organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(3-Meth­­oxy­phen­yl)-3-phenyl-1,2-oxazole

aDepartment of Physics, P.T. Lee Chengalvaraya Naicker College of Engineering and Technology, Kancheepuram 631 502, India, bOrganic Chemistry Division, Central Leather Research Institute, Chennai 600 020, India, and cPostgraduate and Research Department of Physics, Agurchand Manmull Jain College, Chennai 600 114, India
*Correspondence e-mail: seshadri_pr@yahoo.com

(Received 7 February 2013; accepted 18 March 2013; online 28 March 2013)

In the title compound, C16H13NO2, the isoxazole ring makes dihedral angles of 17.1 (1)° with the 3-meth­oxy­phenyl ring and 15.2 (1)° with the phenyl group. Centrosymmetric dimers that are realised by pairs of C—H⋯π inter­actions are observed in the crystal structure.

Related literature

For general background to isoxazole derivaties, see: Sperry & Wright (2005[Sperry, J. & Wright, D. (2005). Curr. Opin. Drug Discov. Dev. 8, 723-740.]); Tanaka et al. (2007[Tanaka, M., Haino, T., Ideta, K., Kubo, K., Mori, A. & Fukazawa, Y. (2007). Tetrahedron, 63, 652-.]). For their biological activity, see: Stevens & Albizati (1984[Stevens, R. V. & Albizati, K. F. (1984). Tetrahedron Lett. 25, 4587-4591.]). For related structures, see: Samshuddin et al. (2011[Samshuddin, S., Butcher, R. J., Akkurt, M., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1975-o1976.]); Balakrishnan et al. (2011[Balakrishnan, B., Praveen, C., Seshadri, P. R. & Perumal, P. T. (2011). Acta Cryst. E67, o1575.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13NO2

  • Mr = 251.27

  • Orthorhombic, P n a 21

  • a = 7.909 (2) Å

  • b = 27.239 (8) Å

  • c = 5.9652 (17) Å

  • V = 1285.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.35 × 0.30 × 0.30 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • 6838 measured reflections

  • 2898 independent reflections

  • 2256 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.103

  • S = 1.03

  • 2898 reflections

  • 174 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cgi 0.93 2.96 3.732 (2) 141
C4—H4⋯Cgii 0.93 3.06 3.768 (3) 134
Symmetry codes: (i) [-x+1, -y+2, z-{\script{1\over 2}}]; (ii) [-x, -y+2, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison. Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison. Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Isoxazoles are important class of heteroaromatic molecules which are components in a variety of natural products and medicinally useful compounds (Sperry & Wright, 2005). Isoxazole also finds application in organic synthesis as synthetic intermediates and chiral ligands. The liquid crystalline property of isoxazole derivatives and its potential application in optoelectric devices made them attractive synthetic target (Tanaka et al., 2007)

Isoxazole derivaties bearing different substituents are known to have various biological activities in pharmaceutical and agricultural areas. Isoxazole compounds have been widely studied because they exhibit some fungicidal activity, plant -growth regulating activity and antibacterial activity (Stevens & Albizati, 1984). In the title compound the isoxazole ring makes a dihedral angle of 17.1 (1)° with methoxy phenyl ring C10/C11/C12/C13/C14/C15/O2/C16 and a dihedral angle of 15.2 (1)° with the phenyl ring C1/C2/C3/C4/C5/C6 attached to the planar isoxazole moiety.The geometrical parameters agree well with the reported structure (Samshuddin et al.2011; Balakrishnan et al. 2011). A Centrosymmetric dimers are formed by C—H···π (C1—H1···Cg and C5—H5···Cg) interactions, where Cg is the centroid of the ring C1—C6 (Fig. 2).

Related literature top

For general background to isoxazole derivaties, see: Sperry & Wright (2005); Tanaka et al. (2007). For their biological activity, see: Stevens & Albizati (1984). For related structures, see: Samshuddin et al. (2011); Balakrishnan et al. (2011).

Experimental top

To solution of 1-phenyl-3-m-tolyl-propynone oxime (251 mg, 1.0 (mmol) in dry dichloromethane (1 ml) was added AuCl3 (3.03 mg, 1 mol%) under N2 atmosphere and stirred for 10 min. After completion of the reaction as indicated by TLC, the reaction mixture was concentrated under reduced pressure and purified by colomn chromatography over silica gel (100–200 mech) using EtOAc/hexane to afford the pure product.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H=0.93–0.97 Å and Uiso (H)= 1.5Ueq(C) for methyl H atoms and 1.2 Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the C—H···π interactions in the crystal structure of the title compound.
5-(3-Methoxyphenyl)-3-phenyl-1,2-oxazole top
Crystal data top
C16H13NO2F(000) = 528
Mr = 251.27Dx = 1.299 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2593 reflections
a = 7.909 (2) Åθ = 2.7–28.4°
b = 27.239 (8) ŵ = 0.09 mm1
c = 5.9652 (17) ÅT = 295 K
V = 1285.1 (6) Å3Block, colourless
Z = 40.35 × 0.30 × 0.30 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2256 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 28.4°, θmin = 2.7°
ω and ϕ scanh = 108
6838 measured reflectionsk = 3632
2898 independent reflectionsl = 76
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.052P)2 + 0.0082P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2898 reflectionsΔρmax = 0.13 e Å3
174 parametersΔρmin = 0.13 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0071 (19)
Crystal data top
C16H13NO2V = 1285.1 (6) Å3
Mr = 251.27Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 7.909 (2) ŵ = 0.09 mm1
b = 27.239 (8) ÅT = 295 K
c = 5.9652 (17) Å0.35 × 0.30 × 0.30 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2256 reflections with I > 2σ(I)
6838 measured reflectionsRint = 0.031
2898 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0382 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.03Δρmax = 0.13 e Å3
2898 reflectionsΔρmin = 0.13 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6539 (2)0.00884 (6)0.6796 (4)0.0597 (5)
H10.58950.01870.80200.072*
C20.7022 (3)0.03964 (7)0.6594 (4)0.0713 (6)
H20.66800.06240.76650.086*
C30.8006 (3)0.05449 (7)0.4817 (4)0.0735 (6)
H30.83340.08720.46930.088*
C40.8501 (3)0.02114 (8)0.3231 (5)0.0739 (6)
H40.91780.03110.20410.089*
C50.7994 (2)0.02776 (7)0.3393 (4)0.0640 (5)
H50.83170.05020.22990.077*
C60.70095 (19)0.04300 (6)0.5184 (3)0.0494 (4)
C70.6472 (2)0.09484 (6)0.5388 (3)0.0485 (4)
C80.5818 (2)0.11998 (6)0.7237 (3)0.0493 (4)
H80.55920.10740.86550.059*
C90.5583 (2)0.16697 (6)0.6515 (3)0.0471 (4)
C100.49808 (19)0.21163 (6)0.7641 (3)0.0476 (4)
C110.4136 (2)0.20828 (7)0.9665 (3)0.0584 (4)
H110.39260.17771.03040.070*
C120.3606 (2)0.25068 (8)1.0733 (3)0.0637 (5)
H120.30370.24851.20930.076*
C130.3916 (2)0.29611 (7)0.9793 (3)0.0619 (5)
H130.35440.32441.05140.074*
C140.4776 (2)0.29962 (6)0.7785 (3)0.0520 (4)
C150.5295 (2)0.25759 (6)0.6679 (3)0.0503 (4)
H150.58480.25990.53070.060*
C160.5937 (3)0.35244 (7)0.4984 (4)0.0720 (6)
H16A0.53360.33570.38130.108*
H16B0.70540.33900.51150.108*
H16C0.60110.38680.46310.108*
N0.6620 (2)0.12403 (5)0.3651 (3)0.0628 (4)
O10.60346 (19)0.17058 (5)0.4372 (2)0.0689 (4)
O20.50660 (17)0.34640 (5)0.7034 (2)0.0704 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0586 (10)0.0583 (10)0.0624 (12)0.0025 (8)0.0068 (10)0.0017 (9)
C20.0738 (12)0.0572 (11)0.0830 (16)0.0021 (9)0.0046 (12)0.0100 (10)
C30.0691 (12)0.0575 (11)0.0939 (18)0.0050 (9)0.0027 (13)0.0120 (11)
C40.0713 (12)0.0695 (12)0.0807 (16)0.0010 (10)0.0139 (12)0.0203 (11)
C50.0665 (11)0.0624 (11)0.0629 (12)0.0055 (9)0.0102 (10)0.0061 (10)
C60.0423 (8)0.0512 (8)0.0546 (10)0.0051 (7)0.0020 (8)0.0051 (8)
C70.0439 (8)0.0510 (8)0.0507 (9)0.0073 (7)0.0006 (8)0.0013 (8)
C80.0507 (8)0.0514 (8)0.0457 (10)0.0020 (7)0.0026 (7)0.0047 (7)
C90.0464 (8)0.0517 (9)0.0432 (10)0.0046 (7)0.0041 (8)0.0013 (7)
C100.0423 (8)0.0544 (9)0.0462 (10)0.0012 (7)0.0057 (7)0.0015 (7)
C110.0543 (10)0.0713 (11)0.0494 (10)0.0017 (8)0.0034 (9)0.0027 (9)
C120.0578 (11)0.0870 (14)0.0462 (11)0.0111 (9)0.0013 (9)0.0042 (9)
C130.0558 (10)0.0756 (12)0.0544 (12)0.0154 (8)0.0081 (9)0.0164 (9)
C140.0462 (9)0.0547 (10)0.0551 (11)0.0043 (7)0.0095 (8)0.0082 (8)
C150.0448 (9)0.0556 (10)0.0504 (10)0.0016 (7)0.0024 (8)0.0039 (8)
C160.0820 (14)0.0548 (10)0.0791 (16)0.0039 (9)0.0051 (12)0.0030 (10)
N0.0935 (12)0.0494 (7)0.0455 (9)0.0024 (7)0.0110 (8)0.0002 (6)
O10.1073 (10)0.0510 (6)0.0485 (8)0.0060 (7)0.0055 (7)0.0026 (5)
O20.0790 (9)0.0518 (7)0.0805 (10)0.0030 (6)0.0026 (8)0.0072 (7)
Geometric parameters (Å, º) top
C1—C21.380 (3)C9—C101.469 (2)
C1—C61.389 (3)C10—C111.383 (2)
C1—H10.9300C10—C151.400 (2)
C2—C31.376 (3)C11—C121.384 (3)
C2—H20.9300C11—H110.9300
C3—C41.369 (3)C12—C131.380 (3)
C3—H30.9300C12—H120.9300
C4—C51.394 (3)C13—C141.381 (3)
C4—H40.9300C13—H130.9300
C5—C61.385 (3)C14—O21.370 (2)
C5—H50.9300C14—C151.384 (2)
C6—C71.480 (2)C15—H150.9300
C7—N1.311 (2)C16—O21.413 (3)
C7—C81.398 (2)C16—H16A0.9600
C8—C91.363 (2)C16—H16B0.9600
C8—H80.9300C16—H16C0.9600
C9—O11.331 (2)N—O11.4165 (19)
C2—C1—C6120.42 (19)C11—C10—C15120.20 (16)
C2—C1—H1119.8C11—C10—C9120.10 (15)
C6—C1—H1119.8C15—C10—C9119.70 (16)
C3—C2—C1120.3 (2)C10—C11—C12119.55 (18)
C3—C2—H2119.8C10—C11—H11120.2
C1—C2—H2119.8C12—C11—H11120.2
C4—C3—C2119.96 (19)C13—C12—C11120.50 (19)
C4—C3—H3120.0C13—C12—H12119.7
C2—C3—H3120.0C11—C12—H12119.7
C3—C4—C5120.2 (2)C12—C13—C14120.10 (17)
C3—C4—H4119.9C12—C13—H13119.9
C5—C4—H4119.9C14—C13—H13119.9
C6—C5—C4120.08 (19)O2—C14—C13115.50 (16)
C6—C5—H5120.0O2—C14—C15124.32 (17)
C4—C5—H5120.0C13—C14—C15120.18 (17)
C5—C6—C1118.94 (16)C14—C15—C10119.45 (17)
C5—C6—C7120.71 (16)C14—C15—H15120.3
C1—C6—C7120.35 (17)C10—C15—H15120.3
N—C7—C8111.07 (14)O2—C16—H16A109.5
N—C7—C6119.20 (16)O2—C16—H16B109.5
C8—C7—C6129.71 (16)H16A—C16—H16B109.5
C9—C8—C7105.12 (15)O2—C16—H16C109.5
C9—C8—H8127.4H16A—C16—H16C109.5
C7—C8—H8127.4H16B—C16—H16C109.5
O1—C9—C8109.67 (16)C7—N—O1105.89 (14)
O1—C9—C10117.72 (15)C9—O1—N108.24 (14)
C8—C9—C10132.60 (16)C14—O2—C16118.23 (14)
C6—C1—C2—C31.4 (3)C8—C9—C10—C15162.56 (17)
C1—C2—C3—C40.4 (3)C15—C10—C11—C120.1 (2)
C2—C3—C4—C50.8 (3)C9—C10—C11—C12178.65 (16)
C3—C4—C5—C61.1 (3)C10—C11—C12—C130.0 (3)
C4—C5—C6—C10.1 (3)C11—C12—C13—C140.7 (3)
C4—C5—C6—C7179.55 (18)C12—C13—C14—O2177.92 (15)
C2—C1—C6—C51.1 (3)C12—C13—C14—C151.6 (2)
C2—C1—C6—C7179.22 (17)O2—C14—C15—C10177.77 (14)
C5—C6—C7—N14.4 (2)C13—C14—C15—C101.7 (2)
C1—C6—C7—N165.93 (17)C11—C10—C15—C140.9 (2)
C5—C6—C7—C8164.38 (18)C9—C10—C15—C14177.80 (14)
C1—C6—C7—C815.3 (3)C8—C7—N—O10.2 (2)
N—C7—C8—C90.4 (2)C6—C7—N—O1179.16 (14)
C6—C7—C8—C9178.48 (16)C8—C9—O1—N0.93 (19)
C7—C8—C9—O10.81 (18)C10—C9—O1—N178.15 (13)
C7—C8—C9—C10178.09 (17)C7—N—O1—C90.7 (2)
O1—C9—C10—C11165.00 (15)C13—C14—O2—C16179.83 (16)
C8—C9—C10—C1116.2 (3)C15—C14—O2—C160.7 (2)
O1—C9—C10—C1516.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···Cgi0.932.963.732 (2)141
C4—H4···Cgii0.933.063.768 (3)134
Symmetry codes: (i) x+1, y+2, z1/2; (ii) x, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H13NO2
Mr251.27
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)295
a, b, c (Å)7.909 (2), 27.239 (8), 5.9652 (17)
V3)1285.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.30 × 0.30
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6838, 2898, 2256
Rint0.031
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.03
No. of reflections2898
No. of parameters174
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.13

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···Cgi0.932.9633.732 (2)141
C4—H4···Cgii0.933.0583.768 (3)134
Symmetry codes: (i) x+1, y+2, z1/2; (ii) x, y+2, z+1/2.
 

Acknowledgements

The authors acknowledge the Technology Business Incubator (TBI), CAS in Crystallography, University of Madras, Chennai 600 025, India, for the data collection.

References

First citationBalakrishnan, B., Praveen, C., Seshadri, P. R. & Perumal, P. T. (2011). Acta Cryst. E67, o1575.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison. Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSamshuddin, S., Butcher, R. J., Akkurt, M., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1975–o1976.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSperry, J. & Wright, D. (2005). Curr. Opin. Drug Discov. Dev. 8, 723–740.  CAS Google Scholar
First citationStevens, R. V. & Albizati, K. F. (1984). Tetrahedron Lett. 25, 4587–4591.  CrossRef CAS Web of Science Google Scholar
First citationTanaka, M., Haino, T., Ideta, K., Kubo, K., Mori, A. & Fukazawa, Y. (2007). Tetrahedron, 63, 652–.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds