organic compounds
Piperazine-1,4-diium bis(2,4,5-tricarboxybenzoate) dihydrate
aDepartment of Chemistry, GITAM University, Visakhapatnam 530 045, Andhra Pradesh, India
*Correspondence e-mail: mscbabu@yahoo.com
In the title hydrated salt, C4H12N22+·2C10H5O8−·2H2O, the piperazinediium cation, lying about an inversion center, adopts a chair conformation. The benzene ring of the anion makes dihedral angles of 25.17 (8)° with the carboxylate group and angles of 8.50 (7), 20.07 (7) and 80.86 (8)° with the three carboxylic acid groups. In the crystal, the cations, anions and water molecules are connected by O—H⋯O and N—H⋯O hydrogen bonds into double layers parallel to (110).
Related literature
For supramolecular architectures involving benzene-1,2,4,5-tetracarboxylic acid and its anions, see: Aghabozorg et al. (2006, 2008); Chiwei et al. (2005); Pasban et al. (2012); Pasdar et al. (2010); Smith et al. (2008); Smith & Wermuth (2010); Vaidhyanathan et al. (2002). For proton-transfer systems, see: Aghabozorg et al. (2010). For intermolecular interactions, see: Janiak (2000).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and DIAMOND (Brandenburg, 2007).
Supporting information
10.1107/S160053681300723X/yk2086sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681300723X/yk2086Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681300723X/yk2086Isup3.cml
0.2974 g (1.0 mmol) of Zn(NO3)2.6H2O, 0.1270 g (0.5 mmol) of 1,2,4,5-benzenetetracarboxylic acid, 0.2583 g (3 mmol) of piperazine and 0.2 mL (4 mmol) of sulfuric acid were dissolved in 10.0 mL distilled water and heated in a stainless steel Teflon-lined autoclave at 120°C for 24 hours. The mixture was cooled to room temperature at a cooling rate of 6 °/min. Colorless cubic shaped crystals were obtained from the reaction mixture. Yield: 68% (based on H4btc). IR (KBr): 3473.27 (s), 3033.5 (w), 2548 (m), 1707 (s), 1621(s), 1475 (m), 734 (s), 596(s), 471(s).
Refinement on F2 against ALL reflections. The weighted R-factor wR2 and goodness of fit S were based on F2 and conventional R-factors R were based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sig(F2) was used only for calculating R factors(gt) etc. and was not relevant to the choice of reflections for
R-factors based on F2 were statistically about twice as large as those based on F and R- factors based on ALL data will be even larger.Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and DIAMOND (Brandenburg, 2007).Fig. 1. The view of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. A perspective view of hydrogen bonding interactions represented by dashed lines. Insent: 2D supramolecular representation along c axis. | |
Fig. 3. π-π stacking interactions between benzene-1,2,4,5-tetracarboxylates. Cations, water molecules and hydrogen atoms are omitted for clarity. | |
Fig. 4. Crystal packing viewed along a axis. Hydrogen atoms are omitted for clarity. |
C4H12N22+·2C10H5O8−·2H2O | Z = 1 |
Mr = 630.46 | F(000) = 328 |
Triclinic, P1 | Dx = 1.644 Mg m−3 |
Hall symbol: -P 1 | Melting point: 560 K |
a = 8.2521 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.4810 (2) Å | Cell parameters from 7490 reflections |
c = 9.6369 (2) Å | θ = 2.5–33.0° |
α = 87.117 (5)° | µ = 0.14 mm−1 |
β = 89.527 (5)° | T = 293 K |
γ = 70.962 (4)° | Block, colourless |
V = 636.73 (3) Å3 | 0.30 × 0.20 × 0.20 mm |
Bruker Kappa APEXII CCD diffractometer | 2234 independent reflections |
Radiation source: fine-focus sealed tube | 2061 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
ω and ϕ scan | θmax = 25.0°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −9→9 |
Tmin = 0.945, Tmax = 0.985 | k = −9→10 |
11108 measured reflections | l = −11→11 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.085 | w = 1/[σ2(Fo2) + (0.0431P)2 + 0.2345P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
2234 reflections | Δρmax = 0.21 e Å−3 |
224 parameters | Δρmin = −0.20 e Å−3 |
4 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.075 (5) |
C4H12N22+·2C10H5O8−·2H2O | γ = 70.962 (4)° |
Mr = 630.46 | V = 636.73 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.2521 (2) Å | Mo Kα radiation |
b = 8.4810 (2) Å | µ = 0.14 mm−1 |
c = 9.6369 (2) Å | T = 293 K |
α = 87.117 (5)° | 0.30 × 0.20 × 0.20 mm |
β = 89.527 (5)° |
Bruker Kappa APEXII CCD diffractometer | 2234 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 2061 reflections with I > 2σ(I) |
Tmin = 0.945, Tmax = 0.985 | Rint = 0.028 |
11108 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 4 restraints |
wR(F2) = 0.085 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.21 e Å−3 |
2234 reflections | Δρmin = −0.20 e Å−3 |
224 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.06597 (16) | 0.70913 (15) | 0.05612 (13) | 0.0202 (3) | |
C2 | 0.08629 (16) | 0.66166 (16) | −0.08067 (13) | 0.0219 (3) | |
H2 | 0.0098 | 0.7264 | −0.1480 | 0.026* | |
C3 | 0.21641 (16) | 0.52142 (16) | −0.12023 (13) | 0.0196 (3) | |
C4 | 0.32899 (16) | 0.42177 (15) | −0.01920 (13) | 0.0198 (3) | |
C5 | 0.30804 (16) | 0.46709 (16) | 0.11737 (13) | 0.0212 (3) | |
H5 | 0.3824 | 0.3995 | 0.1846 | 0.025* | |
C6 | 0.18074 (16) | 0.60918 (16) | 0.15847 (13) | 0.0200 (3) | |
C7 | 0.22375 (16) | 0.47981 (16) | −0.27035 (13) | 0.0217 (3) | |
C8 | 0.47247 (16) | 0.27185 (16) | −0.05880 (13) | 0.0217 (3) | |
C9 | 0.18506 (17) | 0.63946 (17) | 0.31156 (14) | 0.0241 (3) | |
C10 | −0.08355 (17) | 0.86608 (16) | 0.07812 (14) | 0.0244 (3) | |
C11 | 0.5751 (2) | 0.1289 (2) | 0.4758 (2) | 0.0448 (4) | |
H11A | 0.6750 | 0.1621 | 0.4555 | 0.054* | |
H11B | 0.4771 | 0.2293 | 0.4836 | 0.054* | |
C12 | 0.5451 (2) | 0.0307 (2) | 0.36090 (17) | 0.0436 (4) | |
N1 | 0.60207 (17) | 0.02802 (17) | 0.60844 (14) | 0.0371 (3) | |
O1 | −0.08934 (13) | 0.95103 (12) | 0.18574 (11) | 0.0337 (3) | |
H1 | −0.0039 | 0.9062 | 0.2342 | 0.051* | |
O2 | −0.19676 (13) | 0.91343 (13) | −0.01098 (11) | 0.0368 (3) | |
O3 | 0.29608 (14) | 0.56784 (13) | −0.34862 (10) | 0.0327 (3) | |
H3 | 0.2974 | 0.5411 | −0.4293 | 0.049* | |
O4 | 0.16086 (14) | 0.38163 (14) | −0.31255 (10) | 0.0348 (3) | |
O5 | 0.50699 (13) | 0.24168 (13) | −0.17891 (10) | 0.0337 (3) | |
O6 | 0.55721 (13) | 0.18159 (13) | 0.04674 (10) | 0.0373 (3) | |
H6 | 0.6341 | 0.1014 | 0.0187 | 0.056* | |
O7 | 0.25414 (14) | 0.51726 (13) | 0.39115 (10) | 0.0359 (3) | |
O8 | 0.12443 (14) | 0.78708 (13) | 0.35313 (10) | 0.0339 (3) | |
O9 | 0.10687 (16) | 0.23958 (16) | 0.41278 (14) | 0.0453 (3) | |
H12B | 0.646 (3) | −0.068 (3) | 0.352 (2) | 0.051 (5)* | |
H12A | 0.518 (3) | 0.099 (3) | 0.276 (2) | 0.061 (6)* | |
H1A | 0.700 (2) | −0.060 (2) | 0.605 (2) | 0.046 (5)* | |
H1B | 0.615 (3) | 0.092 (3) | 0.677 (2) | 0.064 (6)* | |
H9A | 0.043 (3) | 0.224 (4) | 0.479 (2) | 0.097 (10)* | |
H9B | 0.135 (4) | 0.323 (3) | 0.421 (3) | 0.106 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0199 (6) | 0.0181 (6) | 0.0217 (7) | −0.0048 (5) | 0.0028 (5) | −0.0015 (5) |
C2 | 0.0211 (6) | 0.0216 (6) | 0.0193 (6) | −0.0023 (5) | −0.0020 (5) | 0.0016 (5) |
C3 | 0.0203 (6) | 0.0203 (6) | 0.0177 (6) | −0.0061 (5) | 0.0017 (5) | −0.0012 (5) |
C4 | 0.0192 (6) | 0.0200 (6) | 0.0188 (6) | −0.0042 (5) | 0.0012 (5) | −0.0016 (5) |
C5 | 0.0216 (6) | 0.0216 (6) | 0.0172 (6) | −0.0029 (5) | −0.0011 (5) | 0.0006 (5) |
C6 | 0.0209 (6) | 0.0211 (6) | 0.0175 (6) | −0.0062 (5) | 0.0021 (5) | −0.0021 (5) |
C7 | 0.0194 (6) | 0.0222 (7) | 0.0192 (6) | −0.0010 (5) | −0.0010 (5) | −0.0009 (5) |
C8 | 0.0211 (6) | 0.0216 (7) | 0.0204 (7) | −0.0039 (5) | −0.0003 (5) | −0.0029 (5) |
C9 | 0.0229 (7) | 0.0286 (7) | 0.0200 (7) | −0.0067 (5) | 0.0033 (5) | −0.0047 (5) |
C10 | 0.0233 (7) | 0.0205 (7) | 0.0262 (7) | −0.0030 (5) | 0.0047 (6) | −0.0002 (5) |
C11 | 0.0417 (9) | 0.0311 (8) | 0.0642 (12) | −0.0163 (7) | −0.0010 (8) | 0.0049 (8) |
C12 | 0.0459 (10) | 0.0509 (10) | 0.0267 (8) | −0.0069 (8) | 0.0089 (7) | 0.0058 (7) |
N1 | 0.0346 (7) | 0.0356 (7) | 0.0356 (7) | −0.0016 (6) | −0.0049 (6) | −0.0169 (6) |
O1 | 0.0353 (6) | 0.0245 (5) | 0.0334 (6) | 0.0025 (4) | 0.0003 (4) | −0.0098 (4) |
O2 | 0.0298 (6) | 0.0326 (6) | 0.0350 (6) | 0.0084 (4) | −0.0040 (5) | −0.0059 (5) |
O3 | 0.0481 (6) | 0.0378 (6) | 0.0168 (5) | −0.0202 (5) | 0.0040 (4) | −0.0023 (4) |
O4 | 0.0428 (6) | 0.0422 (6) | 0.0262 (5) | −0.0221 (5) | 0.0022 (4) | −0.0100 (4) |
O5 | 0.0354 (6) | 0.0339 (6) | 0.0210 (5) | 0.0042 (4) | 0.0023 (4) | −0.0086 (4) |
O6 | 0.0347 (6) | 0.0350 (6) | 0.0230 (5) | 0.0147 (4) | −0.0001 (4) | −0.0012 (4) |
O7 | 0.0478 (7) | 0.0342 (6) | 0.0168 (5) | −0.0008 (5) | −0.0016 (4) | −0.0016 (4) |
O8 | 0.0418 (6) | 0.0303 (6) | 0.0258 (5) | −0.0049 (5) | −0.0001 (4) | −0.0127 (4) |
O9 | 0.0401 (7) | 0.0411 (7) | 0.0463 (8) | −0.0006 (6) | −0.0027 (6) | −0.0112 (6) |
C1—C2 | 1.3906 (18) | C10—O2 | 1.2269 (17) |
C1—C6 | 1.4127 (18) | C10—O1 | 1.2841 (17) |
C1—C10 | 1.5138 (17) | C11—N1 | 1.479 (2) |
C2—C3 | 1.3851 (18) | C11—C12 | 1.487 (3) |
C2—H2 | 0.9300 | C11—H11A | 0.9700 |
C3—C4 | 1.3947 (18) | C11—H11B | 0.9700 |
C3—C7 | 1.5024 (17) | C12—N1i | 1.478 (2) |
C4—C5 | 1.3833 (18) | C12—H12B | 0.98 (2) |
C4—C8 | 1.4911 (17) | C12—H12A | 0.96 (2) |
C5—C6 | 1.3885 (18) | N1—C12i | 1.478 (2) |
C5—H5 | 0.9300 | N1—H1A | 0.904 (15) |
C6—C9 | 1.5129 (18) | N1—H1B | 0.901 (16) |
C7—O4 | 1.2031 (17) | O1—H1 | 0.8200 |
C7—O3 | 1.3074 (16) | O3—H3 | 0.8200 |
C8—O5 | 1.2096 (16) | O6—H6 | 0.8200 |
C8—O6 | 1.3014 (16) | O9—H9A | 0.858 (17) |
C9—O7 | 1.2367 (17) | O9—H9B | 0.824 (18) |
C9—O8 | 1.2715 (17) | ||
C2—C1—C6 | 118.71 (11) | O8—C9—C6 | 119.92 (12) |
C2—C1—C10 | 114.30 (11) | O2—C10—O1 | 120.53 (12) |
C6—C1—C10 | 126.99 (12) | O2—C10—C1 | 118.69 (12) |
C3—C2—C1 | 122.32 (12) | O1—C10—C1 | 120.74 (12) |
C3—C2—H2 | 118.8 | N1—C11—C12 | 110.21 (13) |
C1—C2—H2 | 118.8 | N1—C11—H11A | 109.6 |
C2—C3—C4 | 119.08 (12) | C12—C11—H11A | 109.6 |
C2—C3—C7 | 117.76 (11) | N1—C11—H11B | 109.6 |
C4—C3—C7 | 123.09 (11) | C12—C11—H11B | 109.6 |
C5—C4—C3 | 118.88 (11) | H11A—C11—H11B | 108.1 |
C5—C4—C8 | 120.72 (11) | N1i—C12—C11 | 110.90 (13) |
C3—C4—C8 | 120.38 (11) | N1i—C12—H12B | 107.1 (11) |
C4—C5—C6 | 122.85 (12) | C11—C12—H12B | 109.1 (12) |
C4—C5—H5 | 118.6 | N1i—C12—H12A | 106.8 (12) |
C6—C5—H5 | 118.6 | C11—C12—H12A | 110.4 (13) |
C5—C6—C1 | 118.16 (11) | H12B—C12—H12A | 112.5 (17) |
C5—C6—C9 | 114.29 (11) | C12i—N1—C11 | 110.89 (13) |
C1—C6—C9 | 127.54 (11) | C12i—N1—H1A | 110.4 (12) |
O4—C7—O3 | 124.71 (12) | C11—N1—H1A | 110.1 (12) |
O4—C7—C3 | 122.38 (12) | C12i—N1—H1B | 109.9 (14) |
O3—C7—C3 | 112.81 (11) | C11—N1—H1B | 108.3 (14) |
O5—C8—O6 | 124.18 (12) | H1A—N1—H1B | 107.1 (19) |
O5—C8—C4 | 121.94 (12) | C10—O1—H1 | 109.5 |
O6—C8—C4 | 113.86 (11) | C7—O3—H3 | 109.5 |
O7—C9—O8 | 122.61 (12) | C8—O6—H6 | 109.5 |
O7—C9—C6 | 117.42 (11) | H9A—O9—H9B | 112 (3) |
C6—C1—C2—C3 | −0.96 (19) | C4—C3—C7—O4 | 81.46 (17) |
C10—C1—C2—C3 | 179.89 (12) | C2—C3—C7—O3 | 80.87 (15) |
C1—C2—C3—C4 | 1.5 (2) | C4—C3—C7—O3 | −102.12 (14) |
C1—C2—C3—C7 | 178.63 (12) | C5—C4—C8—O5 | −170.29 (13) |
C2—C3—C4—C5 | −0.59 (19) | C3—C4—C8—O5 | 7.9 (2) |
C7—C3—C4—C5 | −177.56 (12) | C5—C4—C8—O6 | 8.07 (18) |
C2—C3—C4—C8 | −178.79 (11) | C3—C4—C8—O6 | −173.75 (12) |
C7—C3—C4—C8 | 4.23 (19) | C5—C6—C9—O7 | −24.00 (18) |
C3—C4—C5—C6 | −0.9 (2) | C1—C6—C9—O7 | 157.18 (13) |
C8—C4—C5—C6 | 177.35 (12) | C5—C6—C9—O8 | 153.59 (13) |
C4—C5—C6—C1 | 1.4 (2) | C1—C6—C9—O8 | −25.2 (2) |
C4—C5—C6—C9 | −177.56 (12) | C2—C1—C10—O2 | 18.28 (18) |
C2—C1—C6—C5 | −0.46 (18) | C6—C1—C10—O2 | −160.79 (13) |
C10—C1—C6—C5 | 178.57 (12) | C2—C1—C10—O1 | −159.58 (12) |
C2—C1—C6—C9 | 178.31 (12) | C6—C1—C10—O1 | 21.4 (2) |
C10—C1—C6—C9 | −2.7 (2) | N1—C11—C12—N1i | 56.82 (19) |
C2—C3—C7—O4 | −95.55 (16) | C12—C11—N1—C12i | −56.81 (19) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O8 | 0.82 | 1.63 | 2.4225 (15) | 161 |
O3—H3···O7ii | 0.82 | 1.80 | 2.6100 (13) | 167 |
O6—H6···O2iii | 0.82 | 1.78 | 2.5884 (13) | 170 |
N1—H1A···O9i | 0.90 (2) | 1.83 (2) | 2.7283 (17) | 176 (2) |
N1—H1B···O5iv | 0.90 (2) | 1.94 (2) | 2.7420 (16) | 147 (2) |
O9—H9A···O8v | 0.86 (2) | 2.14 (2) | 2.9904 (18) | 174 (3) |
O9—H9B···O7 | 0.82 (2) | 2.18 (2) | 2.9799 (19) | 163 (3) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, y, z−1; (iii) x+1, y−1, z; (iv) x, y, z+1; (v) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C4H12N22+·2C10H5O8−·2H2O |
Mr | 630.46 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 8.2521 (2), 8.4810 (2), 9.6369 (2) |
α, β, γ (°) | 87.117 (5), 89.527 (5), 70.962 (4) |
V (Å3) | 636.73 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.14 |
Crystal size (mm) | 0.30 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.945, 0.985 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11108, 2234, 2061 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.085, 1.06 |
No. of reflections | 2234 |
No. of parameters | 224 |
No. of restraints | 4 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.21, −0.20 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SIR92 (Altomare et al., 1993), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and DIAMOND (Brandenburg, 2007).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O8 | 0.82 | 1.63 | 2.4225 (15) | 161 |
O3—H3···O7i | 0.82 | 1.80 | 2.6100 (13) | 167 |
O6—H6···O2ii | 0.82 | 1.78 | 2.5884 (13) | 170 |
N1—H1A···O9iii | 0.904 (15) | 1.825 (15) | 2.7283 (17) | 175.9 (18) |
N1—H1B···O5iv | 0.901 (16) | 1.941 (18) | 2.7420 (16) | 147 (2) |
O9—H9A···O8v | 0.858 (17) | 2.135 (18) | 2.9904 (18) | 174 (3) |
O9—H9B···O7 | 0.824 (18) | 2.182 (19) | 2.9799 (19) | 163 (3) |
Symmetry codes: (i) x, y, z−1; (ii) x+1, y−1, z; (iii) −x+1, −y, −z+1; (iv) x, y, z+1; (v) −x, −y+1, −z+1. |
Acknowledgements
The authors are thankful for financial support from the Department of Science and Technology through the Nanomission project (SR/S5/NM-92/2006) and are also grateful to the Sophisticated Analytical Instrumentation Facility (SAIF), IIT-Madras, Chennai, for the data collection.
References
Aghabozorg, H., Ghadermazi, M. & Sheshmani, S. (2006). Acta Cryst. E62, o3287–o3289. Web of Science CSD CrossRef IUCr Journals Google Scholar
Aghabozorg, H., Mahfoozi, F., Sharif, M. A., Shokrollahi, A., Derki, S., Shamsipur, M. & Khavasi, H. R. (2010). J. Iran. Chem. Soc. 7, 727–739. CrossRef CAS Google Scholar
Aghabozorg, H., Manteghi, F. & Ghadermazi, M. (2008). Acta Cryst. E64, o740. Web of Science CSD CrossRef IUCr Journals Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chiwei, W., Mingcai, Y., Ming, L., Xiaoling, M. & Jutang, S. (2005). J. Wuhan Univ. Technol. 20, 38–42. CrossRef Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pasban, N., Esmhosseini, M., Ahmadi, M., Mohebbi, M., Sallkhordeh, S. & Vatani, M. (2012). Z. Kristallogr. 227, 265–266. CAS Google Scholar
Pasdar, H., Majdolashrafi, M., Aghabozorg, H. & Khavasi, H. R. (2010). Acta Cryst. E66, o3043. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, G. & Wermuth, U. D. (2010). Acta Cryst. C66, o609–o613. Web of Science CSD CrossRef IUCr Journals Google Scholar
Smith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2008). Acta Cryst. C64, o123–o127. Web of Science CSD CrossRef IUCr Journals Google Scholar
Vaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2002). J. Mol. Struct. 608, 123–133. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Benzene-1,2,4,5-tetracarboxylic acid (H4btc) with its ability to donate four protons is a versatile ligand in building supramolecular architectures and proton transfer compounds with nitrogen containing organic amines such as piperazine (Aghabozorg et al., 2008; Vaidhyanathan et al., 2002) and diethylenetriamine (Pasban et al., 2012). A number of proton transfer compounds and supramolecular architectures were reported earlier with H4btc and other organic bases such as 1,10- phenanthroline (Chiwei et al., 2005) and propane-1,2-diammonium (Pasdar et al., 2010). These proton transfer compounds have the ability to absorb various metals into their crystal lattices (Aghabozorg et al., 2006) with profound applications in metal separation and storage (Aghabozorg et al., 2010; Smith et al., 2008; Smith & Wermuth, 2010).
We report here one such proton transfer compound, piperazinediium bis(benzene-1,2,4,5-tetracarboxylate) dihydrate. As shown in Fig. 1, the asymmetric unit contain one mono-deprotonated residue of benzene-1,2,4,5-tetracaboxylic acid (H3btc-), a half of diprotonated piperazine (pipz) and one water molecule. Layered 2D supramolecular structure of title compound was built by connecting H3btc-, pipz and water molecules through hydrogen bonding (Fig.2). Inter- and intramolecular hydrogen bonding was observed between H3btc- molecular species through O–H···O hydrogen bonds. Piperazinediium cations and water molecules are involved in building this supramolecular structure through N–H···O and O–H···O bonds. Besides hydrogen bonding, the weak aromatic π-π stacking interactions between aromatic rings of H3btc- molecules could contribute for further stabilization of this layered supramolecular crystal structure. As shown in Fig. 3, the π-π stacking interactions between H3btc- (intercentroid separation of 3.7954 Å) were found to be in agreement with the reported values (Janiak, 2000). The packing diagram of the title compound is shown in Fig.4.