organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o581-o582

1-{[4-(4-{[(2-Oxidonaphthalen-1-yl)methyl­­idene]aza­nium­yl}phen­­oxy)phen­yl]iminiumylmeth­yl}naphthalen-2-olate

aLaboratoire d'Électrochimie des Matériaux Moléculaires et Complexes (LEMMC), Département de Génie des Procèdes, Faculté de Technologie, Université FERHAT ABBAS – SETIF, 19000, Algeria
*Correspondence e-mail: daoudkamal88@yahoo.fr

(Received 4 March 2013; accepted 17 March 2013; online 23 March 2013)

The title Schiff base compound, C34H24N2O3, was prepared by a condensation reaction of bifunctional aromatic diamine (4,4′-diamino­diphenyl ether) with hy­droxy­naphtaldehyde. The asymmetric unit contains two independent mol­ecules with similar conformations. The compound contains a central oxygen bridge and two functionalized [(E)-(phenyl­iminio)meth­yl]naphthalen-2-olate units. The dihedral angles between the benzene rings linking to the central O atom are 74.64 (19) and 69.85 (18)° in the two independent mol­ecules. Intra­molecular O—H⋯O hydrogen bonding occurs between the protonated imino N atoms and deprotonated hy­droxy O atoms in both mol­ecules. In the crystal, weak C—H⋯O hydrogen bonds are observed.

Related literature

For biological and pharmacological activities of Schiff base compounds and their derivatives, see: Khandar et al. (2005[Khandar, A. A., Hosseini-Yazdi, S. A. & Zarei, S. A. (2005). Inorg. Chim. Acta, 358, 3211-3217.]); Chen et al. (2006[Chen, Y., Zhao, Y., Lu, C., Tzeng, C. & Wang, J. (2006). Bioorg. Med. Chem. 14, 4373-4378.]); Kidwai et al. (2000[Kidwai, M., Bhushan, K., Sapra, P., Saxena, R. & Gupta, R. (2000). Bioorg. Med. Chem. 8, 69-72.]); de Souza et al. (2005[Souza, M. V. N. (2005). Mini Rev. Med. Chem. 5, 1009-1017.]). For their application in water treatments, see: Izatt et al. (1995[Izatt, R. M., Pawlak, M. K. & Bardshaw, I. S. (1995). Chem. Rev. 95, 2529-2586.]); Kalcher et al. (1995[Kalcher, K., Kauffman, J. M., Wank, J., Vaneare, I. S., Vitras, K., Neuhal, C. & Yang, Z. (1995). Electroanalysis, 7, 5-22.]); Gilmartin & Hart (1995[Gilmartin, M. A. T. & Hart, J. P. (1995). Analyst, 120, 1029-1045.]) and as corrosion inhibitors, see: Ahamad et al. (2010[Ahamad, I., Prasad, R. & Quraishi, M. A. (2010). Corros. Sci. 52, 933-942.]); Negm et al. (2010[Negm, N. A., Elkholy, Y. M., Zahran, M. K. & Tawfik, S. M. (2010). Corros. Sci. 52, 3523-3536.]); Zhenlan et al., (2002[Zhenlan, Q., Shenhao, C., Ying, L. & Xuegui, C. (2002). Corros. Sci. 44, 703-715.]). For crystallographic studies of related compounds, see: Girija et al. (2004[Girija, C. R., Begum, N. S., Sridhar, M. A., Lokanath, N. K. & Prasad, J. S. (2004). Acta Cryst. E60, o586-o588.]); Djamel et al. (2011[Djamel, D., Tahar, D., Djahida, H., Hanane, H. & Salah, C. (2011). Acta Cryst. E67, o1119-o1120.]); Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3087.]). For the synthesis, see: Issaadi et al. (2005[Issaadi, S., Haffar, D., Douadi, T., Chafaa, S., Séraphin, D., Khan, M. A. & Boue, G. M. (2005). Synth. React. Inorg. Met-Org. Nano-Met. Chem. 35, 875-882.]); Ghames et al. (2006[Ghames, A., Douadi, T., Haffar, D., Chafaa, S., Allain, M., Khan, M. A. & Bouet, G. M. (2006). Polyhedron, 25, 3201-3208.]).

[Scheme 1]

Experimental

Crystal data
  • C34H24N2O3

  • Mr = 508.55

  • Triclinic, [P \overline 1]

  • a = 5.292 (1) Å

  • b = 20.203 (1) Å

  • c = 23.863 (1) Å

  • α = 87.853 (10)°

  • β = 86.457 (10)°

  • γ = 85.26 (1)°

  • V = 2536.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.5 × 0.1 × 0.1 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 15547 measured reflections

  • 9159 independent reflections

  • 4705 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.218

  • S = 1.02

  • 9159 reflections

  • 706 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.86 1.83 2.533 (4) 138
N2—H2⋯O3 0.86 1.82 2.530 (4) 138
N3—H3⋯O5 0.86 1.84 2.543 (4) 138
N4—H4A⋯O6 0.86 1.82 2.522 (4) 138
C20—H20⋯O2i 0.93 2.46 3.236 (5) 141
C46—H46⋯O3 0.93 2.37 3.085 (5) 134
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: COLLECT (Nonius, 1999)[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]; cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The most common method for preparation of Schiff base ligands is reacting stoichiometric amounts of a diamine and an aldehyde in various solvents. The reaction is carried out under stirring at reflux as described in the literature. These types of schiff bases with different coordinating sites may have wide application in the field of water treatment as they have a great capacity for complexation of transition metals (Izatt et al., 1995, Kalcher et al., 1995, Gilmartin et al., 1995). They also serve as intermediates in certain enzymatic reactions and are also found in proteins that form the connective tissue (Khandar et al., 2005, Chen et al., 2006) and in the pharmaceutical field (Souza et al., 2005, Kidwai et al., 2000). Their use as corrosion inhibitors (Ahamad et al., 2010, Negm et al., 2010, Zhenlan et al., 2002) reveal their importance. Synthesized the compound,C34H24N2O3 is a condensation product of hydroxynaphtaldehyde with bifunctional aromatic diamine as shown in Fig (1). All the molecule are found in a single assymetric unit although, the oxygene atom is connecting the tow[(E)-(phenyliminio)methyl]naphthalen-2-olate units in (1) have the bond angle (C15—O1—C18) is equal to 116.3 (3)° and the dihedral angle of 75.5° between the planes defined as O(1)—C(18)—C(19)—C(20)—C(21)—C(22)—C(23) and O(1)—C(12)—C(13)—C(14)—C(15)—C(16)—C(17). In molecule (2) the bond angle (C15—O1—C18) is equal to 116.3 (3)° and the dihedral angle of 69.8° is found between the planes defined as O(4)—C(46)—C(47)—C(48)—C(49)—C(50)—C(51) and O(4)—C(52)—C(53)—C(54)—C(55)—C(56)—C(57). The bond angle between each imine phenyl plane and the attached hydroxynaphtaldehyde plane are 125.3 (3)° for C(1)—N(1)—C(12) and 126.0 (3)° for C(24)—N(2)—C(21). The bond lengths C(12)—N(1), C(1)—N(1), C(1)—C(2), C(15)—O(1).. and bond angles C(1)—N(1)—C(12), N(1)—C(1)—C(2), C(1)—C(2)—C(3), N(1)—C(12)—C(13) of one [(E)-(phenyliminio)methyl]naphthalen -2-olate moity are similar to the corresponding ones C(21)—N(2), C(24)—N(2), C(24)—C(25), C(18)—O(1) and C(24)—N(2)—C(21), N(2)—C(24)—C(25), C(24)—C(25)—C(26), N(2)—C(21)—C(22) of the second [(E)-(phenyliminio)methyl]naphthalen-2-olate. The bond distances shown in table 3 indicate that the C(1)—N(1) imine (C=N) bond length of 1.306 (4) Å agree with similar double bond usualy observed in related compounds (Girija et al., 2004, Djamel et al., 2011) but much shorter than single C—N 1.418 (4) Å of C(12)—N(1) (Gowda et al., 2007) and for the molecule (2) the bond lengths C=N C(58)—N(4) is 1.295 (4) Å and bond single C(55)—N(4) is 1.410 (4) Å.

Related literature top

For biological and pharmacological activities of Schiff base compounds and their derivatives, see: Khandar et al. (2005); Chen et al. (2006); Kidwai et al. (2000); de Souza et al. (2005). For their application in water treatments, see: Izatt et al. (1995); Kalcher et al. (1995); Gilmartin & Hart (1995) and as corrosion inhibitors, see: Ahamad et al. (2010); Negm et al. (2010); Zhenlan et al., (2002). For crystallographic studies of related compounds, see: Girija et al. (2004); Djamel et al. (2011); Gowda et al. (2007). For the synthesis, see: Issaadi et al. (2005); Ghames et al. (2006).

Experimental top

4,4'-Iminiomethylnaphthalen-2-olate[(E)-phenoxyphenyl] was prepared in proper literature (Issaadi et al., 2005; Ghames et al., 2006) by a condensation in ethanol (20 mL) of 2-hydroxy-1-naphthaldehyde (0.344 g, 2 mmol) with 4,4'-diaminodiphenyl ether (0.202 g, 1 mmol). The solution was stirred and refluxed for 4 h. The yellow precipitate was filtered, washed by a amount of ethanol and dried in vacuum. A single-crystal suitable for an X-ray structural analysis was obtained by slowly evaporation from dichloromethane-ethanol (1:1) solution at room temperature.

Refinement top

H atoms were included in geometric positions C—H = 0.93 Å and N—H = 0.86 Å, and refined by using a riding model with Uiso(H) = 1.2eq(C,N).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The title molecule with displacement ellipsoids for non–H atoms drawn at the 15% probability level.
[Figure 2] Fig. 2. Packing of the molecules along the a–axis
1-{[4-(4-{[(2-Oxidonaphthalen-1-yl)methylidene]azaniumyl}phenoxy)phenyl]iminiumylmethyl}naphthalen-2-olate top
Crystal data top
C34H24N2O3Z = 4
Mr = 508.55F(000) = 1064
Triclinic, P1Dx = 1.332 Mg m3
a = 5.292 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 20.203 (1) ÅCell parameters from 8325 reflections
c = 23.863 (1) Åθ = 1.0–25.4°
α = 87.853 (10)°µ = 0.09 mm1
β = 86.457 (10)°T = 293 K
γ = 85.26 (1)°Prism, yellow
V = 2536.4 (5) Å30.5 × 0.1 × 0.1 mm
Data collection top
Nonius KappaCCD
diffractometer
4705 reflections with I > 2σ(I)
Radiation source: Enraf–Nonius FR590Rint = 0.053
Graphite monochromatorθmax = 25.3°, θmin = 1.7°
Detector resolution: 9 pixels mm-1h = 56
CCD rotation images, thick slices scansk = 2324
15547 measured reflectionsl = 2728
9159 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.218H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1115P)2]
where P = (Fo2 + 2Fc2)/3
9159 reflections(Δ/σ)max < 0.001
706 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C34H24N2O3γ = 85.26 (1)°
Mr = 508.55V = 2536.4 (5) Å3
Triclinic, P1Z = 4
a = 5.292 (1) ÅMo Kα radiation
b = 20.203 (1) ŵ = 0.09 mm1
c = 23.863 (1) ÅT = 293 K
α = 87.853 (10)°0.5 × 0.1 × 0.1 mm
β = 86.457 (10)°
Data collection top
Nonius KappaCCD
diffractometer
4705 reflections with I > 2σ(I)
15547 measured reflectionsRint = 0.053
9159 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.218H-atom parameters constrained
S = 1.02Δρmax = 0.27 e Å3
9159 reflectionsΔρmin = 0.24 e Å3
706 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1290 (6)0.55264 (18)0.24570 (14)0.0560 (8)
H10.00660.58530.23440.067*
C20.3238 (5)0.52973 (16)0.20601 (13)0.0517 (8)
C30.5173 (6)0.48181 (18)0.22321 (15)0.0584 (9)
C40.7215 (6)0.46177 (18)0.18409 (17)0.0650 (10)
H40.85170.43150.19560.078*
C50.7285 (6)0.48602 (19)0.13074 (16)0.0648 (10)
H50.86430.47190.10630.078*
C60.5354 (6)0.53258 (17)0.11036 (14)0.0563 (9)
C70.3319 (5)0.55482 (16)0.14811 (13)0.0506 (8)
C80.5407 (7)0.5556 (2)0.05415 (15)0.0681 (10)
H80.67650.54130.02980.082*
C90.3524 (7)0.5983 (2)0.03446 (15)0.0694 (10)
H90.35820.61240.00310.083*
C100.1510 (6)0.62095 (19)0.07083 (14)0.0643 (9)
H100.02260.65070.05770.077*
C110.1418 (6)0.59934 (18)0.12612 (14)0.0581 (9)
H110.00510.61470.14980.07*
C120.0632 (6)0.55183 (18)0.34053 (14)0.0571 (9)
C130.2802 (6)0.59254 (19)0.33162 (14)0.0635 (9)
H130.31910.60590.29520.076*
C140.4405 (6)0.6136 (2)0.37675 (15)0.0661 (10)
H140.5860.64130.37060.079*
C150.3852 (6)0.5937 (2)0.43027 (15)0.0659 (10)
C160.1728 (7)0.5518 (2)0.43944 (15)0.0850 (13)
H160.13710.53760.47580.102*
C170.0130 (7)0.5309 (2)0.39481 (16)0.0773 (12)
H170.13040.50250.40120.093*
C180.4462 (6)0.6394 (2)0.52076 (14)0.0619 (9)
C190.5430 (6)0.6228 (2)0.57295 (15)0.0661 (10)
H190.67390.59460.57710.079*
C200.4471 (7)0.6476 (2)0.62007 (14)0.0681 (10)
H200.51670.63690.65570.082*
C210.2479 (6)0.68824 (18)0.61417 (13)0.0567 (9)
C220.1582 (7)0.7059 (2)0.56113 (16)0.0826 (13)
H220.02940.73470.55630.099*
C230.2587 (8)0.6812 (3)0.51488 (16)0.0941 (15)
H230.19630.69360.4790.113*
C240.1706 (6)0.69730 (17)0.71287 (14)0.0566 (8)
H240.29420.66830.72320.068*
C250.0345 (6)0.72262 (17)0.75547 (14)0.0533 (8)
C260.1549 (6)0.76727 (18)0.73981 (16)0.0648 (10)
C270.2941 (6)0.79275 (19)0.78256 (17)0.0691 (10)
H270.4180.82180.77270.083*
C280.2477 (6)0.77516 (19)0.83696 (17)0.0667 (10)
H280.34040.79290.86380.08*
C290.0632 (6)0.73074 (17)0.85489 (14)0.0570 (9)
C300.0812 (5)0.70443 (16)0.81407 (13)0.0499 (8)
C310.2635 (6)0.66099 (18)0.83365 (14)0.0586 (9)
H310.36350.64350.8080.07*
C320.2978 (6)0.6436 (2)0.88968 (15)0.0673 (10)
H320.41740.61390.90130.081*
C330.1559 (7)0.6699 (2)0.92902 (15)0.0759 (11)
H330.1820.65870.9670.091*
C340.0216 (7)0.7123 (2)0.91173 (15)0.0725 (11)
H340.11770.72950.93820.087*
N10.1154 (5)0.52958 (15)0.29725 (11)0.0598 (7)
H1A0.22540.49770.30590.072*
N20.1302 (5)0.71287 (15)0.65981 (12)0.0633 (8)
H20.020.74120.65170.076*
O10.5535 (4)0.61490 (15)0.47444 (9)0.0788 (8)
O20.5137 (5)0.45506 (13)0.27369 (11)0.0779 (8)
O30.2058 (5)0.78523 (16)0.68792 (12)0.0928 (9)
C350.4454 (6)0.97036 (17)0.69937 (14)0.0551 (8)
C360.6474 (6)1.01138 (18)0.67549 (16)0.0617 (9)
C370.8385 (6)1.04351 (19)0.71295 (18)0.0698 (10)
H370.97171.07010.69820.084*
C380.8282 (6)1.03579 (19)0.76865 (17)0.0696 (10)
H380.9551.05750.79150.084*
C390.6313 (6)0.99574 (18)0.79435 (15)0.0601 (9)
C400.4386 (6)0.96220 (16)0.75985 (14)0.0544 (8)
C410.6260 (7)0.9884 (2)0.85341 (17)0.0782 (11)
H410.75141.01120.87590.094*
C420.4421 (7)0.9487 (2)0.87806 (17)0.0773 (11)
H420.44230.94410.9170.093*
C430.2549 (7)0.9155 (2)0.84464 (16)0.0718 (10)
H430.12920.88810.86140.086*
C440.2506 (6)0.92227 (18)0.78699 (15)0.0613 (9)
H440.12020.89990.76560.074*
C450.2545 (6)0.93931 (18)0.66293 (15)0.0589 (9)
H450.12440.91230.67850.071*
C460.1470 (6)0.87987 (19)0.58422 (14)0.0613 (9)
H460.1850.87550.62180.074*
C470.3075 (6)0.85007 (19)0.54427 (14)0.0622 (9)
H470.45260.82470.55480.075*
C480.2560 (6)0.85735 (19)0.48808 (14)0.0612 (9)
C490.0444 (7)0.8959 (2)0.47208 (14)0.0689 (10)
H490.01220.9020.43430.083*
C500.1196 (6)0.9252 (2)0.51279 (14)0.0647 (10)
H500.26350.95110.50220.078*
C510.0731 (6)0.91681 (17)0.56932 (13)0.0558 (8)
C520.3438 (6)0.80954 (19)0.39941 (14)0.0603 (9)
C530.4631 (6)0.83115 (18)0.35055 (15)0.0614 (9)
H530.60160.85650.35170.074*
C540.3795 (6)0.81564 (19)0.29991 (15)0.0634 (9)
H540.46280.83010.26680.076*
C550.1723 (6)0.77871 (17)0.29765 (14)0.0563 (9)
C560.0620 (7)0.7547 (2)0.34709 (16)0.0701 (10)
H560.07080.72740.34630.084*
C570.1468 (7)0.7707 (2)0.39782 (16)0.0802 (12)
H570.06910.75490.43110.096*
C580.0878 (6)0.79893 (18)0.20050 (15)0.0596 (9)
H580.20890.82990.19690.072*
C590.0568 (6)0.78884 (18)0.15345 (14)0.0570 (8)
C600.2439 (6)0.74143 (19)0.15925 (16)0.0635 (9)
C610.3907 (6)0.7320 (2)0.11311 (17)0.0702 (10)
H610.51220.70110.11660.084*
C620.3588 (7)0.7667 (2)0.06417 (17)0.0723 (11)
H620.45820.7590.03470.087*
C630.1774 (6)0.81475 (19)0.05649 (15)0.0644 (10)
C640.0245 (6)0.82639 (18)0.10117 (14)0.0579 (9)
C650.1517 (6)0.87515 (19)0.09202 (16)0.0674 (10)
H650.25520.88380.12060.081*
C660.1723 (7)0.9098 (2)0.04183 (18)0.0778 (11)
H660.28810.94210.0370.093*
C670.0239 (9)0.8978 (2)0.00217 (18)0.0876 (13)
H670.04110.92130.03630.105*
C680.1480 (8)0.8509 (2)0.00554 (17)0.0831 (12)
H680.24790.84280.02380.1*
N30.2527 (5)0.94693 (14)0.60848 (11)0.0608 (7)
H30.3730.97290.59510.073*
N40.0568 (5)0.76660 (15)0.24782 (12)0.0613 (7)
H4A0.0430.7350.2490.074*
O40.4340 (4)0.82707 (15)0.44986 (10)0.0769 (8)
O50.6624 (5)1.02115 (13)0.62214 (11)0.0781 (8)
O60.2816 (5)0.70620 (13)0.20612 (11)0.0746 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0578 (18)0.057 (2)0.053 (2)0.0109 (15)0.0014 (15)0.0001 (17)
C20.0541 (18)0.047 (2)0.053 (2)0.0073 (14)0.0025 (14)0.0028 (16)
C30.062 (2)0.052 (2)0.060 (2)0.0048 (16)0.0047 (16)0.0001 (18)
C40.0572 (19)0.053 (2)0.083 (3)0.0002 (16)0.0002 (17)0.005 (2)
C50.058 (2)0.062 (2)0.073 (3)0.0042 (17)0.0120 (17)0.019 (2)
C60.0505 (18)0.058 (2)0.062 (2)0.0107 (15)0.0028 (14)0.0129 (17)
C70.0493 (17)0.050 (2)0.053 (2)0.0116 (14)0.0015 (13)0.0087 (16)
C80.067 (2)0.084 (3)0.054 (2)0.0145 (19)0.0081 (16)0.020 (2)
C90.073 (2)0.090 (3)0.046 (2)0.016 (2)0.0022 (17)0.002 (2)
C100.068 (2)0.067 (3)0.058 (2)0.0054 (17)0.0045 (16)0.0005 (19)
C110.0567 (19)0.061 (2)0.056 (2)0.0021 (16)0.0022 (15)0.0062 (17)
C120.0553 (19)0.064 (2)0.053 (2)0.0115 (16)0.0006 (14)0.0047 (17)
C130.065 (2)0.078 (3)0.048 (2)0.0057 (18)0.0047 (15)0.0005 (18)
C140.060 (2)0.081 (3)0.057 (2)0.0014 (18)0.0025 (16)0.009 (2)
C150.0522 (19)0.091 (3)0.055 (2)0.0114 (18)0.0009 (15)0.007 (2)
C160.077 (2)0.128 (4)0.047 (2)0.003 (2)0.0008 (18)0.014 (2)
C170.072 (2)0.098 (3)0.057 (2)0.010 (2)0.0005 (18)0.010 (2)
C180.0525 (18)0.082 (3)0.051 (2)0.0034 (17)0.0023 (15)0.0022 (19)
C190.064 (2)0.080 (3)0.055 (2)0.0135 (18)0.0008 (16)0.004 (2)
C200.078 (2)0.083 (3)0.043 (2)0.012 (2)0.0002 (16)0.0086 (19)
C210.0595 (19)0.065 (2)0.045 (2)0.0040 (16)0.0066 (14)0.0058 (17)
C220.084 (3)0.112 (4)0.058 (2)0.045 (2)0.0023 (19)0.006 (2)
C230.101 (3)0.138 (4)0.048 (2)0.052 (3)0.003 (2)0.007 (3)
C240.0595 (18)0.055 (2)0.054 (2)0.0006 (15)0.0057 (15)0.0045 (17)
C250.0551 (18)0.048 (2)0.056 (2)0.0008 (15)0.0085 (14)0.0019 (16)
C260.069 (2)0.056 (2)0.069 (3)0.0031 (17)0.0140 (18)0.015 (2)
C270.066 (2)0.056 (2)0.088 (3)0.0129 (17)0.0173 (19)0.003 (2)
C280.064 (2)0.062 (3)0.076 (3)0.0021 (17)0.0198 (18)0.009 (2)
C290.0553 (18)0.056 (2)0.060 (2)0.0042 (15)0.0092 (15)0.0086 (17)
C300.0521 (17)0.047 (2)0.0496 (19)0.0066 (14)0.0082 (13)0.0065 (15)
C310.0610 (19)0.064 (2)0.051 (2)0.0047 (16)0.0044 (15)0.0069 (17)
C320.070 (2)0.078 (3)0.054 (2)0.0095 (19)0.0011 (16)0.002 (2)
C330.082 (3)0.099 (3)0.047 (2)0.007 (2)0.0067 (18)0.003 (2)
C340.079 (2)0.084 (3)0.055 (2)0.000 (2)0.0176 (18)0.015 (2)
N10.0627 (16)0.0613 (19)0.0543 (18)0.0053 (13)0.0028 (13)0.0029 (15)
N20.0693 (17)0.069 (2)0.0527 (18)0.0124 (15)0.0096 (13)0.0084 (16)
O10.0572 (14)0.133 (3)0.0487 (15)0.0162 (14)0.0013 (10)0.0195 (15)
O20.0898 (17)0.0694 (18)0.0713 (18)0.0043 (14)0.0028 (13)0.0123 (14)
O30.103 (2)0.103 (2)0.076 (2)0.0363 (17)0.0163 (15)0.0316 (18)
C350.0551 (18)0.051 (2)0.061 (2)0.0092 (15)0.0077 (15)0.0036 (17)
C360.065 (2)0.049 (2)0.073 (3)0.0085 (16)0.0139 (17)0.0024 (19)
C370.060 (2)0.057 (2)0.090 (3)0.0042 (17)0.0059 (18)0.007 (2)
C380.067 (2)0.061 (3)0.077 (3)0.0043 (18)0.0081 (18)0.002 (2)
C390.0588 (19)0.053 (2)0.067 (2)0.0041 (16)0.0017 (16)0.0013 (18)
C400.0531 (18)0.047 (2)0.064 (2)0.0082 (15)0.0041 (15)0.0014 (17)
C410.081 (3)0.080 (3)0.071 (3)0.001 (2)0.011 (2)0.008 (2)
C420.083 (3)0.087 (3)0.060 (2)0.002 (2)0.0001 (19)0.001 (2)
C430.075 (2)0.074 (3)0.066 (3)0.0015 (19)0.0118 (18)0.000 (2)
C440.0585 (19)0.065 (2)0.060 (2)0.0009 (16)0.0050 (15)0.0002 (18)
C450.0586 (19)0.057 (2)0.061 (2)0.0058 (16)0.0084 (15)0.0023 (18)
C460.070 (2)0.065 (2)0.050 (2)0.0059 (18)0.0109 (16)0.0011 (18)
C470.064 (2)0.069 (3)0.055 (2)0.0068 (17)0.0120 (16)0.0008 (19)
C480.0580 (19)0.075 (3)0.051 (2)0.0110 (17)0.0068 (15)0.0009 (18)
C490.072 (2)0.086 (3)0.049 (2)0.007 (2)0.0108 (16)0.004 (2)
C500.066 (2)0.074 (3)0.054 (2)0.0015 (18)0.0115 (16)0.0052 (19)
C510.0633 (19)0.056 (2)0.049 (2)0.0071 (16)0.0082 (15)0.0008 (17)
C520.0552 (19)0.074 (3)0.051 (2)0.0032 (17)0.0025 (15)0.0034 (18)
C530.0597 (19)0.063 (2)0.062 (2)0.0072 (16)0.0063 (16)0.0010 (19)
C540.060 (2)0.074 (3)0.056 (2)0.0096 (18)0.0038 (15)0.0034 (19)
C550.0566 (18)0.057 (2)0.054 (2)0.0053 (16)0.0018 (15)0.0051 (17)
C560.071 (2)0.072 (3)0.070 (3)0.0206 (19)0.0028 (18)0.001 (2)
C570.090 (3)0.101 (3)0.052 (2)0.033 (2)0.0014 (19)0.008 (2)
C580.0624 (19)0.052 (2)0.063 (2)0.0050 (16)0.0003 (16)0.0077 (18)
C590.0593 (19)0.055 (2)0.056 (2)0.0047 (16)0.0038 (15)0.0116 (17)
C600.069 (2)0.055 (2)0.066 (2)0.0023 (17)0.0001 (17)0.0170 (19)
C610.066 (2)0.068 (3)0.078 (3)0.0081 (18)0.0080 (19)0.015 (2)
C620.068 (2)0.078 (3)0.071 (3)0.004 (2)0.0161 (18)0.020 (2)
C630.068 (2)0.066 (3)0.058 (2)0.0126 (18)0.0084 (16)0.0061 (19)
C640.0593 (19)0.056 (2)0.057 (2)0.0076 (16)0.0005 (15)0.0121 (17)
C650.068 (2)0.069 (3)0.065 (2)0.0031 (18)0.0019 (17)0.004 (2)
C660.086 (3)0.070 (3)0.076 (3)0.006 (2)0.006 (2)0.000 (2)
C670.107 (3)0.090 (4)0.065 (3)0.001 (3)0.006 (2)0.011 (2)
C680.095 (3)0.087 (3)0.067 (3)0.011 (2)0.022 (2)0.007 (2)
N30.0677 (17)0.060 (2)0.0553 (19)0.0005 (14)0.0124 (13)0.0005 (15)
N40.0678 (17)0.0550 (19)0.0613 (19)0.0043 (14)0.0017 (14)0.0100 (15)
O40.0625 (14)0.113 (2)0.0553 (16)0.0029 (14)0.0054 (11)0.0138 (15)
O50.0899 (17)0.0749 (19)0.0697 (18)0.0072 (14)0.0274 (13)0.0003 (14)
O60.0875 (17)0.0694 (18)0.0671 (17)0.0133 (13)0.0068 (13)0.0058 (14)
Geometric parameters (Å, º) top
C1—N11.299 (4)C35—C451.414 (5)
C1—C21.417 (4)C35—C361.431 (5)
C1—H10.93C35—C401.449 (4)
C2—C31.419 (4)C36—O51.287 (4)
C2—C71.453 (4)C36—C371.438 (5)
C3—O21.301 (4)C37—C381.336 (5)
C3—C41.426 (5)C37—H370.93
C4—C51.346 (5)C38—C391.421 (5)
C4—H40.93C38—H380.93
C5—C61.426 (5)C39—C411.413 (5)
C5—H50.93C39—C401.415 (5)
C6—C81.403 (5)C40—C441.403 (4)
C6—C71.415 (4)C41—C421.357 (5)
C7—C111.406 (4)C41—H410.93
C8—C91.358 (5)C42—C431.378 (5)
C8—H80.93C42—H420.93
C9—C101.391 (5)C43—C441.376 (5)
C9—H90.93C43—H430.93
C10—C111.374 (4)C44—H440.93
C10—H100.93C45—N31.302 (4)
C11—H110.93C45—H450.93
C12—C131.379 (5)C46—C471.360 (5)
C12—C171.382 (5)C46—C511.388 (5)
C12—N11.416 (4)C46—H460.93
C13—C141.386 (5)C47—C481.385 (4)
C13—H130.93C47—H470.93
C14—C151.366 (5)C48—C491.375 (5)
C14—H140.93C48—O41.391 (4)
C15—C161.373 (5)C49—C501.379 (5)
C15—O11.394 (4)C49—H490.93
C16—C171.375 (5)C50—C511.388 (4)
C16—H160.93C50—H500.93
C17—H170.93C51—N31.409 (4)
C18—C231.353 (5)C52—C571.359 (5)
C18—C191.358 (4)C52—C531.366 (5)
C18—O11.398 (4)C52—O41.390 (4)
C19—C201.389 (5)C53—C541.368 (5)
C19—H190.93C53—H530.93
C20—C211.386 (5)C54—C551.381 (5)
C20—H200.93C54—H540.93
C21—C221.369 (5)C55—C561.374 (5)
C21—N21.413 (4)C55—N41.409 (4)
C22—C231.381 (5)C56—C571.375 (5)
C22—H220.93C56—H560.93
C23—H230.93C57—H570.93
C24—N21.302 (4)C58—N41.292 (4)
C24—C251.416 (5)C58—C591.427 (5)
C24—H240.93C58—H580.93
C25—C261.427 (5)C59—C601.430 (5)
C25—C301.444 (4)C59—C641.444 (5)
C26—O31.296 (4)C60—O61.317 (4)
C26—C271.429 (5)C60—C611.413 (5)
C27—C281.346 (5)C61—C621.348 (5)
C27—H270.93C61—H610.93
C28—C291.416 (5)C62—C631.420 (5)
C28—H280.93C62—H620.93
C29—C341.402 (5)C63—C681.402 (5)
C29—C301.419 (4)C63—C641.416 (5)
C30—C311.405 (4)C64—C651.414 (5)
C31—C321.375 (4)C65—C661.367 (5)
C31—H310.93C65—H650.93
C32—C331.385 (5)C66—C671.389 (6)
C32—H320.93C66—H660.93
C33—C341.358 (5)C67—C681.367 (6)
C33—H330.93C67—H670.93
C34—H340.93C68—H680.93
N1—H1A0.86N3—H30.86
N2—H20.86N4—H4A0.86
N1—C1—C2122.3 (3)C45—C35—C36118.7 (3)
N1—C1—H1118.9C45—C35—C40121.5 (3)
C2—C1—H1118.9C36—C35—C40119.8 (3)
C1—C2—C3119.4 (3)O5—C36—C35122.7 (3)
C1—C2—C7121.5 (3)O5—C36—C37119.1 (3)
C3—C2—C7119.1 (3)C35—C36—C37118.2 (3)
O2—C3—C2122.0 (3)C38—C37—C36121.2 (3)
O2—C3—C4118.7 (3)C38—C37—H37119.4
C2—C3—C4119.3 (3)C36—C37—H37119.4
C5—C4—C3121.0 (3)C37—C38—C39122.7 (3)
C5—C4—H4119.5C37—C38—H38118.7
C3—C4—H4119.5C39—C38—H38118.7
C4—C5—C6122.4 (3)C41—C39—C40119.6 (3)
C4—C5—H5118.8C41—C39—C38121.4 (3)
C6—C5—H5118.8C40—C39—C38119.0 (3)
C8—C6—C7119.8 (3)C44—C40—C39117.1 (3)
C8—C6—C5121.7 (3)C44—C40—C35123.8 (3)
C7—C6—C5118.5 (3)C39—C40—C35119.1 (3)
C11—C7—C6116.8 (3)C42—C41—C39121.5 (4)
C11—C7—C2123.5 (3)C42—C41—H41119.2
C6—C7—C2119.7 (3)C39—C41—H41119.2
C9—C8—C6121.6 (3)C41—C42—C43119.1 (4)
C9—C8—H8119.2C41—C42—H42120.4
C6—C8—H8119.2C43—C42—H42120.4
C8—C9—C10119.6 (3)C44—C43—C42121.2 (4)
C8—C9—H9120.2C44—C43—H43119.4
C10—C9—H9120.2C42—C43—H43119.4
C11—C10—C9119.9 (3)C43—C44—C40121.5 (3)
C11—C10—H10120C43—C44—H44119.3
C9—C10—H10120C40—C44—H44119.3
C10—C11—C7122.3 (3)N3—C45—C35122.9 (3)
C10—C11—H11118.9N3—C45—H45118.6
C7—C11—H11118.9C35—C45—H45118.6
C13—C12—C17118.9 (3)C47—C46—C51120.5 (3)
C13—C12—N1124.1 (3)C47—C46—H46119.8
C17—C12—N1116.9 (3)C51—C46—H46119.8
C12—C13—C14120.2 (3)C46—C47—C48120.4 (3)
C12—C13—H13119.9C46—C47—H47119.8
C14—C13—H13119.9C48—C47—H47119.8
C15—C14—C13120.1 (3)C49—C48—C47120.2 (3)
C15—C14—H14119.9C49—C48—O4123.0 (3)
C13—C14—H14119.9C47—C48—O4116.7 (3)
C14—C15—C16120.0 (3)C48—C49—C50119.2 (3)
C14—C15—O1118.4 (3)C48—C49—H49120.4
C16—C15—O1121.5 (3)C50—C49—H49120.4
C15—C16—C17120.0 (3)C49—C50—C51121.0 (3)
C15—C16—H16120C49—C50—H50119.5
C17—C16—H16120C51—C50—H50119.5
C16—C17—C12120.6 (3)C50—C51—C46118.7 (3)
C16—C17—H17119.7C50—C51—N3117.7 (3)
C12—C17—H17119.7C46—C51—N3123.6 (3)
C23—C18—C19119.6 (3)C57—C52—C53120.0 (3)
C23—C18—O1122.0 (3)C57—C52—O4121.9 (3)
C19—C18—O1118.3 (3)C53—C52—O4118.1 (3)
C18—C19—C20120.2 (3)C52—C53—C54120.2 (3)
C18—C19—H19119.9C52—C53—H53119.9
C20—C19—H19119.9C54—C53—H53119.9
C21—C20—C19120.2 (3)C53—C54—C55120.4 (3)
C21—C20—H20119.9C53—C54—H54119.8
C19—C20—H20119.9C55—C54—H54119.8
C22—C21—C20118.6 (3)C56—C55—C54118.6 (3)
C22—C21—N2117.5 (3)C56—C55—N4117.1 (3)
C20—C21—N2123.9 (3)C54—C55—N4124.2 (3)
C21—C22—C23120.1 (3)C55—C56—C57120.4 (3)
C21—C22—H22119.9C55—C56—H56119.8
C23—C22—H22119.9C57—C56—H56119.8
C18—C23—C22121.2 (3)C52—C57—C56120.2 (3)
C18—C23—H23119.4C52—C57—H57119.9
C22—C23—H23119.4C56—C57—H57119.9
N2—C24—C25122.8 (3)N4—C58—C59122.4 (3)
N2—C24—H24118.6N4—C58—H58118.8
C25—C24—H24118.6C59—C58—H58118.8
C24—C25—C26118.8 (3)C58—C59—C60118.6 (3)
C24—C25—C30122.0 (3)C58—C59—C64121.9 (3)
C26—C25—C30119.2 (3)C60—C59—C64119.5 (3)
O3—C26—C25122.0 (3)O6—C60—C61119.3 (3)
O3—C26—C27118.9 (3)O6—C60—C59121.9 (3)
C25—C26—C27119.1 (3)C61—C60—C59118.8 (4)
C28—C27—C26120.7 (3)C62—C61—C60121.6 (4)
C28—C27—H27119.6C62—C61—H61119.2
C26—C27—H27119.6C60—C61—H61119.2
C27—C28—C29122.6 (3)C61—C62—C63121.7 (3)
C27—C28—H28118.7C61—C62—H62119.1
C29—C28—H28118.7C63—C62—H62119.1
C34—C29—C28121.5 (3)C68—C63—C64119.5 (4)
C34—C29—C30119.7 (3)C68—C63—C62121.1 (4)
C28—C29—C30118.8 (3)C64—C63—C62119.3 (3)
C31—C30—C29117.0 (3)C65—C64—C63117.6 (3)
C31—C30—C25123.5 (3)C65—C64—C59123.5 (3)
C29—C30—C25119.5 (3)C63—C64—C59119.0 (3)
C32—C31—C30121.7 (3)C66—C65—C64121.0 (4)
C32—C31—H31119.2C66—C65—H65119.5
C30—C31—H31119.2C64—C65—H65119.5
C31—C32—C33120.5 (4)C65—C66—C67121.4 (4)
C31—C32—H32119.7C65—C66—H66119.3
C33—C32—H32119.7C67—C66—H66119.3
C34—C33—C32119.5 (3)C68—C67—C66118.9 (4)
C34—C33—H33120.3C68—C67—H67120.6
C32—C33—H33120.3C66—C67—H67120.6
C33—C34—C29121.6 (3)C67—C68—C63121.7 (4)
C33—C34—H34119.2C67—C68—H68119.2
C29—C34—H34119.2C63—C68—H68119.2
C1—N1—C12126.3 (3)C45—N3—C51126.4 (3)
C1—N1—H1A116.9C45—N3—H3116.8
C12—N1—H1A116.9C51—N3—H3116.8
C24—N2—C21127.1 (3)C58—N4—C55125.6 (3)
C24—N2—H2116.5C58—N4—H4A117.2
C21—N2—H2116.5C55—N4—H4A117.2
C15—O1—C18116.5 (2)C52—O4—C48116.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.861.832.533 (4)138
N2—H2···O30.861.822.530 (4)138
N3—H3···O50.861.842.543 (4)138
N4—H4A···O60.861.822.522 (4)138
C20—H20···O2i0.932.463.236 (5)141
C46—H46···O30.932.373.085 (5)134
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC34H24N2O3
Mr508.55
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.292 (1), 20.203 (1), 23.863 (1)
α, β, γ (°)87.853 (10), 86.457 (10), 85.26 (1)
V3)2536.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.5 × 0.1 × 0.1
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15547, 9159, 4705
Rint0.053
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.218, 1.02
No. of reflections9159
No. of parameters706
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.24

Computer programs: COLLECT (Nonius, 1999), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.861.832.533 (4)138
N2—H2···O30.861.822.530 (4)138
N3—H3···O50.861.842.543 (4)138
N4—H4A···O60.861.822.522 (4)138
C20—H20···O2i0.932.463.236 (5)141
C46—H46···O30.932.373.085 (5)134
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

The authors thank Dr Lahcene Ouahab for the data collection at the Centre de Diffractométrie de l'Université de Rennes 1 CDiFX.

References

First citationAhamad, I., Prasad, R. & Quraishi, M. A. (2010). Corros. Sci. 52, 933–942.  Web of Science CrossRef CAS Google Scholar
First citationChen, Y., Zhao, Y., Lu, C., Tzeng, C. & Wang, J. (2006). Bioorg. Med. Chem. 14, 4373–4378.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDjamel, D., Tahar, D., Djahida, H., Hanane, H. & Salah, C. (2011). Acta Cryst. E67, o1119–o1120.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhames, A., Douadi, T., Haffar, D., Chafaa, S., Allain, M., Khan, M. A. & Bouet, G. M. (2006). Polyhedron, 25, 3201–3208.  Web of Science CSD CrossRef CAS Google Scholar
First citationGilmartin, M. A. T. & Hart, J. P. (1995). Analyst, 120, 1029–1045.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGirija, C. R., Begum, N. S., Sridhar, M. A., Lokanath, N. K. & Prasad, J. S. (2004). Acta Cryst. E60, o586–o588.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3087.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIssaadi, S., Haffar, D., Douadi, T., Chafaa, S., Séraphin, D., Khan, M. A. & Boue, G. M. (2005). Synth. React. Inorg. Met-Org. Nano-Met. Chem. 35, 875–882.  Web of Science CrossRef CAS Google Scholar
First citationIzatt, R. M., Pawlak, M. K. & Bardshaw, I. S. (1995). Chem. Rev. 95, 2529–2586.  CrossRef CAS Web of Science Google Scholar
First citationKalcher, K., Kauffman, J. M., Wank, J., Vaneare, I. S., Vitras, K., Neuhal, C. & Yang, Z. (1995). Electroanalysis, 7, 5–22.  CrossRef CAS Web of Science Google Scholar
First citationKhandar, A. A., Hosseini-Yazdi, S. A. & Zarei, S. A. (2005). Inorg. Chim. Acta, 358, 3211–3217.  Web of Science CSD CrossRef CAS Google Scholar
First citationKidwai, M., Bhushan, K., Sapra, P., Saxena, R. & Gupta, R. (2000). Bioorg. Med. Chem. 8, 69–72.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNegm, N. A., Elkholy, Y. M., Zahran, M. K. & Tawfik, S. M. (2010). Corros. Sci. 52, 3523–3536.  Web of Science CrossRef CAS Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouza, M. V. N. (2005). Mini Rev. Med. Chem. 5, 1009–1017.  Web of Science PubMed Google Scholar
First citationZhenlan, Q., Shenhao, C., Ying, L. & Xuegui, C. (2002). Corros. Sci. 44, 703–715.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o581-o582
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds