metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages m198-m199

trans-Tetra­aqua­bis­­(isonicotinamide-κN1)zinc bis­­(3-hy­dr­oxy­benzoate) tetra­hydrate

aDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, bDepartment of Physics, Sakarya University, 54187 Esentepe, Sakarya, Turkey, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 4 March 2013; accepted 6 March 2013; online 13 March 2013)

The asymmetric unit of the title compound, [Zn(C6H6N2O)2(H2O)4](C7H5O3)2·4H2O, contains half of the complex cation with the ZnII ion located on an inversion center, a 3-hy­droxy­benzoate counter-anion and two uncoordinating water mol­ecules. Four water O atoms in the equatorial plane around the ZnII ion [Zn—O = 2.089 (2) and 2.128 (2) Å] form a slightly distorted square-planar arrangement and the distorted octa­hedral geometry is completed by the two N atoms [Zn—N = 2.117 (2) Å] from two isonicotinamide ligands. In the anion, the carboxyl­ate group is twisted from the attached benzene ring at 9.0 (2)°. In the crystal, a three-dimensional hydrogen-bonding network, formed by classical O—H⋯O and N—H⋯O and weak C—H⋯O hydrogen bonds, consolidates the crystal packing, which exhibits ππ stacking between the benzene and pyridine rings, with centroid–centroid distances of 3.458 (2) and 3.609 (2) Å. One of the two H atoms of each uncoordinating water mol­ecule is disordered over two orientations with an occupancy ratio of 0.60:0.40.

Related literature

For related structures, see: Hökelek et al. (2009a[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m1330-m1331.],b[Hökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009c). Acta Cryst. E65, m1101-m1102.],c[Hökelek, T., Yılmaz, F., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009d). Acta Cryst. E65, m768-m769.],d[Hökelek, T., Yılmaz, F., Tercan, B., Sertçelik, M. & Necefoğlu, H. (2009e). Acta Cryst. E65, m1130-m1131.],e[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m627-m628.]); Sertçelik et al. (2009a[Sertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009a). Acta Cryst. E65, m326-m327.],b[Sertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009b). Acta Cryst. E65, m389-m390.]). For isostructural Ni and Co complexes, see: Zaman et al. (2012a[Zaman, I. G., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012a). Acta Cryst. E68, m200-m201.],b[Zaman, İ. G., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012b). Acta Cryst. E68, m249-m250.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C6H6N2O)2(H2O)4](C7H5O3)2·4H2O

  • Mr = 727.99

  • Monoclinic, P 21 /n

  • a = 6.7002 (2) Å

  • b = 17.0005 (4) Å

  • c = 13.6000 (3) Å

  • β = 99.993 (3)°

  • V = 1525.63 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 100 K

  • 0.38 × 0.38 × 0.32 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.720, Tmax = 0.752

  • 14180 measured reflections

  • 3808 independent reflections

  • 3497 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.114

  • S = 1.27

  • 3808 reflections

  • 264 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.41 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O8i 0.83 (5) 1.88 (5) 2.705 (3) 172 (5)
N2—H21⋯O7ii 0.83 (4) 2.24 (4) 3.017 (3) 157 (3)
N2—H22⋯O2i 0.82 (4) 2.21 (4) 3.016 (3) 172 (3)
O5—H51⋯O2iii 0.85 (5) 1.98 (5) 2.800 (3) 162 (4)
O5—H52⋯O3ii 0.76 (4) 1.97 (4) 2.719 (3) 170 (4)
O6—H61⋯O2iv 0.83 (5) 1.89 (5) 2.689 (3) 161 (5)
O6—H62⋯O4v 0.77 (5) 1.92 (5) 2.687 (3) 179 (5)
O7—H71⋯O1 0.85 (5) 1.91 (5) 2.761 (3) 178 (3)
O7—H72A⋯O8vi 0.76 (9) 2.08 (9) 2.814 (4) 163 (8)
O7—H72B⋯O7vii 0.78 (9) 2.03 (9) 2.783 (3) 160 (8)
O8—H81⋯O1 0.89 (5) 1.85 (5) 2.739 (3) 177 (4)
O8—H82A⋯O7viii 0.69 (8) 2.13 (8) 2.814 (4) 167 (6)
O8—H82B⋯O8ix 0.82 (9) 1.96 (9) 2.787 (3) 178 (6)
C11—H11⋯O7ii 0.93 2.54 3.455 (3) 168
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y, -z+1; (iv) -x, -y, -z+1; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) x-1, y, z; (vii) -x, -y, -z+2; (viii) x+1, y, z; (ix) -x+1, -y, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA) and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA) (Hökelek et al., 2009a; Hökelek et al., 2009b; Hökelek et al., 2009c; Hökelek et al., 2009d; Hökelek et al., 2009e; Sertçelik et al., 2009a,b), the title compound was synthesized and its crystal structure is reported herein.

The title compound (I) is isostructural with the related Ni (Zaman et al., 2012a) and Co (Zaman et al., 2012b) complexes. In (I) (Fig. 1), four O atoms (O5, O6, and the symmetry-related atoms, O5', O6') in the equatorial plane around the Zn atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two pyridine N atoms (N1, N1') of the INA ligands at 2.117 (2) Å from the Zn atom in the axial positions (Fig. 1). The average Zn—O bond length is 2.108 (2) Å. The intramolecular O—H···O hydrogen bonds (Table 1)link the uncoordinated water molecules to the HB anion. The dihedral angle between the planar carboxylate group (O1/O2/C1) and the benzene ring A (C2—C7) is 9.0 (2)°, while that between rings A and B (N1/C8—C12) is 1.26 (8)°.

In the crystal structure, intermolecular O—H···O, N—H···O and weak C—H···O hydrogen bonds (Table 1) link the molecules into a three-dimensional network, in which they may be effective in the stabilization of the structure. π···π Contacts between the benzene and phenyl rings, Cg1—Cg2 and Cg2—Cg1i, [symmetry code: (i) 1 + x, y, z, where Cg1 and Cg2 are centroids of the rings A (C2—C7) and B (N1/C8—C12), respectively] may further stabilize the structure, with centroid-centroid distances of 3.609 (2) and 3.458 (2) Å, respectively.

Related literature top

For related structures, see: Hökelek et al. (2009a,b,c,d,e); Sertçelik et al. (2009a,b). For isostructural Ni and Co complexes, see: Zaman et al. (2012a,b).

Experimental top

The title compound was prepared by the reaction of ZnSO4.H2O (0.89 g, 5 mmol) in H2O (100 ml) and INA (1.220 g, 10 mmol) in H2O (50 ml) with sodium 3-hydroxybenzoate (1.601 g, 10 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for four weeks, giving colorless single crystals.

Refinement top

Atoms H51, H52, H61, H62, H71, H72, H81 and H82 (for H2O), H21 and H22 (for NH2) and H3A (for OH) were located in a difference Fourier map and refined isotropically. The C-bound H-atoms were positioned geometrically with C—H = 0.93 Å, for aromatic H-atoms, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). During the refinement process the disordered H72A, H82A and H72B, H82B atoms were refined with occupancies ratios of 0.60:0.40. The highest residual electron density was found 1.38 Å from O6 and the deepest hole 0.83 Å from H61.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Primed atoms are generated by the symmetry operator: (') - x, - y, - z. Only one of the disordered hydrogen atoms for each of the two uncoordinated water molecules is shown for clarity. Hydrogen bonds are shown as dashed lines.
trans-Tetraaquabis(isonicotinamide-κN1)zinc bis(3-hydroxybenzoate) tetrahydrate top
Crystal data top
[Zn(C6H6N2O)2(H2O)4](C7H5O3)2·4H2OF(000) = 760
Mr = 727.99Dx = 1.585 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7045 reflections
a = 6.7002 (2) Åθ = 2.4–28.4°
b = 17.0005 (4) ŵ = 0.89 mm1
c = 13.6000 (3) ÅT = 100 K
β = 99.993 (3)°Block, colorless
V = 1525.63 (7) Å30.38 × 0.38 × 0.32 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3808 independent reflections
Radiation source: fine-focus sealed tube3497 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 28.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.720, Tmax = 0.752k = 2222
14180 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.27 w = 1/[σ2(Fo2) + (0.0244P)2 + 3.4855P]
where P = (Fo2 + 2Fc2)/3
3808 reflections(Δ/σ)max < 0.001
264 parametersΔρmax = 1.41 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Zn(C6H6N2O)2(H2O)4](C7H5O3)2·4H2OV = 1525.63 (7) Å3
Mr = 727.99Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.7002 (2) ŵ = 0.89 mm1
b = 17.0005 (4) ÅT = 100 K
c = 13.6000 (3) Å0.38 × 0.38 × 0.32 mm
β = 99.993 (3)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3808 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3497 reflections with I > 2σ(I)
Tmin = 0.720, Tmax = 0.752Rint = 0.033
14180 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.27Δρmax = 1.41 e Å3
3808 reflectionsΔρmin = 0.47 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.50000.00000.50000.00963 (12)
O10.1790 (3)0.11717 (11)0.83803 (14)0.0153 (4)
O20.0781 (3)0.04165 (11)0.70518 (14)0.0141 (4)
O30.0140 (3)0.39187 (11)0.71927 (15)0.0172 (4)
H3A0.004 (7)0.428 (3)0.678 (4)0.051 (14)*
O40.6024 (3)0.33081 (11)0.81904 (14)0.0168 (4)
O50.6799 (3)0.04833 (12)0.40047 (15)0.0144 (4)
H510.763 (7)0.017 (3)0.381 (3)0.041 (12)*
H520.636 (6)0.070 (2)0.353 (3)0.028 (11)*
O60.2262 (3)0.03391 (12)0.41227 (15)0.0166 (4)
H610.140 (8)0.002 (3)0.385 (4)0.052 (14)*
H620.192 (6)0.073 (3)0.386 (3)0.037 (12)*
O70.0930 (4)0.06755 (13)0.95598 (17)0.0201 (4)
H710.009 (7)0.084 (3)0.920 (3)0.040 (12)*
H72A0.201 (14)0.059 (5)0.930 (6)0.05 (2)*0.60
H72B0.05 (2)0.026 (8)0.967 (9)0.059*0.40
O80.5012 (4)0.01950 (12)0.90057 (16)0.0171 (4)
H810.398 (7)0.052 (3)0.882 (3)0.045 (13)*
H82A0.596 (12)0.037 (4)0.910 (5)0.03 (2)*0.60
H82B0.497 (16)0.008 (6)0.959 (7)0.030*0.40
N10.5135 (3)0.10959 (12)0.57473 (16)0.0104 (4)
N20.4845 (4)0.39638 (14)0.67657 (18)0.0148 (5)
H210.440 (6)0.395 (2)0.616 (3)0.037 (11)*
H220.474 (5)0.438 (2)0.705 (3)0.019 (9)*
C10.1097 (4)0.10822 (15)0.74642 (19)0.0111 (5)
C20.0586 (4)0.18077 (15)0.68340 (19)0.0109 (5)
C30.0647 (4)0.25421 (15)0.72947 (19)0.0117 (5)
H30.10210.25840.79840.014*
C40.0147 (4)0.32091 (15)0.67183 (19)0.0124 (5)
C50.0367 (4)0.31508 (15)0.5682 (2)0.0144 (5)
H50.06880.36000.52980.017*
C60.0395 (4)0.24190 (16)0.5227 (2)0.0149 (5)
H60.07230.23800.45360.018*
C70.0063 (4)0.17457 (15)0.57989 (19)0.0132 (5)
H70.00220.12550.54930.016*
C80.5621 (4)0.11492 (15)0.67488 (19)0.0120 (5)
H80.58910.06890.71180.014*
C90.5736 (4)0.18572 (15)0.72495 (19)0.0120 (5)
H90.60910.18710.79410.014*
C100.5317 (4)0.25512 (14)0.67106 (19)0.0101 (5)
C110.4793 (4)0.24979 (15)0.56786 (19)0.0122 (5)
H110.44910.29480.52930.015*
C120.4728 (4)0.17650 (15)0.52330 (19)0.0127 (5)
H120.43850.17360.45410.015*
C130.5426 (4)0.33143 (15)0.72775 (19)0.0118 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0128 (2)0.00708 (19)0.00863 (19)0.00011 (15)0.00070 (14)0.00048 (15)
O10.0184 (10)0.0151 (9)0.0118 (9)0.0005 (7)0.0012 (7)0.0016 (7)
O20.0166 (9)0.0098 (8)0.0150 (9)0.0010 (7)0.0003 (7)0.0002 (7)
O30.0250 (11)0.0099 (9)0.0162 (9)0.0003 (8)0.0025 (8)0.0012 (7)
O40.0261 (11)0.0121 (9)0.0112 (9)0.0017 (8)0.0006 (8)0.0013 (7)
O50.0175 (10)0.0138 (9)0.0125 (9)0.0015 (8)0.0048 (8)0.0016 (7)
O60.0172 (10)0.0104 (9)0.0187 (10)0.0010 (8)0.0061 (8)0.0019 (8)
O70.0234 (12)0.0196 (10)0.0189 (10)0.0029 (9)0.0078 (9)0.0003 (8)
O80.0185 (11)0.0133 (9)0.0183 (10)0.0019 (8)0.0000 (8)0.0001 (8)
N10.0094 (10)0.0106 (10)0.0110 (10)0.0018 (8)0.0010 (8)0.0011 (8)
N20.0215 (12)0.0100 (10)0.0124 (11)0.0012 (9)0.0015 (9)0.0027 (8)
C10.0079 (11)0.0122 (11)0.0135 (12)0.0005 (9)0.0028 (9)0.0007 (9)
C20.0106 (11)0.0105 (11)0.0117 (11)0.0000 (9)0.0023 (9)0.0023 (9)
C30.0095 (11)0.0142 (12)0.0107 (11)0.0013 (9)0.0001 (9)0.0001 (9)
C40.0114 (11)0.0098 (11)0.0158 (12)0.0014 (9)0.0016 (9)0.0018 (9)
C50.0150 (12)0.0123 (12)0.0152 (12)0.0013 (10)0.0008 (10)0.0038 (9)
C60.0162 (13)0.0169 (13)0.0110 (12)0.0017 (10)0.0008 (9)0.0004 (9)
C70.0144 (12)0.0124 (11)0.0130 (12)0.0016 (9)0.0030 (9)0.0012 (9)
C80.0131 (12)0.0101 (11)0.0129 (12)0.0004 (9)0.0025 (9)0.0014 (9)
C90.0127 (12)0.0130 (12)0.0102 (11)0.0005 (9)0.0015 (9)0.0002 (9)
C100.0081 (11)0.0103 (11)0.0122 (11)0.0006 (9)0.0021 (9)0.0021 (9)
C110.0141 (12)0.0095 (11)0.0126 (12)0.0014 (9)0.0010 (9)0.0009 (9)
C130.0117 (12)0.0110 (11)0.0131 (12)0.0018 (9)0.0034 (9)0.0020 (9)
C120.0149 (12)0.0125 (12)0.0105 (11)0.0008 (9)0.0020 (9)0.0009 (9)
Geometric parameters (Å, º) top
Zn1—O52.1276 (19)N2—C131.327 (3)
Zn1—O5i2.1276 (19)N2—H210.83 (4)
Zn1—O62.089 (2)N2—H220.81 (4)
Zn1—O6i2.089 (2)C2—C11.507 (3)
Zn1—N12.117 (2)C2—C31.394 (3)
Zn1—N1i2.117 (2)C2—C71.394 (3)
O1—C11.261 (3)C3—H30.9300
O2—C11.264 (3)C4—C31.386 (4)
O3—C41.369 (3)C5—C41.395 (4)
O3—H3A0.83 (5)C5—C61.388 (4)
O4—C131.237 (3)C5—H50.9300
O5—H510.85 (5)C6—H60.9300
O5—H520.76 (4)C7—C61.388 (4)
O6—H610.83 (5)C7—H70.9300
O6—H620.77 (5)C8—C91.379 (3)
O7—H710.85 (5)C8—H80.9300
O7—H72A0.76 (9)C9—C101.392 (3)
O7—H72B0.78 (13)C9—H90.9300
O8—H810.88 (5)C10—C111.389 (3)
O8—H82A0.69 (8)C10—C131.504 (3)
O8—H82B0.82 (9)C11—C121.383 (3)
N1—C81.347 (3)C11—H110.9300
N1—C121.338 (3)C12—H120.9300
O5—Zn1—O5i180.0C3—C2—C1119.4 (2)
O6—Zn1—O593.93 (8)C3—C2—C7120.3 (2)
O6i—Zn1—O586.07 (8)C7—C2—C1120.3 (2)
O6—Zn1—O5i86.07 (8)C2—C3—H3120.2
O6i—Zn1—O5i93.93 (8)C4—C3—C2119.5 (2)
O6—Zn1—O6i180.00 (10)C4—C3—H3120.2
O6—Zn1—N189.51 (8)O3—C4—C3118.4 (2)
O6i—Zn1—N190.49 (8)O3—C4—C5121.2 (2)
O6—Zn1—N1i90.49 (8)C3—C4—C5120.4 (2)
O6i—Zn1—N1i89.51 (8)C4—C5—H5120.1
N1—Zn1—O589.07 (8)C6—C5—C4119.7 (2)
N1i—Zn1—O590.93 (8)C6—C5—H5120.1
N1—Zn1—O5i90.93 (8)C5—C6—H6119.8
N1i—Zn1—O5i89.07 (8)C7—C6—C5120.3 (2)
N1—Zn1—N1i180.00 (5)C7—C6—H6119.8
C4—O3—H3A110 (3)C2—C7—H7120.1
Zn1—O5—H51116 (3)C6—C7—C2119.7 (2)
Zn1—O5—H52123 (3)C6—C7—H7120.1
H52—O5—H51102 (4)N1—C8—C9122.7 (2)
Zn1—O6—H61123 (3)N1—C8—H8118.6
Zn1—O6—H62131 (3)C9—C8—H8118.6
H61—O6—H62103 (4)C8—C9—C10119.4 (2)
H71—O7—H72B96 (10)C8—C9—H9120.3
H72A—O7—H71118 (7)C10—C9—H9120.3
H72A—O7—H72B104 (10)C9—C10—C13118.3 (2)
H81—O8—H82A116 (6)C11—C10—C9118.0 (2)
H81—O8—H82B106 (8)C11—C10—C13123.7 (2)
H82A—O8—H82B96 (9)C10—C11—H11120.5
C8—N1—Zn1121.81 (17)C12—C11—C10119.0 (2)
C12—N1—Zn1120.62 (17)C12—C11—H11120.5
C12—N1—C8117.6 (2)N1—C12—C11123.3 (2)
C13—N2—H21122 (3)N1—C12—H12118.4
C13—N2—H22121 (2)C11—C12—H12118.4
H22—N2—H21117 (4)O4—C13—N2123.2 (2)
O1—C1—O2123.4 (2)O4—C13—C10119.1 (2)
O1—C1—C2118.1 (2)N2—C13—C10117.7 (2)
O2—C1—C2118.4 (2)
O5—Zn1—N1—C8131.4 (2)C1—C2—C7—C6179.7 (2)
O5i—Zn1—N1—C848.6 (2)C3—C2—C7—C60.1 (4)
O5—Zn1—N1—C1248.9 (2)O3—C4—C3—C2177.4 (2)
O5i—Zn1—N1—C12131.1 (2)C5—C4—C3—C21.6 (4)
O6—Zn1—N1—C8134.7 (2)C6—C5—C4—O3178.3 (2)
O6i—Zn1—N1—C845.3 (2)C6—C5—C4—C30.6 (4)
O6—Zn1—N1—C1245.1 (2)C4—C5—C6—C70.7 (4)
O6i—Zn1—N1—C12134.9 (2)C2—C7—C6—C51.0 (4)
Zn1—N1—C8—C9179.39 (19)N1—C8—C9—C100.7 (4)
C12—N1—C8—C90.8 (4)C8—C9—C10—C110.1 (4)
Zn1—N1—C12—C11179.9 (2)C8—C9—C10—C13179.2 (2)
C8—N1—C12—C110.3 (4)C9—C10—C11—C120.6 (4)
C3—C2—C1—O18.0 (4)C13—C10—C11—C12179.6 (2)
C3—C2—C1—O2170.9 (2)C9—C10—C13—O45.2 (4)
C7—C2—C1—O1171.8 (2)C9—C10—C13—N2174.0 (2)
C7—C2—C1—O29.3 (4)C11—C10—C13—O4175.7 (2)
C1—C2—C3—C4179.0 (2)C11—C10—C13—N25.1 (4)
C7—C2—C3—C41.2 (4)C10—C11—C12—N10.4 (4)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O8ii0.83 (5)1.88 (5)2.705 (3)172 (5)
N2—H21···O7iii0.83 (4)2.24 (4)3.017 (3)157 (3)
N2—H22···O2ii0.82 (4)2.21 (4)3.016 (3)172 (3)
O5—H51···O2i0.85 (5)1.98 (5)2.800 (3)162 (4)
O5—H52···O3iii0.76 (4)1.97 (4)2.719 (3)170 (4)
O6—H61···O2iv0.83 (5)1.89 (5)2.689 (3)161 (5)
O6—H62···O4v0.77 (5)1.92 (5)2.687 (3)179 (5)
O7—H71···O10.85 (5)1.91 (5)2.761 (3)178 (3)
O7—H72A···O8vi0.76 (9)2.08 (9)2.814 (4)163 (8)
O7—H72B···O7vii0.78 (9)2.03 (9)2.783 (3)160 (8)
O8—H81···O10.89 (5)1.85 (5)2.739 (3)177 (4)
O8—H82A···O7viii0.69 (8)2.13 (8)2.814 (4)167 (6)
O8—H82B···O8ix0.82 (9)1.96 (9)2.787 (3)178 (6)
C11—H11···O7iii0.932.543.455 (3)168
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y+1/2, z1/2; (iv) x, y, z+1; (v) x1/2, y+1/2, z1/2; (vi) x1, y, z; (vii) x, y, z+2; (viii) x+1, y, z; (ix) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[Zn(C6H6N2O)2(H2O)4](C7H5O3)2·4H2O
Mr727.99
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)6.7002 (2), 17.0005 (4), 13.6000 (3)
β (°) 99.993 (3)
V3)1525.63 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.38 × 0.38 × 0.32
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.720, 0.752
No. of measured, independent and
observed [I > 2σ(I)] reflections
14180, 3808, 3497
Rint0.033
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.114, 1.27
No. of reflections3808
No. of parameters264
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.41, 0.47

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O8i0.83 (5)1.88 (5)2.705 (3)172 (5)
N2—H21···O7ii0.83 (4)2.24 (4)3.017 (3)157 (3)
N2—H22···O2i0.82 (4)2.21 (4)3.016 (3)172 (3)
O5—H51···O2iii0.85 (5)1.98 (5)2.800 (3)162 (4)
O5—H52···O3ii0.76 (4)1.97 (4)2.719 (3)170 (4)
O6—H61···O2iv0.83 (5)1.89 (5)2.689 (3)161 (5)
O6—H62···O4v0.77 (5)1.92 (5)2.687 (3)179 (5)
O7—H71···O10.85 (5)1.91 (5)2.761 (3)178 (3)
O7—H72A···O8vi0.76 (9)2.08 (9)2.814 (4)163 (8)
O7—H72B···O7vii0.78 (9)2.03 (9)2.783 (3)160 (8)
O8—H81···O10.89 (5)1.85 (5)2.739 (3)177 (4)
O8—H82A···O7viii0.69 (8)2.13 (8)2.814 (4)167 (6)
O8—H82B···O8ix0.82 (9)1.96 (9)2.787 (3)178 (6)
C11—H11···O7ii0.932.543.455 (3)168
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z1/2; (iii) x+1, y, z+1; (iv) x, y, z+1; (v) x1/2, y+1/2, z1/2; (vi) x1, y, z; (vii) x, y, z+2; (viii) x+1, y, z; (ix) x+1, y, z+2.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the X-ray diffractometer.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m627–m628.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m1330–m1331.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009c). Acta Cryst. E65, m1101–m1102.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009d). Acta Cryst. E65, m768–m769.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Sertçelik, M. & Necefoğlu, H. (2009e). Acta Cryst. E65, m1130–m1131.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009a). Acta Cryst. E65, m326–m327.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009b). Acta Cryst. E65, m389–m390.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaman, I. G., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012a). Acta Cryst. E68, m200–m201.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZaman, İ. G., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012b). Acta Cryst. E68, m249–m250.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages m198-m199
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds