organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-(3,5-Dimeth­­oxy­benzyl­amino)-9-(oxan-2-yl)-9H-purine

aDepartment of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic, and bDepartment of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
*Correspondence e-mail: zdenek.travnicek@upol.cz

(Received 22 February 2013; accepted 8 March 2013; online 13 March 2013)

The mol­ecule of the title compound, C19H23N5O3, contains six-membered pyrimidine and five-membered imidazole rings merged into the essentially planar purine skeleton (r.m.s. deviation = 0.01 Å). In the crystal, pairs of N—H⋯N hydrogen bonds link mol­ecules into inversion dimers. The dimers are linked via C—H⋯O hydrogen bonds, forming double-stranded chains propagating along [001]. These chains are linked via C—H⋯π and parallel slipped ππ inter­actions [centroid–centroid distance = 3.467 (1) Å; slippage 0.519 Å], forming a three-dimensional network.

Related literature

For the alternative synthetic procedure and biological activity of the title compound, see: Szüčová et al. (2009[Szüčová, L., Spíchal, L., Doležal, K., Zatloukal, M., Greplová, J., Galuszka, P., Kryštof, V., Voller, J., Popa, I., Massino, F. J., Jørgensen, J. E. & Strnad, M. (2009). Bioorg. Med. Chem. 17, 1938-1947.]). For the structures of similar compounds, see: Soriano-Garcia et al. (2003[Soriano-Garcia, M., Avellaneda, C. R. & Aguirre-Hernandez, G. (2003). Anal. Sci. 19, 1343-1344.]); Taddei et al. (2004[Taddei, D., Kilian, P., Slawin, A. M. Z. & Woollins, J. D. (2004). Org. Biomol. Chem. 2, 665-670.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C19H23N5O3

  • Mr = 369.42

  • Triclinic, [P \overline 1]

  • a = 8.6978 (3) Å

  • b = 8.8318 (3) Å

  • c = 12.1517 (4) Å

  • α = 84.808 (3)°

  • β = 78.674 (3)°

  • γ = 82.039 (3)°

  • V = 904.53 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 110 K

  • 0.40 × 0.40 × 0.35 mm

Data collection
  • Agilent Xcalibur Sapphire2 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]). Tmin = 0.963, Tmax = 0.968

  • 6684 measured reflections

  • 3177 independent reflections

  • 2784 reflections with I > 2σ(I)

  • Rint = 0.010

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.116

  • S = 1.07

  • 3177 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6⋯N7i 0.88 2.38 3.155 (2) 147
C17—H17A⋯O3ii 0.98 2.44 3.216 (3) 136
C8—H8⋯Cgi 0.95 2.72 3.506 (2) 142
C21—H21BCgiii 0.99 2.93 3.904 (3) 169
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x, y, z-1; (iii) -x+2, -y+2, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2011[Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, 6-(3,5-dimethoxybenzylamino)-9-(tetrahydropyran-2-yl)-9H-purine (Fig. 1), is formed by the essentially planar purine moiety substituted by 3,5-dimethoxybenzylamine and tetrahydropyran-2-yl at the C6, and N9 position, respectively (for related structures, see: Soriano-Garcia et al., 2003; Taddei et al., 2004). The six-membered pyrimidine and five-membered imidazole rings of the purine moiety form the dihedral angle of 1.50 (6)° (Fig. 2), while the planes fitted through all the non-hydrogen atoms of purine and benzene rings form the dihedral angle of 63.87 (4)° (Fig. 3). The most deviated atoms from the planes created through the pyrimidine, imidazole, purine and benzene rings are C5 (0.006 (2) Å), C8 (-0.005 (2) Å), C5 (0.021 (2) Å), and C12 (0.011 (2) Å), respectively. The crystal structure is stabilized by the N6—H6···N7 hydrogen bonds (see Table 1 for parameters) and C—H···O, C—H···π and parallel slipped ππ interactions [centroid–centroid distance = 3.467 (1) Å; slippage 0.519 Å] (Fig. 4 and Fig. 5). The tetrahydropyranyl ring adopts a chair conformation. The Cremer-Pople puckering parameters (Cremer & Pople, 1975) are QT = 0.691 (2) Å, Θ2 = 89.4 (2)°, q2 = 0.691 (2)°, q3 = 0.007 (2)° and ϕ2 = 148.8 (2)°.

Related literature top

For the alternative synthetic procedure and biological activity of the title compound, see: Szüčová et al. (2009). For the structures of similar compounds, see: Soriano-Garcia et al. (2003); Taddei et al. (2004). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound, synthesized with the aim of its possible utilization as a suitable ligand in coordination chemistry of transition metals, was prepared by a slightly modified method reported by Szüčová et al., 2009. The starting compounds 6-chloropurine and 3,4-dihydro-2H-pyrane (a molar ratio of 1:2) were stirred in a minimum volume of ethanol (15 min, laboratory temperature) and then CF3COOH (1.30 molar equivalent of 6-chloropurine) was slowly poured. The reaction mixture was neutralized by 10% NH4OH after 24 h of stirring at laboratory temperature. The solvents were evaporated and yellowish product was washed (distilled water, methanol, diethyl ether) and dried in desiccator over P4O10. The obtained 6-chloro-9-(tetrahydropyran-2-yl)-9H-purine was dissolved in a minimum volume of N,N`-dimethylformamide and 3,5-dimethoxybenzylamine (1.33 molar equivalent) and triethylamine (1.67 molar equivalent) were poured in. The reaction mixture was stirred at 90 °C for 150 min and then it was evaporated to dryness. The solid was suspended in cold distilled water, filtered off, washed (distilled water, methanol, diethyl ether) and dried in desiccator over P4O10. The powder product was recrystallized from ethanol and the obtained microcrystals, suitable for single-crystal X-ray analysis, were collected by filtration. Analysis calculated for C19H23N5O3: C 61.8, H 6.3, N 19.0%; found: C 61.7, H 6.4, N 18.8%. Elemental analysis (C, H, N) was performed on a Thermo Scientific Flash 2000 CHNO-S Analyzer.

Refinement top

Non-hydrogen atoms were refined anisotropically and hydrogen atoms were located in difference maps and refined using the riding model with C—H = 0.95 (CH), C—H = 0.99 (CH2), C—H = 0.98 (CH3) Å, and N—H = 0.88 Å, with Uiso(H) = 1.2Ueq(CH, CH2, NH) and 1.5Ueq(CH3). The maximum and minimum residual electron density peaks of 0.45 and -0.22 e Å-3, respectively, were located 0.93 Å and 0.74 Å from the C21 and C19 atoms, respectively.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the non-hydrogen atoms depicted as thermal ellipsoids at the 50% probability level and given with the atom numbering scheme.
[Figure 2] Fig. 2. The model of the title compound, showing the mutual orientation of the six-membered pyrimidine (least-squares plane created through the N1, C2, N3, C4, C5 and C6 atoms; in blue) and five-membered imidazole rings (least-squares plane created through the C4, C5, N7, C8 and N9 atoms; in red). The planes are nearly coplanar forming the dihedral angle of 1.50 (6)°.
[Figure 3] Fig. 3. The model of the title compound, showing the mutual orientation of the purine skeleton (least-squares plane created through the N1, C2, N3, C4, C5, C6, N7, C8 and N9 atoms; in red) and benzene ring (least-squares plane created through the C10, C11, C12, C13, C14 and C15 atoms; in blue). The planes form the dihedral angle of 63.87 (4)°.
[Figure 4] Fig. 4. Part of the crystal structure of the title compound (Ball-and-stick model), showing the N6—H6···N7 hydrogen bonds (dashed green lines; see Table 1 for parameters) and C8—H8···π, C21—H21···π and π···π interactions (dashed orange lines; see Table 1 for C8—H8···Cg and C21—H21···Cg parameters). Cg···Cgiii parameters: d(D···A) = 3.46700 (10) Å. Symmetry codes: (i) –x+2, –y+1, –z+1; (iii) –x+2, –y+2, –z+1; (iv) x, y+1, z.
[Figure 5] Fig. 5. Part of the crystal structure of the title compound (Ball-and-stick model), showing two molecules connected through C16—H16C···N6 non-covalent contacts (dashed orange lines; see Table 1 for parameters). Symmetry code: (v) –x+1, –y+1, –z+1.
6-(3,5-Dimethoxybenzylamino)-9-(oxan-2-yl)-9H-purine top
Crystal data top
C19H23N5O3Z = 2
Mr = 369.42F(000) = 392
Triclinic, P1Dx = 1.356 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6978 (3) ÅCell parameters from 6498 reflections
b = 8.8318 (3) Åθ = 3.0–31.7°
c = 12.1517 (4) ŵ = 0.10 mm1
α = 84.808 (3)°T = 110 K
β = 78.674 (3)°Prism, colourless
γ = 82.039 (3)°0.40 × 0.40 × 0.35 mm
V = 904.53 (5) Å3
Data collection top
Agilent Xcalibur Sapphire2
diffractometer
3177 independent reflections
Radiation source: Enhance (Mo) X-ray Source2784 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.010
Detector resolution: 8.3611 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 810
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012).
k = 109
Tmin = 0.963, Tmax = 0.968l = 1414
6684 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0525P)2 + 0.5406P]
where P = (Fo2 + 2Fc2)/3
3177 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C19H23N5O3γ = 82.039 (3)°
Mr = 369.42V = 904.53 (5) Å3
Triclinic, P1Z = 2
a = 8.6978 (3) ÅMo Kα radiation
b = 8.8318 (3) ŵ = 0.10 mm1
c = 12.1517 (4) ÅT = 110 K
α = 84.808 (3)°0.40 × 0.40 × 0.35 mm
β = 78.674 (3)°
Data collection top
Agilent Xcalibur Sapphire2
diffractometer
3177 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012).
2784 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.968Rint = 0.010
6684 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.07Δρmax = 0.45 e Å3
3177 reflectionsΔρmin = 0.22 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.34333 (13)0.54945 (15)0.18751 (10)0.0325 (3)
N10.74662 (17)0.93176 (17)0.56497 (14)0.0343 (4)
O20.86794 (14)0.66871 (15)0.06254 (11)0.0348 (3)
C20.7939 (2)1.0254 (2)0.62854 (19)0.0393 (5)
H20.72521.11780.64310.047*
N30.92245 (18)1.00924 (17)0.67466 (14)0.0347 (4)
O31.14994 (17)0.82537 (18)0.87030 (12)0.0457 (4)
C41.01114 (19)0.87587 (19)0.64793 (14)0.0253 (4)
C50.98030 (19)0.76782 (18)0.58273 (14)0.0240 (4)
N60.79042 (16)0.70162 (17)0.47898 (12)0.0289 (3)
H60.85740.62350.45250.035*
C60.83853 (19)0.79912 (19)0.54048 (14)0.0260 (4)
N71.09793 (16)0.64320 (16)0.57585 (12)0.0269 (3)
C81.19489 (19)0.67977 (19)0.63655 (15)0.0265 (4)
H81.28780.61480.64800.032*
N91.15153 (16)0.81862 (15)0.68192 (12)0.0250 (3)
C90.6313 (2)0.7216 (2)0.45512 (15)0.0302 (4)
H9A0.58580.82990.46350.036*
H9B0.56520.65770.51130.036*
C100.62444 (19)0.67918 (18)0.33892 (14)0.0245 (4)
C110.48482 (19)0.63085 (18)0.32182 (14)0.0244 (4)
H110.39850.62260.38260.029*
C120.47421 (19)0.59515 (18)0.21484 (15)0.0251 (4)
C130.6021 (2)0.60276 (19)0.12598 (15)0.0270 (4)
H130.59540.57460.05360.032*
C140.73869 (19)0.65179 (19)0.14429 (15)0.0262 (4)
C150.75085 (19)0.69009 (18)0.25110 (14)0.0255 (4)
H150.84520.72330.26320.031*
C160.2009 (2)0.5642 (2)0.26940 (16)0.0374 (5)
H16A0.11550.53090.23910.056*
H16B0.17290.67160.28770.056*
H16C0.21640.50040.33750.056*
C170.8598 (2)0.6274 (3)0.04723 (16)0.0421 (5)
H17A0.95990.64040.09840.063*
H17B0.77340.69330.07510.063*
H17C0.84030.52020.04330.063*
C181.2218 (2)0.88515 (19)0.76217 (15)0.0278 (4)
H181.19260.99880.75690.033*
C191.2010 (3)0.8915 (3)0.95875 (19)0.0599 (7)
H19A1.14790.84981.03270.072*
H19B1.17121.00390.95410.072*
C201.3771 (3)0.8561 (3)0.9489 (2)0.0600 (7)
H20A1.40640.74390.95780.072*
H20B1.41120.90371.00930.072*
C211.4591 (3)0.9167 (3)0.8360 (2)0.0486 (6)
H21A1.57460.88680.82790.058*
H21B1.43891.03000.83020.058*
C221.3974 (2)0.8509 (2)0.74142 (18)0.0381 (5)
H22A1.44310.89830.66740.046*
H22B1.42890.73880.74120.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0209 (6)0.0443 (8)0.0359 (7)0.0083 (5)0.0071 (5)0.0122 (6)
N10.0259 (8)0.0266 (8)0.0536 (10)0.0034 (6)0.0173 (7)0.0084 (7)
O20.0270 (7)0.0448 (8)0.0353 (7)0.0124 (6)0.0040 (5)0.0088 (6)
C20.0283 (10)0.0256 (9)0.0678 (14)0.0061 (7)0.0193 (9)0.0143 (9)
N30.0269 (8)0.0245 (8)0.0561 (10)0.0023 (6)0.0157 (7)0.0123 (7)
O30.0487 (9)0.0562 (9)0.0373 (8)0.0194 (7)0.0102 (6)0.0057 (7)
C40.0207 (8)0.0224 (8)0.0341 (9)0.0019 (6)0.0082 (7)0.0033 (7)
C50.0209 (8)0.0224 (8)0.0295 (9)0.0012 (6)0.0070 (7)0.0029 (7)
N60.0231 (7)0.0306 (8)0.0360 (8)0.0043 (6)0.0145 (6)0.0101 (6)
C60.0225 (8)0.0257 (9)0.0310 (9)0.0008 (7)0.0084 (7)0.0031 (7)
N70.0221 (7)0.0256 (7)0.0347 (8)0.0019 (6)0.0109 (6)0.0068 (6)
C80.0227 (8)0.0219 (8)0.0367 (9)0.0018 (6)0.0115 (7)0.0054 (7)
N90.0221 (7)0.0213 (7)0.0344 (8)0.0014 (5)0.0118 (6)0.0046 (6)
C90.0217 (8)0.0357 (10)0.0352 (10)0.0016 (7)0.0116 (7)0.0069 (8)
C100.0233 (8)0.0177 (8)0.0340 (9)0.0040 (6)0.0132 (7)0.0034 (7)
C110.0214 (8)0.0205 (8)0.0316 (9)0.0022 (6)0.0078 (7)0.0039 (7)
C120.0215 (8)0.0202 (8)0.0363 (9)0.0013 (6)0.0119 (7)0.0044 (7)
C130.0264 (9)0.0259 (9)0.0312 (9)0.0017 (7)0.0104 (7)0.0059 (7)
C140.0224 (8)0.0223 (8)0.0341 (9)0.0014 (6)0.0064 (7)0.0026 (7)
C150.0214 (8)0.0200 (8)0.0378 (10)0.0006 (6)0.0131 (7)0.0027 (7)
C160.0238 (9)0.0543 (12)0.0373 (10)0.0112 (8)0.0048 (8)0.0116 (9)
C170.0347 (10)0.0602 (13)0.0348 (10)0.0167 (9)0.0037 (8)0.0096 (9)
C180.0311 (9)0.0207 (8)0.0360 (10)0.0055 (7)0.0144 (8)0.0031 (7)
C190.0812 (18)0.0688 (16)0.0379 (12)0.0238 (14)0.0180 (12)0.0101 (11)
C200.0923 (19)0.0450 (13)0.0620 (15)0.0279 (13)0.0523 (14)0.0076 (11)
C210.0400 (12)0.0424 (12)0.0728 (16)0.0082 (9)0.0319 (11)0.0014 (11)
C220.0238 (9)0.0453 (11)0.0477 (12)0.0038 (8)0.0140 (8)0.0015 (9)
Geometric parameters (Å, º) top
O1—C121.3672 (19)C11—C121.388 (2)
O1—C161.427 (2)C11—H110.9500
N1—C21.336 (2)C12—C131.394 (2)
N1—C61.345 (2)C13—C141.383 (2)
O2—C141.362 (2)C13—H130.9500
O2—C171.432 (2)C14—C151.398 (2)
C2—N31.331 (2)C15—H150.9500
C2—H20.9500C16—H16A0.9800
N3—C41.344 (2)C16—H16B0.9800
O3—C181.428 (2)C16—H16C0.9800
O3—C191.438 (2)C17—H17A0.9800
C4—C51.379 (2)C17—H17B0.9800
C4—N91.381 (2)C17—H17C0.9800
C5—N71.392 (2)C18—C221.491 (2)
C5—C61.410 (2)C18—H181.0000
N6—C61.347 (2)C19—C201.503 (4)
N6—C91.453 (2)C19—H19A0.9900
N6—H60.8800C19—H19B0.9900
N7—C81.312 (2)C20—C211.504 (3)
C8—N91.365 (2)C20—H20A0.9900
C8—H80.9500C20—H20B0.9900
N9—C181.451 (2)C21—C221.548 (3)
C9—C101.508 (2)C21—H21A0.9900
C9—H9A0.9900C21—H21B0.9900
C9—H9B0.9900C22—H22A0.9900
C10—C151.381 (2)C22—H22B0.9900
C10—C111.400 (2)
C12—O1—C16117.27 (13)C13—C14—C15120.74 (16)
C2—N1—C6118.32 (15)C10—C15—C14119.37 (15)
C14—O2—C17116.38 (13)C10—C15—H15120.3
N3—C2—N1129.90 (16)C14—C15—H15120.3
N3—C2—H2115.0O1—C16—H16A109.5
N1—C2—H2115.0O1—C16—H16B109.5
C2—N3—C4109.91 (15)H16A—C16—H16B109.5
C18—O3—C19111.26 (15)O1—C16—H16C109.5
N3—C4—C5127.40 (15)H16A—C16—H16C109.5
N3—C4—N9126.56 (15)H16B—C16—H16C109.5
C5—C4—N9106.04 (14)O2—C17—H17A109.5
C4—C5—N7110.73 (14)O2—C17—H17B109.5
C4—C5—C6116.57 (15)H17A—C17—H17B109.5
N7—C5—C6132.65 (15)O2—C17—H17C109.5
C6—N6—C9121.98 (14)H17A—C17—H17C109.5
C6—N6—H6119.0H17B—C17—H17C109.5
C9—N6—H6119.0O3—C18—N9105.55 (13)
N1—C6—N6119.01 (15)O3—C18—C22112.37 (15)
N1—C6—C5117.88 (15)N9—C18—C22112.58 (15)
N6—C6—C5123.10 (15)O3—C18—H18108.7
C8—N7—C5103.34 (14)N9—C18—H18108.7
N7—C8—N9114.60 (14)C22—C18—H18108.7
N7—C8—H8122.7O3—C19—C20110.3 (2)
N9—C8—H8122.7O3—C19—H19A109.6
C8—N9—C4105.29 (13)C20—C19—H19A109.6
C8—N9—C18128.47 (14)O3—C19—H19B109.6
C4—N9—C18125.68 (14)C20—C19—H19B109.6
N6—C9—C10113.44 (14)H19A—C19—H19B108.1
N6—C9—H9A108.9C19—C20—C21110.10 (18)
C10—C9—H9A108.9C19—C20—H20A109.6
N6—C9—H9B108.9C21—C20—H20A109.6
C10—C9—H9B108.9C19—C20—H20B109.6
H9A—C9—H9B107.7C21—C20—H20B109.6
C15—C10—C11120.70 (15)H20A—C20—H20B108.2
C15—C10—C9121.21 (15)C20—C21—C22109.71 (17)
C11—C10—C9118.08 (15)C20—C21—H21A109.7
C12—C11—C10119.11 (16)C22—C21—H21A109.7
C12—C11—H11120.4C20—C21—H21B109.7
C10—C11—H11120.4C22—C21—H21B109.7
O1—C12—C11124.41 (15)H21A—C21—H21B108.2
O1—C12—C13114.85 (15)C18—C22—C21108.40 (16)
C11—C12—C13120.74 (15)C18—C22—H22A110.0
C14—C13—C12119.31 (16)C21—C22—H22A110.0
C14—C13—H13120.3C18—C22—H22B110.0
C12—C13—H13120.3C21—C22—H22B110.0
O2—C14—C13124.00 (16)H22A—C22—H22B108.4
O2—C14—C15115.25 (14)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
N6—H6···N7i0.882.383.155 (2)147
C17—H17A···O3ii0.982.443.216 (3)136
C8—H8···Cgi0.952.723.506 (2)142
C21—H21B···Cgiii0.992.933.904 (3)169
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z1; (iii) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC19H23N5O3
Mr369.42
Crystal system, space groupTriclinic, P1
Temperature (K)110
a, b, c (Å)8.6978 (3), 8.8318 (3), 12.1517 (4)
α, β, γ (°)84.808 (3), 78.674 (3), 82.039 (3)
V3)904.53 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.40 × 0.35
Data collection
DiffractometerAgilent Xcalibur Sapphire2
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012).
Tmin, Tmax0.963, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
6684, 3177, 2784
Rint0.010
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.116, 1.07
No. of reflections3177
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.22

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2011), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
N6—H6···N7i0.882.383.155 (2)147
C17—H17A···O3ii0.982.443.216 (3)136
C8—H8···Cgi0.952.723.506 (2)142
C21—H21B···Cgiii0.992.933.904 (3)169
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z1; (iii) x+2, y+2, z+1.
 

Acknowledgements

This work was supported by Palacký University (grant No. PrF_2012_009). The authors thank Mr Tomáš Šilha for performing the CHN elemental analyses.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoriano-Garcia, M., Avellaneda, C. R. & Aguirre-Hernandez, G. (2003). Anal. Sci. 19, 1343–1344.  Web of Science PubMed CAS Google Scholar
First citationSzüčová, L., Spíchal, L., Doležal, K., Zatloukal, M., Greplová, J., Galuszka, P., Kryštof, V., Voller, J., Popa, I., Massino, F. J., Jørgensen, J. E. & Strnad, M. (2009). Bioorg. Med. Chem. 17, 1938–1947.  Web of Science PubMed Google Scholar
First citationTaddei, D., Kilian, P., Slawin, A. M. Z. & Woollins, J. D. (2004). Org. Biomol. Chem. 2, 665–670.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds