organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o606-o607

Bis(1,2,3-benzotriazolium) sulfate dihydrate

aY-Not Chemical Consulting, 14400 Williams Road, Zachary, LA 70791, USA, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
*Correspondence e-mail: ffroncz@lsu.edu

(Received 8 March 2013; accepted 18 March 2013; online 28 March 2013)

In the asymmetric unit of the title hydrated salt, 2C6H6N3+·SO42−·2H2O, there are two independent sulfate ions, one lying on a twofold axis, and the other in a general position. There are three independent benzotriazolium cations and three independent water mol­ecules. The sulfate ion in a general position forms hydrogen-bonded chains of stoichiometry SO42−·3H2O in the b-axis direction. The sulfate on the twofold axis is unhydrated and accepts hydrogen bonds from four surrounding benzotriazoles. The benzotriazolium cations form two types of stacks along b. One stack contains only one type of independent cation, related by inversion centers. The other stack contains two alternating independent cations and no symmetry. The two types of stacks have orientations which are rotated by about 79° in the ac plane. 12 symmetrically distinct hydrogen bonds of type N—H⋯O(sulfate), N—H⋯O(water), O—H⋯O(sulfate) and O—H⋯O(water), with donor–acceptor distances in the range 2.5490 (13)–2.7871 (12) Å, form a three-dimensional array.

Related literature

For the structure of benzotriazole hydrogensulfate, see: Giordano (1980[Giordano, F. (1980). Acta Cryst. B36, 2458-2460.]); Meléndez et al. (1996[Meléndez, R., Robinson, F. & Zaworotko, M. J. (1996). Supramol. Chem. 7, 275-293.]); Ramos-Organillo & Contreras (2007[Ramos-Organillo, A. & Contreras, R. (2007). Acta Cryst. C63, o501-o503.]). For the structure of benzotriazolium dihydrogen phosphate, see: Emsley et al. (1985[Emsley, J., Reza, N. M., Dawes, H. M. & Hursthouse, M. B. (1985). J. Chem. Soc. Chem. Commun. pp. 1458-1460.]) and for the structure of benzotriazolium perchlorate monohydrate, see: Sieroń (2007[Sieroń, L. (2007). Acta Cryst. E63, o2089-o2090.]). For the preparation and purification of benzotriazole with discussion of impurities, see: Damschroder & Peterson (1955[Damschroder, R. E. & Peterson, W. D. (1955). Org. Synth. Coll. Vol. 3, pp. 106-107.]); Miller & Schlaudecker (1958[Miller, E. B. & Schlaudecker, G. F. (1958). US Patent No. 2861078.]); Howard & Popplewell (1967[Howard, D. K. & Popplewell, A. F. (1967). US Patent No. 3334054.]); Spatz & Evans (1973[Spatz, S. M. & Evans, F. E. (1973). US Patent No. 3732239.]). For a purification method for aryl­triazoles as their sulfate salts, see: Belter (2013[Belter, R. K. (2013). US Patent Appl. In preparation.]).

[Scheme 1]

Experimental

Crystal data
  • 2C6H6N3+·SO42−·2H2O

  • Mr = 372.37

  • Monoclinic, C 2/c

  • a = 38.312 (3) Å

  • b = 6.7621 (10) Å

  • c = 20.987 (2) Å

  • β = 113.410 (5)°

  • V = 4989.5 (10) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 90 K

  • 0.28 × 0.22 × 0.18 mm

Data collection
  • Bruker Kappa APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.936, Tmax = 0.958

  • 33853 measured reflections

  • 9017 independent reflections

  • 7722 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.098

  • S = 1.03

  • 9017 reflections

  • 375 parameters

  • 30 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3 0.96 (1) 1.65 (1) 2.5981 (11) 173 (1)
N3—H3N⋯O2Wi 0.96 (1) 1.59 (1) 2.5492 (11) 176 (1)
N4—H4N⋯O4 0.96 (1) 1.63 (1) 2.5822 (10) 170 (1)
N6—H6N⋯O6ii 0.94 (1) 1.66 (1) 2.5834 (11) 170 (1)
N7—H7N⋯O3W 0.94 (1) 1.68 (1) 2.6119 (11) 172 (1)
N9—H9N⋯O5 0.96 (1) 1.62 (1) 2.5735 (11) 178 (1)
O1W—H11W⋯O2iii 0.85 (1) 1.98 (1) 2.7498 (10) 151 (2)
O1W—H12W⋯O2 0.84 (1) 1.96 (1) 2.7871 (11) 172 (2)
O2W—H21W⋯O1iv 0.84 (1) 1.90 (1) 2.7345 (11) 170 (2)
O2W—H22W⋯O1W 0.83 (1) 1.82 (1) 2.6507 (12) 178 (2)
O3W—H31W⋯O3 0.83 (1) 1.87 (1) 2.7034 (10) 176 (2)
O3W—H32W⋯O1iv 0.81 (1) 1.96 (1) 2.7594 (11) 169 (2)
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) -x+1, -y+1, -z+1; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x, y-1, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzotriazole is used mainly as a corrosion inhibitor in aqueous based industrial cooling systems. In the preparation of benzotriazole from o-benzenediamine, the product benzotriazole is generally heavily contaminated with dark-colored impurities. Mention of such impurities can be found in the preparations and purifications of benzotriazole in Damschroder & Peterson (1955), Miller & Schlaudecker (1958), Howard & Popplewell (1967), and Spatz & Evans (1973). In a recently developed methodology for the purification of crude product aryltriazoles, it has been discovered that the sulfate salt of benzotriazole can be precipitated from acidic aqueous solution as a pure white hydrate, see Belter (2013). To determine the extent of hydration and to validate the stoichiometry of the salt, we crystallized the title benzotriazolium sulfate dihydrate, (1), (C6H6N3+)2 . SO4-2. 2H2O, from water at ice-bath temperature.

Upon melting point determination (flat stage), the crystals were observed to go through several transitions before melting. Crystals become opaque at >35°C, clarified at 64°C and softened at 72°C before melting at 114–116°C.

The crystal structures of two polymorphs of benzotriazole hydrogensulfate have been reported (Giordano, 1980; Meléndez et al., 1996; Ramos-Organillo & Contreras, 2007). The structures of benzotriazolium dihydrogen phosphate (Emsley et al., 1985) and benzotriazolium perchlorate monohydrate (Sieroń; 2007) have also been reported. In the above literature, we observe that for unhydrated benzotriazolium salts (HSO4- and H2PO42-), hydrogen bonded chains of the anions dictate the packing, with hydrogen-bonded cations bridging between chains.

For a hydrated benzotriazolium salt (HClO4-. H2O) the packing is dictated by the clustering of anion-water units of 2 ClO4-. 2 H2O, which are further hydrogen bonded into columns. The cations crosslink the columns by hydrogen bonds, to water on one side, and to perchlorate on the other.

Our compound, 1, as a hydrate, displays similar clustering of anions and water. In this case, sulfates S1 are found as clusters containing 2 SO42- and 6 H2O, which are stacked to form infinite columns in the b direction. "Anhydrous" sulfates S2 lie on twofold axes and are isolated from other sulfates and water molecules, accepting hydrogen bonds only from cations.

In the current structure, the benzotriazolium cations bridge between anions and anion-water columns, as seen in the hydrogensulfate and perchlorate structures, having elements of both hydrated and anyhydrous types. Cation N1, N2, N3 bridges between S1 sulfate and water, cation N4, N5, N6 bridges between S1 and S2 sulfates, and cation N7, N8, N9 bridges water and S2 sulfate. All told, there are 12 hydrogen bonds, of which four are NH···O(sulfate), two are NH···O(water), five are OH(water)···sulfate, and one is OH(water)···water.

The benzotriazolium cations form two types of stacks in the b direction. One stack contains only one type of independent cation, that containing N4, N5, and N6, with cations related by inversion centers. The other stack contains the other two alternating independent cations (N1, N2, N3 and N7, N8, N9) and no symmetry. The two types of stacks have orientations which are rotated by about 79° in the ac plane.

Related literature top

For the structure of benzotriazole hydrogensulfate, see: Giordano (1980); Meléndez et al. (1996); Ramos-Organillo & Contreras (2007). For the structure of benzotriazolium dihydrogen phosphate, see: Emsley et al. (1985) and for the structure of benzotriazolium perchlorate monohydrate, see: Sieroń (2007). For the preparation and purification of benzotriazole with discussion of impurities, see: Damschroder & Peterson (1955); Miller & Schlaudecker (1958); Howard & Popplewell (1967); Spatz & Evans (1973). For a purification method for aryltriazoles as their sulfate salts, see: Belter (2013).

Experimental top

36.0 g (0.30 mol) of 98% benzotriazole flakes were stirred vigorously with 73.5 g (0.15 mol) of a hot solution of 20% H2SO4 in an erlenmeyer flask whereupon the entirety dissolved. The mixture was allowed to cool several hours in an ice-water bath whereupon precipitation had occurred. The precipitate was vacuum filtered to yield a white filter cake which proved to be 11.6% by weight of water, determined by Karl-Fisher titration. A second crop of precipitate was collected as crystals after continued icing of the mother liquor. One of these crystals was selected for X-ray analysis.

Refinement top

H atoms on C were placed in idealized positions with C—H distances 0.95 Å and thereafter treated as riding. Coordinates of the NH and water hydrogen atoms were refined, with all N—H distances restrained to be equal and all O—H distances also restrained to be equal. Uiso for H were assigned as 1.2 times Ueq of the attached atoms (1.5 for water).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The asymmetric unit, also including symmetry-related (1 - x, y, 3/2 - z) O atoms on sulfate ion S2. Ellipsoids are drawn at the 50% level.
[Figure 2] Fig. 2. : The unit cell, viewed down the b axis.
Bis(1,2,3-benzotriazolium) sulfate dihydrate top
Crystal data top
2C6H6N3+·SO42·2H2OF(000) = 2328
Mr = 372.37Dx = 1.487 Mg m3
Monoclinic, C2/cMelting point: 387 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 38.312 (3) ÅCell parameters from 9903 reflections
b = 6.7621 (10) Åθ = 3.1–32.5°
c = 20.987 (2) ŵ = 0.24 mm1
β = 113.410 (5)°T = 90 K
V = 4989.5 (10) Å3Needle fragment, colourless
Z = 120.28 × 0.22 × 0.18 mm
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
9017 independent reflections
Radiation source: fine-focus sealed tube7722 reflections with I > 2σ(I)
TRIUMPH curved graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 32.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 5758
Tmin = 0.936, Tmax = 0.958k = 108
33853 measured reflectionsl = 3130
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0567P)2 + 2.9928P]
where P = (Fo2 + 2Fc2)/3
9017 reflections(Δ/σ)max = 0.001
375 parametersΔρmax = 0.56 e Å3
30 restraintsΔρmin = 0.46 e Å3
Crystal data top
2C6H6N3+·SO42·2H2OV = 4989.5 (10) Å3
Mr = 372.37Z = 12
Monoclinic, C2/cMo Kα radiation
a = 38.312 (3) ŵ = 0.24 mm1
b = 6.7621 (10) ÅT = 90 K
c = 20.987 (2) Å0.28 × 0.22 × 0.18 mm
β = 113.410 (5)°
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
9017 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
7722 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.958Rint = 0.023
33853 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03330 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.56 e Å3
9017 reflectionsΔρmin = 0.46 e Å3
375 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.67711 (2)0.46488 (13)0.46788 (4)0.01481 (14)
H1N0.6750 (4)0.478 (2)0.5115 (6)0.018*
N20.71156 (2)0.45131 (13)0.46877 (4)0.01585 (15)
N30.70747 (2)0.43361 (12)0.40372 (4)0.01438 (14)
H3N0.7307 (3)0.423 (2)0.3965 (7)0.017*
C10.64988 (3)0.45610 (14)0.40201 (5)0.01312 (15)
C20.66993 (2)0.43532 (13)0.35953 (5)0.01262 (15)
C30.65153 (3)0.42098 (14)0.28708 (5)0.01530 (16)
H30.66510.40510.25810.018*
C40.61243 (3)0.43150 (15)0.26072 (5)0.01780 (18)
H40.59860.42380.21190.021*
C50.59194 (3)0.45342 (15)0.30363 (5)0.01893 (18)
H50.56500.45980.28260.023*
C60.61000 (3)0.46569 (15)0.37485 (5)0.01706 (17)
H60.59630.47970.40370.020*
N40.56493 (2)0.74001 (12)0.53044 (4)0.01388 (14)
H4N0.5909 (3)0.737 (2)0.5631 (6)0.017*
N50.55857 (2)0.72941 (13)0.46390 (4)0.01556 (15)
N60.52140 (2)0.73277 (13)0.42951 (4)0.01439 (14)
H6N0.5123 (4)0.720 (2)0.3812 (6)0.017*
C70.53172 (2)0.74983 (13)0.54006 (5)0.01227 (15)
C80.50299 (2)0.74511 (14)0.47330 (5)0.01227 (15)
C90.46433 (3)0.75356 (14)0.46170 (5)0.01505 (16)
H90.44470.75080.41630.018*
C100.45658 (3)0.76613 (15)0.52029 (5)0.01654 (17)
H100.43080.77140.51510.020*
C110.48569 (3)0.77145 (15)0.58815 (5)0.01650 (17)
H110.47880.78030.62690.020*
C120.52368 (3)0.76409 (14)0.59952 (5)0.01481 (16)
H120.54320.76840.64490.018*
N70.62831 (2)0.09067 (12)0.71668 (4)0.01345 (14)
H7N0.6316 (4)0.110 (2)0.6751 (6)0.016*
N80.59310 (2)0.08433 (13)0.71241 (4)0.01494 (15)
N90.59523 (2)0.06704 (12)0.77634 (4)0.01462 (14)
H9N0.5716 (3)0.057 (2)0.7817 (7)0.018*
C130.65399 (2)0.07740 (13)0.78380 (5)0.01246 (15)
C140.63215 (2)0.06263 (13)0.82335 (5)0.01298 (15)
C150.64890 (3)0.04931 (15)0.89610 (5)0.01695 (17)
H150.63420.04110.92330.020*
C160.68810 (3)0.04896 (16)0.92546 (5)0.01979 (19)
H160.70080.03980.97450.024*
C170.71011 (3)0.06174 (16)0.88508 (5)0.01946 (19)
H170.73710.05980.90800.023*
C180.69386 (3)0.07690 (15)0.81376 (5)0.01660 (17)
H180.70870.08640.78670.020*
S10.667426 (6)0.69362 (3)0.616423 (10)0.01027 (5)
O10.67023 (2)0.85284 (11)0.57055 (4)0.01523 (13)
O20.700031 (19)0.69702 (11)0.68344 (4)0.01676 (14)
O30.66609 (2)0.50055 (10)0.58176 (4)0.01686 (13)
O40.632125 (19)0.71736 (11)0.62831 (3)0.01558 (13)
S20.50000.17120 (5)0.75000.01520 (7)
O50.53233 (2)0.04538 (13)0.79305 (4)0.02273 (16)
O60.51148 (2)0.29683 (12)0.70401 (4)0.02015 (15)
O1W0.73087 (2)0.31970 (12)0.71948 (4)0.01937 (14)
H11W0.7519 (4)0.323 (2)0.7544 (7)0.029*
H12W0.7236 (4)0.4369 (19)0.7109 (8)0.029*
O2W0.73056 (2)0.10807 (13)0.61293 (5)0.02518 (17)
H21W0.7140 (4)0.019 (2)0.6024 (9)0.038*
H22W0.7300 (5)0.174 (2)0.6458 (8)0.038*
O3W0.63174 (2)0.16552 (11)0.59721 (4)0.01566 (13)
H31W0.6424 (4)0.2700 (19)0.5942 (8)0.023*
H32W0.6421 (4)0.079 (2)0.5841 (8)0.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0177 (3)0.0159 (4)0.0116 (3)0.0010 (3)0.0067 (3)0.0015 (3)
N20.0166 (3)0.0175 (4)0.0129 (3)0.0016 (3)0.0052 (3)0.0011 (3)
N30.0143 (3)0.0165 (4)0.0127 (3)0.0016 (3)0.0058 (3)0.0015 (3)
C10.0152 (4)0.0124 (4)0.0127 (4)0.0003 (3)0.0066 (3)0.0011 (3)
C20.0143 (3)0.0123 (4)0.0119 (3)0.0012 (3)0.0060 (3)0.0009 (3)
C30.0203 (4)0.0142 (4)0.0113 (4)0.0023 (3)0.0060 (3)0.0012 (3)
C40.0199 (4)0.0154 (4)0.0139 (4)0.0018 (3)0.0023 (3)0.0009 (3)
C50.0151 (4)0.0167 (4)0.0216 (4)0.0004 (3)0.0038 (3)0.0006 (3)
C60.0154 (4)0.0167 (4)0.0206 (4)0.0007 (3)0.0088 (3)0.0010 (3)
N40.0120 (3)0.0156 (4)0.0133 (3)0.0006 (3)0.0043 (3)0.0002 (3)
N50.0150 (3)0.0170 (4)0.0146 (3)0.0007 (3)0.0059 (3)0.0004 (3)
N60.0144 (3)0.0162 (4)0.0121 (3)0.0008 (3)0.0048 (3)0.0004 (3)
C70.0122 (3)0.0110 (4)0.0128 (4)0.0002 (3)0.0041 (3)0.0001 (3)
C80.0129 (3)0.0116 (4)0.0115 (3)0.0004 (3)0.0040 (3)0.0005 (3)
C90.0116 (3)0.0144 (4)0.0166 (4)0.0003 (3)0.0028 (3)0.0011 (3)
C100.0137 (4)0.0151 (4)0.0217 (4)0.0013 (3)0.0079 (3)0.0014 (3)
C110.0187 (4)0.0156 (4)0.0176 (4)0.0009 (3)0.0097 (3)0.0003 (3)
C120.0166 (4)0.0151 (4)0.0122 (4)0.0002 (3)0.0051 (3)0.0003 (3)
N70.0130 (3)0.0153 (3)0.0124 (3)0.0001 (3)0.0054 (3)0.0010 (3)
N80.0131 (3)0.0168 (4)0.0147 (3)0.0005 (3)0.0054 (3)0.0018 (3)
N90.0136 (3)0.0164 (4)0.0150 (3)0.0004 (3)0.0069 (3)0.0006 (3)
C130.0128 (3)0.0119 (4)0.0128 (4)0.0004 (3)0.0051 (3)0.0006 (3)
C140.0140 (3)0.0124 (4)0.0131 (4)0.0008 (3)0.0061 (3)0.0007 (3)
C150.0233 (4)0.0153 (4)0.0134 (4)0.0022 (3)0.0086 (3)0.0006 (3)
C160.0242 (4)0.0175 (4)0.0135 (4)0.0027 (4)0.0030 (3)0.0011 (3)
C170.0151 (4)0.0194 (4)0.0190 (4)0.0013 (3)0.0015 (3)0.0011 (3)
C180.0132 (4)0.0180 (4)0.0180 (4)0.0007 (3)0.0056 (3)0.0003 (3)
S10.01024 (9)0.01164 (10)0.00885 (9)0.00031 (6)0.00372 (7)0.00058 (7)
O10.0187 (3)0.0137 (3)0.0150 (3)0.0005 (2)0.0085 (2)0.0023 (2)
O20.0125 (3)0.0202 (3)0.0128 (3)0.0007 (2)0.0001 (2)0.0005 (2)
O30.0262 (3)0.0126 (3)0.0154 (3)0.0030 (3)0.0120 (3)0.0030 (2)
O40.0120 (3)0.0237 (4)0.0123 (3)0.0019 (2)0.0062 (2)0.0018 (2)
S20.01142 (12)0.02288 (16)0.01203 (13)0.0000.00544 (10)0.000
O50.0154 (3)0.0314 (4)0.0247 (4)0.0064 (3)0.0115 (3)0.0105 (3)
O60.0196 (3)0.0289 (4)0.0114 (3)0.0045 (3)0.0055 (3)0.0018 (3)
O1W0.0163 (3)0.0192 (3)0.0177 (3)0.0024 (3)0.0016 (3)0.0022 (3)
O2W0.0202 (3)0.0281 (4)0.0335 (4)0.0091 (3)0.0172 (3)0.0119 (3)
O3W0.0173 (3)0.0141 (3)0.0177 (3)0.0001 (2)0.0092 (3)0.0004 (2)
Geometric parameters (Å, º) top
N1—N21.3159 (11)C12—H120.9500
N1—C11.3626 (12)N7—N81.3167 (11)
N1—H1N0.955 (11)N7—C131.3634 (11)
N2—N31.3162 (11)N7—H7N0.940 (11)
N3—C21.3671 (11)N8—N91.3167 (11)
N3—H3N0.963 (11)N9—C141.3661 (11)
C1—C21.3959 (12)N9—H9N0.956 (11)
C1—C61.4044 (13)C13—C141.3969 (12)
C2—C31.4023 (12)C13—C181.4017 (12)
C3—C41.3772 (13)C14—C151.4044 (13)
C3—H30.9500C15—C161.3781 (14)
C4—C51.4183 (15)C15—H150.9500
C4—H40.9500C16—C171.4158 (15)
C5—C61.3775 (14)C16—H160.9500
C5—H50.9500C17—C181.3777 (14)
C6—H60.9500C17—H170.9500
N4—N51.3207 (11)C18—H180.9500
N4—C71.3668 (11)S1—O21.4639 (7)
N4—H4N0.959 (11)S1—O11.4765 (7)
N5—N61.3163 (11)S1—O41.4783 (7)
N6—C81.3652 (12)S1—O31.4855 (7)
N6—H6N0.935 (11)S2—O6i1.4779 (8)
C7—C81.3965 (12)S2—O61.4779 (8)
C7—C121.4024 (13)S2—O51.4783 (8)
C8—C91.4036 (12)S2—O5i1.4783 (8)
C9—C101.3775 (14)O1W—H11W0.846 (12)
C9—H90.9500O1W—H12W0.835 (12)
C10—C111.4181 (14)O2W—H21W0.841 (13)
C10—H100.9500O2W—H22W0.830 (13)
C11—C121.3792 (13)O3W—H31W0.830 (12)
C11—H110.9500O3W—H32W0.812 (12)
N2—N1—C1111.75 (8)C12—C11—H11119.1
N2—N1—H1N117.3 (8)C10—C11—H11119.1
C1—N1—H1N130.9 (8)C11—C12—C7115.99 (8)
N1—N2—N3106.63 (7)C11—C12—H12122.0
N2—N3—C2111.26 (8)C7—C12—H12122.0
N2—N3—H3N115.7 (8)N8—N7—C13111.56 (8)
C2—N3—H3N133.0 (8)N8—N7—H7N117.0 (8)
N1—C1—C2104.99 (8)C13—N7—H7N131.3 (8)
N1—C1—C6132.90 (9)N7—N8—N9106.65 (7)
C2—C1—C6122.10 (8)N8—N9—C14111.41 (8)
N3—C2—C1105.37 (8)N8—N9—H9N116.6 (8)
N3—C2—C3132.46 (9)C14—N9—H9N132.0 (8)
C1—C2—C3122.17 (8)N7—C13—C14105.18 (8)
C4—C3—C2115.46 (9)N7—C13—C18132.38 (9)
C4—C3—H3122.3C14—C13—C18122.44 (8)
C2—C3—H3122.3N9—C14—C13105.20 (8)
C3—C4—C5122.59 (9)N9—C14—C15132.95 (9)
C3—C4—H4118.7C13—C14—C15121.85 (8)
C5—C4—H4118.7C16—C15—C14115.62 (9)
C6—C5—C4121.94 (9)C16—C15—H15122.2
C6—C5—H5119.0C14—C15—H15122.2
C4—C5—H5119.0C15—C16—C17122.32 (9)
C5—C6—C1115.73 (9)C15—C16—H16118.8
C5—C6—H6122.1C17—C16—H16118.8
C1—C6—H6122.1C18—C17—C16122.35 (9)
N5—N4—C7111.54 (7)C18—C17—H17118.8
N5—N4—H4N117.3 (8)C16—C17—H17118.8
C7—N4—H4N131.2 (8)C17—C18—C13115.42 (9)
N6—N5—N4106.49 (8)C17—C18—H18122.3
N5—N6—C8111.57 (8)C13—C18—H18122.3
N5—N6—H6N116.7 (9)O2—S1—O1111.08 (4)
C8—N6—H6N131.6 (9)O2—S1—O4108.95 (4)
N4—C7—C8105.05 (8)O1—S1—O4109.84 (4)
N4—C7—C12132.93 (8)O2—S1—O3109.54 (4)
C8—C7—C12122.02 (8)O1—S1—O3108.59 (4)
N6—C8—C7105.35 (8)O4—S1—O3108.81 (4)
N6—C8—C9132.65 (8)O6i—S2—O6109.83 (7)
C7—C8—C9122.00 (8)O6i—S2—O5109.04 (4)
C10—C9—C8115.75 (8)O6—S2—O5109.60 (4)
C10—C9—H9122.1O6i—S2—O5i109.60 (4)
C8—C9—H9122.1O6—S2—O5i109.04 (4)
C9—C10—C11122.39 (8)O5—S2—O5i109.73 (7)
C9—C10—H10118.8H11W—O1W—H12W106.4 (15)
C11—C10—H10118.8H21W—O2W—H22W109.9 (17)
C12—C11—C10121.84 (9)H31W—O3W—H32W105.2 (15)
C1—N1—N2—N30.04 (11)C12—C7—C8—C90.26 (14)
N1—N2—N3—C20.07 (11)N6—C8—C9—C10179.81 (10)
N2—N1—C1—C20.01 (11)C7—C8—C9—C100.20 (13)
N2—N1—C1—C6179.36 (10)C8—C9—C10—C110.36 (14)
N2—N3—C2—C10.07 (11)C9—C10—C11—C120.07 (15)
N2—N3—C2—C3179.97 (10)C10—C11—C12—C70.38 (14)
N1—C1—C2—N30.05 (10)N4—C7—C12—C11179.76 (10)
C6—C1—C2—N3179.41 (9)C8—C7—C12—C110.54 (14)
N1—C1—C2—C3179.99 (9)C13—N7—N8—N90.04 (10)
C6—C1—C2—C30.56 (14)N7—N8—N9—C140.23 (10)
N3—C2—C3—C4179.11 (10)N8—N7—C13—C140.28 (10)
C1—C2—C3—C40.84 (14)N8—N7—C13—C18179.76 (10)
C2—C3—C4—C50.58 (14)N8—N9—C14—C130.40 (10)
C3—C4—C5—C60.02 (16)N8—N9—C14—C15178.88 (10)
C4—C5—C6—C10.31 (15)N7—C13—C14—N90.39 (10)
N1—C1—C6—C5179.24 (10)C18—C13—C14—N9179.64 (9)
C2—C1—C6—C50.04 (14)N7—C13—C14—C15178.98 (9)
C7—N4—N5—N60.19 (11)C18—C13—C14—C150.98 (15)
N4—N5—N6—C80.16 (11)N9—C14—C15—C16179.94 (10)
N5—N4—C7—C80.14 (10)C13—C14—C15—C160.89 (14)
N5—N4—C7—C12179.45 (10)C14—C15—C16—C170.17 (15)
N5—N6—C8—C70.08 (11)C15—C16—C17—C180.50 (17)
N5—N6—C8—C9179.73 (10)C16—C17—C18—C130.44 (15)
N4—C7—C8—N60.03 (10)N7—C13—C18—C17179.67 (10)
C12—C7—C8—N6179.44 (9)C14—C13—C18—C170.29 (14)
N4—C7—C8—C9179.67 (9)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O30.96 (1)1.65 (1)2.5981 (11)173 (1)
N3—H3N···O2Wii0.96 (1)1.59 (1)2.5492 (11)176 (1)
N4—H4N···O40.96 (1)1.63 (1)2.5822 (10)170 (1)
N6—H6N···O6iii0.94 (1)1.66 (1)2.5834 (11)170 (1)
N7—H7N···O3W0.94 (1)1.68 (1)2.6119 (11)172 (1)
N9—H9N···O50.96 (1)1.62 (1)2.5735 (11)178 (1)
O1W—H11W···O2iv0.85 (1)1.98 (1)2.7498 (10)151 (2)
O1W—H12W···O20.84 (1)1.96 (1)2.7871 (11)172 (2)
O2W—H21W···O1v0.84 (1)1.90 (1)2.7345 (11)170 (2)
O2W—H22W···O1W0.83 (1)1.82 (1)2.6507 (12)178 (2)
O3W—H31W···O30.83 (1)1.87 (1)2.7034 (10)176 (2)
O3W—H32W···O1v0.81 (1)1.96 (1)2.7594 (11)169 (2)
Symmetry codes: (ii) x+3/2, y+1/2, z+1; (iii) x+1, y+1, z+1; (iv) x+3/2, y1/2, z+3/2; (v) x, y1, z.

Experimental details

Crystal data
Chemical formula2C6H6N3+·SO42·2H2O
Mr372.37
Crystal system, space groupMonoclinic, C2/c
Temperature (K)90
a, b, c (Å)38.312 (3), 6.7621 (10), 20.987 (2)
β (°) 113.410 (5)
V3)4989.5 (10)
Z12
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.28 × 0.22 × 0.18
Data collection
DiffractometerBruker Kappa APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.936, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
33853, 9017, 7722
Rint0.023
(sin θ/λ)max1)0.757
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.098, 1.03
No. of reflections9017
No. of parameters375
No. of restraints30
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.46

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O30.955 (11)1.648 (11)2.5981 (11)173.4 (13)
N3—H3N···O2Wi0.963 (11)1.588 (11)2.5492 (11)176.4 (14)
N4—H4N···O40.959 (11)1.632 (11)2.5822 (10)170.0 (13)
N6—H6N···O6ii0.935 (11)1.658 (11)2.5834 (11)169.8 (13)
N7—H7N···O3W0.940 (11)1.679 (11)2.6119 (11)171.5 (13)
N9—H9N···O50.956 (11)1.617 (11)2.5735 (11)178.0 (14)
O1W—H11W···O2iii0.846 (12)1.978 (13)2.7498 (10)151.2 (15)
O1W—H12W···O20.835 (12)1.957 (12)2.7871 (11)172.4 (16)
O2W—H21W···O1iv0.841 (13)1.903 (13)2.7345 (11)169.7 (18)
O2W—H22W···O1W0.830 (13)1.821 (13)2.6507 (12)177.6 (18)
O3W—H31W···O30.830 (12)1.874 (12)2.7034 (10)176.4 (15)
O3W—H32W···O1iv0.812 (12)1.957 (12)2.7594 (11)169.1 (15)
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x+1, y+1, z+1; (iii) x+3/2, y1/2, z+3/2; (iv) x, y1, z.
 

Acknowledgements

Upgrade of the diffractometer was made possible by grant No. LEQSF(2011–12)-ENH-TR-01, administered by the Louisiana Board of Regents.

References

First citationBelter, R. K. (2013). US Patent Appl. In preparation.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDamschroder, R. E. & Peterson, W. D. (1955). Org. Synth. Coll. Vol. 3, pp. 106–107.  Google Scholar
First citationEmsley, J., Reza, N. M., Dawes, H. M. & Hursthouse, M. B. (1985). J. Chem. Soc. Chem. Commun. pp. 1458–1460.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGiordano, F. (1980). Acta Cryst. B36, 2458–2460.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHoward, D. K. & Popplewell, A. F. (1967). US Patent No. 3334054.  Google Scholar
First citationMeléndez, R., Robinson, F. & Zaworotko, M. J. (1996). Supramol. Chem. 7, 275–293.  Google Scholar
First citationMiller, E. B. & Schlaudecker, G. F. (1958). US Patent No. 2861078.  Google Scholar
First citationRamos-Organillo, A. & Contreras, R. (2007). Acta Cryst. C63, o501–o503.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSieroń, L. (2007). Acta Cryst. E63, o2089–o2090.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpatz, S. M. & Evans, F. E. (1973). US Patent No. 3732239.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o606-o607
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds