—C16—C170.7 (2)
O6—Cd2—N3—C2810.89 (11)C14—C15—C20—C19176.50 (16)
O6—Cd2—N3—C32171.74 (12)C16—C15—C20—C190.5 (2)
O7—Cd2—N3—C2812.09 (15)O8—C16—C17—C18179.66 (16)
O7—Cd2—N3—C32165.28 (11)C15—C16—C17—C180.1 (3)
O9—Cd2—N3—C28172.86 (10)C16—C17—C18—C190.7 (3)
O9—Cd2—N3—C329.77 (16)C17—C18—C19—C201.0 (3)
O13—Cd2—N3—C2892.64 (12)C18—C19—C20—C150.4 (3)
O13—Cd2—N3—C3290.00 (12)O9—C21—C22—C233.4 (2)
O14—Cd2—N3—C2891.38 (12)O9—C21—C22—C27179.68 (14)
O14—Cd2—N3—C3285.99 (12)O10—C21—C22—C23176.13 (14)
Cd1—O2—C1—O121.6 (2)O10—C21—C22—C270.8 (2)
Cd1—O2—C1—C2154.63 (10)C21—C22—C23—O112.0 (2)
Cd2—O6—C14—O77.63 (15)C21—C22—C23—C24176.99 (14)
Cd2—O6—C14—C15170.65 (14)C27—C22—C23—O11178.95 (14)
Cd2—O7—C14—O68.74 (17)C27—C22—C23—C240.0 (2)
Cd2—O7—C14—C15169.53 (12)C21—C22—C27—C26177.76 (15)
Cd2—O9—C21—O102.86 (17)C23—C22—C27—C260.8 (2)
Cd2—O9—C21—C22176.66 (11)O11—C23—C24—C25179.63 (15)
Cd1—N1—C8—C9176.84 (11)C22—C23—C24—C250.6 (2)
C12—N1—C8—C90.7 (2)C23—C24—C25—C260.5 (3)
Cd1—N1—C12—C11176.90 (12)C24—C25—C26—C270.2 (3)
C8—N1—C12—C110.7 (2)C25—C26—C27—C220.9 (2)
Cd2—N3—C28—C29177.67 (12)N3—C28—C29—C300.3 (2)
C32—N3—C28—C290.2 (2)N3—C28—C29—C33178.28 (14)
Cd2—N3—C32—C31177.42 (12)C28—C29—C30—C310.4 (2)
C28—N3—C32—C310.0 (2)C33—C29—C30—C31178.11 (15)
O1—C1—C2—C3163.89 (15)C28—C29—C33—O125.2 (2)
O1—C1—C2—C711.0 (2)C28—C29—C33—N4173.41 (15)
O2—C1—C2—C312.6 (2)C30—C29—C33—O12176.29 (16)
O2—C1—C2—C7172.54 (14)C30—C29—C33—N45.1 (2)
C1—C2—C3—O38.9 (2)C29—C30—C31—C320.2 (2)
C1—C2—C3—C4169.65 (14)C30—C31—C32—N30.1 (2)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O11ii0.882.213.025 (2)154
N2—H2B···O1iii0.882.233.054 (2)156
N4—H4B···O13iv0.882.132.937 (2)151
O3—H3···O20.841.812.548 (2)146
O5—H51···O7v0.78 (3)1.95 (3)2.722 (2)172 (3)
O5—H52···O1i0.82 (3)1.89 (3)2.687 (2)165 (3)
O8—H81···O60.841.832.569 (2)146
O11—H111···O5vi0.842.523.048 (2)122
O11—H111···O90.841.792.535 (2)146
O13—H131···O3vi0.76 (3)2.02 (3)2.760 (2)165 (2)
O13—H132···O4vii0.79 (3)1.88 (3)2.656 (2)168 (3)
O14—H141···O15iii0.78 (3)1.92 (3)2.693 (2)178.1 (5)
O14—H142···O10viii0.84 (3)1.89 (3)2.720 (2)178 (4)
O15—H15A···O16A0.86 (2)1.95 (2)2.764 (4)156 (2)
O15—H15A···O16B0.86 (2)1.93 (2)2.689 (5)146 (2)
O15—H15B···O120.84 (3)2.08 (3)2.880 (2)159 (3)
O16A—H161···O8vii0.83 (5)2.53 (5)3.139 (4)132 (4)
O16A—H162···O1ix0.89 (4)2.14 (3)2.965 (4)153 (5)
O16B—H164···O80.91 (2)1.91 (2)2.748 (2)153 (3)
C28—H28···O60.952.353.101 (2)136
N4—H4A···Cg10.882.693.470 (2)148
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y, z; (iv) x+1, y+1, z+2; (v) x1, y1, z; (vi) x+1, y+1, z; (vii) x+1, y+1, z+1; (viii) x+2, y+1, z+2; (ix) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cd(C7H5O3)2(C6H6NO)2(H2O)2]·2[Cd(C7H5O3)2(C6H6NO) (H2O)2]·4H2O
Mr1828.56
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.3446 (2), 13.5779 (3), 14.6586 (3)
α, β, γ (°)71.226 (3), 71.364 (3), 69.221 (2)
V3)1772.85 (7)
Z1
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.42 × 0.32 × 0.29
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.691, 0.751
No. of measured, independent and
observed [I > 2σ(I)] reflections
31862, 8814, 8335
Rint0.019
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.050, 1.07
No. of reflections8814
No. of parameters545
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.78, 0.55

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Cd1—O22.3279 (11)Cd2—O92.2675 (11)
Cd1—O52.3200 (12)Cd2—O102.6839 (12)
Cd1—N12.3118 (13)Cd2—O132.3486 (12)
Cd2—O62.5814 (13)Cd2—O142.2953 (12)
Cd2—O72.2795 (11)Cd2—N32.2824 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O11i0.882.213.025 (2)154
N2—H2B···O1ii0.882.233.054 (2)156
N4—H4B···O13iii0.882.132.937 (2)151
O3—H3···O20.841.812.548 (2)146
O5—H51···O7iv0.78 (3)1.95 (3)2.722 (2)172 (3)
O5—H52···O1v0.82 (3)1.89 (3)2.687 (2)165 (3)
O8—H81···O60.841.83002.569 (2)146
O11—H111···O5vi0.842.523.048 (2)122
O11—H111···O90.841.792.535 (2)146
O13—H131···O3vi0.76 (3)2.02 (3)2.760 (2)165 (2)
O13—H132···O4vii0.79 (3)1.88 (3)2.656 (2)168 (3)
O14—H141···O15ii0.78 (3)1.92 (3)2.693 (2)178.1 (5)
O14—H142···O10viii0.84 (3)1.89 (3)2.720 (2)178 (4)
O15—H15A···O16A0.86 (2)1.95 (2)2.764 (4)156 (2)
O15—H15A···O16B0.86 (2)1.93 (2)2.689 (5)146 (2)
O15—H15B···O120.84 (3)2.08 (3)2.880 (2)159 (3)
O16A—H161···O8vii0.83 (5)2.53 (5)3.139 (4)132 (4)
O16A—H162···O1ix0.89 (4)2.14 (3)2.965 (4)153 (5)
O16B—H164···O80.91 (2)1.91 (2)2.748 (2)153 (3)
C28—H28···O60.952.353.101 (2)136
N4—H4A···Cg10.882.693.470 (2)148
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z+2; (iv) x1, y1, z; (v) x, y, z+1; (vi) x+1, y+1, z; (vii) x+1, y+1, z+1; (viii) x+2, y+1, z+2; (ix) x, y+1, z+1.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGreenaway, F. T., Pezeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67–71.  CSD CrossRef CAS Web of Science Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m627–m628.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m1037–m1038.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009d). Acta Cryst. E65, m1365–m1366.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Necefouglu, H. (1996). Acta Cryst. C52, 1128–1131.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009a). Acta Cryst. E65, m1416–m1417.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages m191-m192
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds