organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,7-Dihy­dr­oxy-2-(3-hy­dr­oxy-4,5-dimeth­­oxy­phen­yl)-6-meth­­oxy-4H-chromen-4-one

aS. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan
*Correspondence e-mail: adizovshahobiddin@yahoo.com

(Received 16 January 2013; accepted 18 March 2013; online 23 March 2013)

The title compound, C18H16O8, was isolated from the plant Artemisia baldshuanica Krasch et Zarp. The mol­ecule is approximately planar, with the exception of the terminal methyl groups, the C atoms of which devitate from their attached ring planes by 1.243 (5) and 1.168 (5) Å. The dihedral angle between the substituted benzopyran and benzene rings is 5.8 (1)°; this near planarity could be due to conjugation or a packing effect. Intra­molecular O—H⋯O and C—H⋯O hydrogen bonds occur. In the crystal, mol­ecules are connected by O—H⋯O hydrogen bonds involving the hy­droxy and carbonyl groups, forming hydrogen-bonded chains along [001] and [1-10]. The chains are linked by C—H⋯O inter­actions.

Related literature

For the biological activity of flavonoids, see: Bodewes et al. (2011[Bodewes, T. C. F., Luttikhold, J., van Stijn, M. F. M., Visser, M., van Norren, K., Vermeulen, M. A. R. & van Leeuwen, P. A. M. (2011). Curr. Org. Chem. 15, 2616-2626.]); Veitch & Grayer (2011[Veitch, N. C. & Grayer, R. J. (2011). Nat. Prod. Rep. 28, 626-1695.]). For related structures, see: Martinez-Vazquez et al. (1993[Martinez-Vazquez, M., Vazquez Garcia, H. M., Toscano, R. A. & Perez, G. E. (1993). J. Nat. Prod. 56, 1410-1415.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16O8

  • Mr = 360.31

  • Monoclinic, P c

  • a = 11.5837 (6) Å

  • b = 4.4677 (3) Å

  • c = 15.5521 (8) Å

  • β = 103.310 (6)°

  • V = 783.23 (8) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.04 mm−1

  • T = 300 K

  • 0.60 × 0.40 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.638, Tmax = 0.813

  • 2540 measured reflections

  • 1841 independent reflections

  • 1632 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.126

  • S = 1.07

  • 1841 reflections

  • 242 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3 0.82 2.38 2.762 (4) 109
O2—H2A⋯O5i 0.82 1.96 2.713 (4) 152
O4—H4A⋯O5 0.82 1.85 2.579 (4) 148
O6—H6A⋯O4ii 0.82 2.20 2.954 (3) 153
O6—H6A⋯O7 0.82 2.31 2.734 (4) 113
C3—H3A⋯O2iii 0.93 2.58 3.246 (5) 129
C12—H12B⋯O4iv 0.96 2.55 3.459 (6) 157
C12—H12C⋯O8 0.96 2.32 2.927 (6) 122
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) x+1, y-1, z; (iii) [x, -y+1, z-{\script{1\over 2}}]; (iv) x+1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Among of biologically active natural compounds of plant origin flavonoids occupy an important place. Most important for practical medicine are flavonoids with antioxidant, antiinflammatory, antispasmodic and anticancer activity (Bodewes et al., 2011; Veitch et al., 2011).

Artemisia baldshuanica Krasch. et Zarp. (Asteraceae) - is a widespread in centralasia species of Artemisia and juice of leaves possesses a antihelmintic activity. The title compound, 5,7,3'-trihydroxy-6,4',5'-trimethoxyflavone (also named as 5,7,-dihydroxy-2-(3-hydroxy-4,5-dimethoxyphenyl)-6-methoxy-4H- chromen-4-one) was isolated from the ethanol extract of above-ground part of Artemisia baldshuanica.

The molecule is nearly planar with exception of H3C11- and H3C12- terminal methyl groups. Substituted benzopyran and phenyl rings are planar with r.m.s. deviations of 0.020 Å and 0.026 Å, respectivily. The angle between ring planes equals to 5.8 (1)° thanks to conjugation of π-electronic systems of cycles. Terminal methyl group carbon atoms (C11 and C12) are deviated from their ring planes to 1.243 (5) Å and 1.168 (5) Å, respectively.

The molecule has intramolecular hydrogen bond where O4-H4A···O5 hydroxylic and ketonic groups form six membered pseudocycle. (Table 1). Also it are observed O2-H2A···O3-CH3 and O6-H6A···O7-CH3 intramolecular hydrogen bonds between hydroxyl and methoxyl groups. In the crystal, molecules are interconnected via O2-H2A···O5 and O6-H6A···O4 hydrogen bonds observed between hydroxyl and carbonyl groups forming three dimensional H-bond chains. The molecules are further linked by a weak C2'-H2'A···O1, C3-H3A···O2, C12-H12B···O4 and C12-H12C···O8 intermolecular interactions (Table 1).

Related literature top

For the biological activity of flavonoids, see: Bodewes et al. (2011); Veitch & Grayer (2011). For related structures, see: Martinez-Vazquez et al. (1993).

Experimental top

Air dry powdered aerial part of Artemisia baldshuanica, collected prebudding period four time extracted with ethanol. The combined extracts were concentrated under vacuum on a rotary evaporator. Concentrated extract was fractionated with benzene, chloroform, ethylacetate and ethanol. Chloroformic fraction was chromatographed on a silica gel column. Eluting the column with chloroform-ethanol (50:1) was isolated dark-yellow crystals with m.p 244-245 ° C. Crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the compound in ethanol.

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms with C–H = 0.96 Å (methyl) or 0.93 Å (aromatic) and O-H=0.82 Å with Uiso(H) = 1.5Ueq(C) (methyl), Uiso(H) = 1.2Ueq(C) (aromatic) and Uiso(H) = 1.5Ueq(O). In the absence of significant anomalous scattering effects Friedel pairs have been merged.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, displacement ellipsoids are drawn at the 50% probability level.
5,7-Dihydroxy-2-(3-hydroxy-4,5-dimethoxyphenyl)-6-methoxy-4H-chromen-4-one top
Crystal data top
C18H16O8F(000) = 376
Mr = 360.31Dx = 1.528 Mg m3
Monoclinic, PcMelting point: 517(1) K
Hall symbol: P -2ycCu Kα radiation, λ = 1.54184 Å
a = 11.5837 (6) ÅCell parameters from 1516 reflections
b = 4.4677 (3) Åθ = 3.9–75.1°
c = 15.5521 (8) ŵ = 1.04 mm1
β = 103.310 (6)°T = 300 K
V = 783.23 (8) Å3Prismatic, yellow
Z = 20.60 × 0.40 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
1841 independent reflections
Radiation source: Enhance (Cu) X-ray Source1632 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 10.2576 pixels mm-1θmax = 72.0°, θmin = 3.9°
ω scansh = 1114
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 35
Tmin = 0.638, Tmax = 0.813l = 1919
2540 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0802P)2 + 0.1369P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1841 reflectionsΔρmax = 0.16 e Å3
242 parametersΔρmin = 0.19 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.008 (2)
Crystal data top
C18H16O8V = 783.23 (8) Å3
Mr = 360.31Z = 2
Monoclinic, PcCu Kα radiation
a = 11.5837 (6) ŵ = 1.04 mm1
b = 4.4677 (3) ÅT = 300 K
c = 15.5521 (8) Å0.60 × 0.40 × 0.20 mm
β = 103.310 (6)°
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
1841 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1632 reflections with I > 2σ(I)
Tmin = 0.638, Tmax = 0.813Rint = 0.018
2540 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0422 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.07Δρmax = 0.16 e Å3
1841 reflectionsΔρmin = 0.19 e Å3
242 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4704 (2)0.1567 (6)0.32058 (17)0.0446 (6)
O50.2167 (2)0.7371 (7)0.19407 (19)0.0537 (7)
O40.1091 (2)0.6830 (6)0.32115 (18)0.0499 (6)
H4A0.12030.73910.27350.075*
O30.1066 (2)0.4181 (6)0.48320 (16)0.0507 (7)
O20.2852 (2)0.0185 (7)0.55401 (18)0.0544 (7)
H2A0.24810.11970.58250.082*
C20.4798 (3)0.2888 (8)0.2441 (2)0.0391 (7)
C30.3979 (3)0.4806 (9)0.2006 (2)0.0443 (8)
H3A0.40710.56360.14780.053*
C40.2961 (3)0.5607 (8)0.2339 (2)0.0405 (7)
C50.1957 (3)0.4917 (8)0.3591 (2)0.0395 (7)
C60.1942 (3)0.3556 (8)0.4387 (2)0.0412 (7)
C70.2850 (3)0.1563 (8)0.4774 (2)0.0426 (8)
C80.3774 (3)0.0899 (9)0.4375 (2)0.0454 (8)
H8A0.43730.04240.46350.054*
C90.3774 (3)0.2264 (8)0.3583 (2)0.0385 (7)
C100.2897 (3)0.4242 (8)0.3162 (2)0.0378 (7)
O80.7492 (3)0.3071 (7)0.03979 (19)0.0587 (8)
O70.9075 (2)0.0387 (6)0.1554 (2)0.0518 (7)
O60.8517 (2)0.2462 (7)0.3062 (2)0.0561 (7)
H6A0.91590.24820.29250.084*
C1'0.5891 (3)0.1945 (8)0.2175 (2)0.0397 (7)
C2'0.6697 (3)0.0105 (8)0.2724 (2)0.0420 (8)
H2'A0.65300.06330.32410.050*
C3'0.7758 (3)0.0643 (8)0.2503 (2)0.0432 (8)
C4'0.8016 (3)0.0457 (8)0.1735 (2)0.0413 (8)
C5'0.7192 (3)0.2219 (9)0.1170 (2)0.0443 (8)
C6'0.6126 (3)0.3017 (8)0.1387 (2)0.0445 (8)
H6'A0.55820.42410.10140.053*
C110.0019 (4)0.2442 (10)0.4528 (3)0.0587 (10)
H11A0.05200.27900.49030.088*
H11B0.02250.03580.45440.088*
H11C0.03510.30080.39330.088*
C120.9874 (4)0.2038 (10)0.1495 (4)0.0619 (11)
H12A1.05190.13040.12620.093*
H12B1.01800.28640.20730.093*
H12C0.94550.35630.11120.093*
C130.6770 (4)0.5095 (10)0.0170 (3)0.0563 (10)
H13A0.71160.55240.06610.085*
H13B0.67010.69130.01430.085*
H13C0.59970.42360.03820.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0371 (12)0.0586 (14)0.0446 (12)0.0102 (11)0.0227 (10)0.0024 (11)
O50.0449 (14)0.0703 (16)0.0533 (14)0.0189 (13)0.0266 (12)0.0137 (13)
O40.0382 (12)0.0658 (15)0.0526 (14)0.0148 (12)0.0246 (11)0.0045 (12)
O30.0449 (13)0.0656 (15)0.0509 (15)0.0012 (13)0.0304 (11)0.0103 (12)
O20.0553 (16)0.0686 (17)0.0462 (14)0.0087 (14)0.0258 (12)0.0061 (12)
C20.0319 (16)0.0484 (17)0.0413 (17)0.0022 (14)0.0170 (13)0.0078 (14)
C30.0415 (17)0.055 (2)0.0429 (18)0.0064 (17)0.0233 (15)0.0006 (15)
C40.0316 (15)0.0505 (18)0.0423 (18)0.0038 (15)0.0146 (14)0.0026 (15)
C50.0321 (15)0.0503 (17)0.0409 (16)0.0003 (14)0.0183 (13)0.0065 (14)
C60.0329 (16)0.0533 (17)0.0421 (16)0.0009 (14)0.0184 (13)0.0092 (15)
C70.0464 (19)0.0498 (17)0.0359 (17)0.0032 (16)0.0181 (14)0.0067 (14)
C80.0381 (17)0.0547 (19)0.0459 (18)0.0058 (15)0.0147 (14)0.0003 (16)
C90.0336 (15)0.0479 (17)0.0383 (16)0.0012 (14)0.0170 (13)0.0071 (13)
C100.0319 (15)0.0469 (16)0.0390 (16)0.0024 (13)0.0171 (13)0.0069 (13)
O80.0532 (16)0.082 (2)0.0504 (15)0.0173 (15)0.0314 (13)0.0131 (14)
O70.0425 (14)0.0519 (14)0.0716 (18)0.0116 (12)0.0354 (13)0.0020 (13)
O60.0440 (14)0.0678 (16)0.0636 (16)0.0180 (13)0.0272 (12)0.0145 (14)
C1'0.0313 (15)0.0485 (17)0.0437 (17)0.0019 (14)0.0175 (13)0.0074 (14)
C2'0.0397 (17)0.0483 (17)0.0439 (18)0.0043 (15)0.0219 (15)0.0025 (14)
C3'0.0368 (17)0.0447 (17)0.0509 (19)0.0060 (14)0.0155 (15)0.0016 (15)
C4'0.0335 (16)0.0448 (16)0.0529 (19)0.0055 (13)0.0250 (15)0.0057 (15)
C5'0.0423 (18)0.0553 (19)0.0421 (18)0.0015 (15)0.0235 (15)0.0037 (15)
C6'0.0370 (16)0.0566 (19)0.0445 (18)0.0085 (16)0.0188 (15)0.0026 (15)
C110.042 (2)0.076 (3)0.065 (2)0.0034 (18)0.0269 (18)0.001 (2)
C120.0394 (19)0.060 (2)0.093 (3)0.0001 (17)0.029 (2)0.002 (2)
C130.056 (2)0.066 (2)0.051 (2)0.0023 (19)0.0207 (18)0.0105 (18)
Geometric parameters (Å, º) top
O1—C21.354 (4)O8—C131.399 (5)
O1—C91.376 (4)O7—C4'1.373 (4)
O5—C41.260 (4)O7—C121.441 (5)
O4—C51.346 (4)O6—C3'1.355 (5)
O4—H4A0.8200O6—H6A0.8200
O3—C61.382 (4)C1'—C2'1.382 (5)
O3—C111.425 (5)C1'—C6'1.399 (5)
O2—C71.341 (4)C2'—C3'1.391 (5)
O2—H2A0.8200C2'—H2'A0.9300
C2—C31.340 (5)C3'—C4'1.387 (5)
C2—C1'1.482 (4)C4'—C5'1.385 (5)
C3—C41.438 (4)C5'—C6'1.399 (5)
C3—H3A0.9300C6'—H6'A0.9300
C4—C101.436 (5)C11—H11A0.9600
C5—C61.383 (5)C11—H11B0.9600
C5—C101.434 (4)C11—H11C0.9600
C6—C71.403 (5)C12—H12A0.9600
C7—C81.387 (5)C12—H12B0.9600
C8—C91.374 (5)C12—H12C0.9600
C8—H8A0.9300C13—H13A0.9600
C9—C101.391 (5)C13—H13B0.9600
O8—C5'1.378 (4)C13—H13C0.9600
C2—O1—C9120.3 (3)C2'—C1'—C2119.7 (3)
C5—O4—H4A109.5C6'—C1'—C2119.9 (3)
C6—O3—C11113.0 (3)C1'—C2'—C3'120.0 (3)
C7—O2—H2A109.5C1'—C2'—H2'A120.0
C3—C2—O1122.1 (3)C3'—C2'—H2'A120.0
C3—C2—C1'126.3 (3)O6—C3'—C4'121.9 (3)
O1—C2—C1'111.6 (3)O6—C3'—C2'117.7 (3)
C2—C3—C4121.4 (3)C4'—C3'—C2'120.4 (3)
C2—C3—H3A119.3O7—C4'—C5'123.0 (3)
C4—C3—H3A119.3O7—C4'—C3'117.3 (3)
O5—C4—C10121.5 (3)C5'—C4'—C3'119.6 (3)
O5—C4—C3123.1 (3)O8—C5'—C4'115.8 (3)
C10—C4—C3115.5 (3)O8—C5'—C6'123.6 (3)
O4—C5—C6120.7 (3)C4'—C5'—C6'120.6 (3)
O4—C5—C10119.9 (3)C5'—C6'—C1'119.0 (3)
C6—C5—C10119.4 (3)C5'—C6'—H6'A120.5
O3—C6—C5121.4 (3)C1'—C6'—H6'A120.5
O3—C6—C7118.6 (3)O3—C11—H11A109.5
C5—C6—C7120.0 (3)O3—C11—H11B109.5
O2—C7—C8117.1 (3)H11A—C11—H11B109.5
O2—C7—C6121.3 (3)O3—C11—H11C109.5
C8—C7—C6121.6 (3)H11A—C11—H11C109.5
C9—C8—C7117.7 (3)H11B—C11—H11C109.5
C9—C8—H8A121.1O7—C12—H12A109.5
C7—C8—H8A121.1O7—C12—H12B109.5
C8—C9—O1116.3 (3)H12A—C12—H12B109.5
C8—C9—C10123.6 (3)O7—C12—H12C109.5
O1—C9—C10120.1 (3)H12A—C12—H12C109.5
C9—C10—C5117.7 (3)H12B—C12—H12C109.5
C9—C10—C4120.5 (3)O8—C13—H13A109.5
C5—C10—C4121.7 (3)O8—C13—H13B109.5
C5'—O8—C13119.7 (3)H13A—C13—H13B109.5
C4'—O7—C12115.0 (3)O8—C13—H13C109.5
C3'—O6—H6A109.5H13A—C13—H13C109.5
C2'—C1'—C6'120.4 (3)H13B—C13—H13C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O30.822.382.762 (4)109
O2—H2A···O5i0.821.962.713 (4)152
O4—H4A···O50.821.852.579 (4)148
O6—H6A···O4ii0.822.202.954 (3)153
O6—H6A···O70.822.312.734 (4)113
C2—H2A···O10.932.322.667 (4)101
C3—H3A···O2iii0.932.583.246 (5)129
C12—H12B···O4iv0.962.553.459 (6)157
C12—H12C···O80.962.322.927 (6)122
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1, y1, z; (iii) x, y+1, z1/2; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC18H16O8
Mr360.31
Crystal system, space groupMonoclinic, Pc
Temperature (K)300
a, b, c (Å)11.5837 (6), 4.4677 (3), 15.5521 (8)
β (°) 103.310 (6)
V3)783.23 (8)
Z2
Radiation typeCu Kα
µ (mm1)1.04
Crystal size (mm)0.60 × 0.40 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.638, 0.813
No. of measured, independent and
observed [I > 2σ(I)] reflections
2540, 1841, 1632
Rint0.018
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.126, 1.07
No. of reflections1841
No. of parameters242
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.19

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O30.822.382.762 (4)109.0
O2—H2A···O5i0.821.962.713 (4)152.0
O4—H4A···O50.821.852.579 (4)148.0
O6—H6A···O4ii0.822.202.954 (3)153.0
O6—H6A···O70.822.312.734 (4)113.0
C3—H3A···O2iii0.932.583.246 (5)129.0
C12—H12B···O4iv0.962.553.459 (6)157.0
C12—H12C···O80.962.322.927 (6)122.0
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1, y1, z; (iii) x, y+1, z1/2; (iv) x+1, y, z.
 

Acknowledgements

We thank the Academy of Sciences of the Republic of Uzbekistan for supporting this study (grant No. FA-F7-T185)

References

First citationBodewes, T. C. F., Luttikhold, J., van Stijn, M. F. M., Visser, M., van Norren, K., Vermeulen, M. A. R. & van Leeuwen, P. A. M. (2011). Curr. Org. Chem. 15, 2616–2626.  CAS Google Scholar
First citationMartinez-Vazquez, M., Vazquez Garcia, H. M., Toscano, R. A. & Perez, G. E. (1993). J. Nat. Prod. 56, 1410–1415.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVeitch, N. C. & Grayer, R. J. (2011). Nat. Prod. Rep. 28, 626–1695.  Web of Science CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds