organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl (E)-2-cyano-3-(4-methyl­phen­yl)acrylate: a second monoclinic polymorph

aDeparment of Chemistry, Anhui University, Hefei 230039, People's Republic of China, and bKey Laboratory of Functional Inorganic Materials, Chemistry, Hefei 230039, People's Republic of China
*Correspondence e-mail: kong_lin2009@126.com

(Received 2 December 2012; accepted 8 April 2013; online 17 April 2013)

The title compound, C13H13NO2, was previously described in space group P21/c by He et al. [Acta Cryst. (1993), C49, 2000–2002]. The ethyl group is disordered over two sets of sites in a 0.615 (10):0.385 (10) ratio. The C—O—C—C torsion angles containing the ethyl group are −111.6 (10) and 177.9 (7)°, while in the previously reported polymorph, the torsion angle is −167.3 (2)°. The molecules pack to form a three-dimensional structure in the ABAB style along the c-axis direction in the title compound, but parallel to the a-axis direction in the reported polymorph.

Related literature

For the first polymorph, see: He et al. (1993[He, Y., Shi, J. & Su, G. (1993). Acta Cryst. C49, 2000-2002.]). For background to intra­molecular charge-transfer mol­ecules and their use in the construction of one- to three-dimesional organic nanostructures, see: Zhang et al. (2007[Zhang, X. J., Zhang, X. H., Zou, K., Lee, C. S. & Lee, S. T. (2007). J. Am. Chem. Soc. 129, 3527-3532.]); Zhang et al. (2008[Zhang, X. J., Zhang, X. H., Wang, B., Zhang, C. Y., Chang, J. C., Lee, C. S. & Lee, S. T. (2008). J. Phys. Chem. C, pp. 16264-16268.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13NO2

  • Mr = 215.24

  • Monoclinic, P 21 /c

  • a = 4.7616 (4) Å

  • b = 17.7989 (15) Å

  • c = 14.2841 (12) Å

  • β = 93.8021 (10)°

  • V = 1207.93 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan phi and omega scans Tmin = 0.984, Tmax = 0.984

  • 8359 measured reflections

  • 2117 independent reflections

  • 1617 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.192

  • S = 1.11

  • 2117 reflections

  • 168 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2002[Bruker (2002). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is a typical D–π–A (D = donor, A = acceptor) molecule. This type of compounds can be regarded as intramolecule charge transfer (ICT) molecules (Zhang et al., 2007) and can be used to construct 1-dimesional to 3-dimesional organic nanostructures (Zhang et al., 2008). In the title compound, the benzene cycle can be used as the electron donor unit, cyano group as the electron acceptor unit, the ester group as a flexible chain to increase the solubility of the compound. Thus, the cyano group and benzene cycle are linked by a vinyl bond to form organo-soluble D–π–A molecule.

In title compound (Fig. 1), the CC group is almost coplanar with the attached phenyl ring, the torsion angle C9—C15—C5—C4 being 2.2 (4) °. The CC group is also coplanar with ester group. The torsion angle C15—C9—Cl1—O2 is 177.5 (2) °. Excellent coplanarity of conjugated moieties enables the title compound to be a high delocalized electron system.

Related literature top

For the first polymorph, see: He et al. (1993). For background to intramolecular charge-transfer molecules and their use in the construction of one- to three-dimesional organic nanostructures, see: Zhang et al. (2007); Zhang et al. (2008).

Experimental top

p-Toluic aldehyde (0.50 g), ethyl cyanoacetate(0.51 g), and ammonium acetate (0.32 g) were dissolved in 30 ml of ethanol and refluxed for about 4 h to give crude product as a solid. The precipitation was filtered, purified by recrystallization from acetonitrile/water (1:4) and 0.85 g of the titled compound was obtained as a white solid. Yield: 94.9%. 1H NMR (400 MHz, d6-DMSO): 8.35 (s, 1H), 7.98 (d, J = 8.0 Hz, 2H), 7.41 (d, J = 8.0 Hz, 2H), 7.32 (q, J = 7.2 Hz, 2H), 2,40 (s, 3H), 1.31 (t, J = 7.2 Hz, 3H). 13C NMR (100 MHz) 13.97, 21.33, 62.24, 101.14, 115.78, 128.68, 129.94, 130.96, 144.39, 154.94, 161.98.

Refinement top

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93—0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C).

Structure description top

The title compound is a typical D–π–A (D = donor, A = acceptor) molecule. This type of compounds can be regarded as intramolecule charge transfer (ICT) molecules (Zhang et al., 2007) and can be used to construct 1-dimesional to 3-dimesional organic nanostructures (Zhang et al., 2008). In the title compound, the benzene cycle can be used as the electron donor unit, cyano group as the electron acceptor unit, the ester group as a flexible chain to increase the solubility of the compound. Thus, the cyano group and benzene cycle are linked by a vinyl bond to form organo-soluble D–π–A molecule.

In title compound (Fig. 1), the CC group is almost coplanar with the attached phenyl ring, the torsion angle C9—C15—C5—C4 being 2.2 (4) °. The CC group is also coplanar with ester group. The torsion angle C15—C9—Cl1—O2 is 177.5 (2) °. Excellent coplanarity of conjugated moieties enables the title compound to be a high delocalized electron system.

For the first polymorph, see: He et al. (1993). For background to intramolecular charge-transfer molecules and their use in the construction of one- to three-dimesional organic nanostructures, see: Zhang et al. (2007); Zhang et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the title molecule with 50% probability ellipsoids.
Ethyl (E)-2-cyano-3-(4-methylphenyl)acrylate top
Crystal data top
C13H13NO2F(000) = 456
Mr = 215.24Dx = 1.184 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3950 reflections
a = 4.7616 (4) Åθ = 2.3–25.5°
b = 17.7989 (15) ŵ = 0.08 mm1
c = 14.2841 (12) ÅT = 298 K
β = 93.8021 (10)°Needle, white
V = 1207.93 (18) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2117 independent reflections
Radiation source: fine-focus sealed tube1617 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
phi and omega scans
h = 55
Tmin = 0.984, Tmax = 0.984k = 2119
8359 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.192 w = 1/[σ2(Fo2) + (0.1011P)2 + 0.1786P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
2117 reflectionsΔρmax = 0.19 e Å3
168 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.043 (10)
Crystal data top
C13H13NO2V = 1207.93 (18) Å3
Mr = 215.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.7616 (4) ŵ = 0.08 mm1
b = 17.7989 (15) ÅT = 298 K
c = 14.2841 (12) Å0.20 × 0.20 × 0.20 mm
β = 93.8021 (10)°
Data collection top
Bruker APEXII CCD
diffractometer
2117 independent reflections
Absorption correction: multi-scan
phi and omega scans
1617 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.984Rint = 0.020
8359 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.192H-atom parameters constrained
S = 1.11Δρmax = 0.19 e Å3
2117 reflectionsΔρmin = 0.21 e Å3
168 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2687 (8)0.0915 (2)0.4400 (2)0.1201 (10)
H1A0.12080.12630.42190.180*
H1B0.20040.05490.48230.180*
H1C0.42420.11820.47050.180*
C20.3650 (6)0.05220 (16)0.35330 (19)0.0954 (8)
C30.2589 (7)0.01687 (16)0.3251 (2)0.1062 (9)
H30.12500.03980.36010.127*
C40.3451 (6)0.05290 (14)0.24691 (19)0.0924 (8)
H40.27150.09990.23070.111*
C50.5404 (5)0.02009 (12)0.19193 (16)0.0740 (6)
C60.6416 (6)0.05037 (14)0.21981 (19)0.0953 (8)
H60.77130.07440.18420.114*
C70.5541 (7)0.08526 (15)0.2988 (2)0.1009 (9)
H70.62560.13240.31530.121*
C90.6075 (5)0.11983 (12)0.06603 (15)0.0713 (6)
C100.4199 (5)0.17670 (12)0.09614 (16)0.0777 (7)
C110.7662 (5)0.13621 (14)0.01789 (17)0.0829 (7)
C120.741 (3)0.2242 (6)0.1547 (6)0.109 (3)0.385 (10)
H12A0.57270.24560.18630.131*0.385 (10)
H12B0.80830.18280.19120.131*0.385 (10)
C130.965 (3)0.2823 (9)0.1321 (9)0.136 (4)0.385 (10)
H13A0.88430.32440.10170.204*0.385 (10)
H13B1.04250.29870.18900.204*0.385 (10)
H13C1.11170.26080.09110.204*0.385 (10)
C150.6509 (5)0.05304 (12)0.10882 (16)0.0755 (6)
H150.77550.02200.07960.091*
C12'0.8890 (16)0.2220 (4)0.1310 (5)0.0961 (19)0.615 (10)
H12C1.08180.22710.10530.115*0.615 (10)
H12D0.88190.18400.17970.115*0.615 (10)
C13'0.780 (2)0.2953 (3)0.1689 (5)0.119 (2)0.615 (10)
H13D0.58330.29040.18790.178*0.615 (10)
H13E0.88140.30940.22200.178*0.615 (10)
H13F0.80400.33310.12120.178*0.615 (10)
N10.2704 (6)0.22244 (13)0.11968 (17)0.1036 (8)
O10.9398 (5)0.09507 (11)0.04727 (14)0.1101 (7)
O20.6971 (4)0.20214 (10)0.05566 (13)0.1045 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.1351 (17)0.1184 (17)0.1087 (15)0.0055 (14)0.0237 (13)0.0261 (13)
C20.1080 (15)0.0895 (14)0.0898 (13)0.0069 (12)0.0141 (12)0.0126 (11)
C30.123 (2)0.094 (2)0.108 (2)0.0117 (16)0.0474 (17)0.0159 (15)
C40.1092 (18)0.0723 (15)0.0990 (17)0.0114 (13)0.0320 (14)0.0128 (13)
C50.0863 (14)0.0615 (12)0.0751 (13)0.0038 (10)0.0114 (11)0.0015 (10)
C60.120 (2)0.0713 (15)0.0974 (18)0.0148 (13)0.0271 (15)0.0122 (13)
C70.131 (2)0.0749 (16)0.0985 (18)0.0101 (14)0.0183 (16)0.0203 (14)
C90.0841 (13)0.0612 (12)0.0695 (12)0.0036 (10)0.0120 (10)0.0005 (9)
C100.0975 (15)0.0600 (12)0.0769 (14)0.0010 (11)0.0151 (11)0.0059 (10)
C110.1033 (17)0.0688 (14)0.0783 (14)0.0001 (12)0.0191 (12)0.0043 (11)
C120.134 (8)0.096 (6)0.099 (6)0.016 (6)0.017 (5)0.014 (4)
C130.137 (8)0.144 (10)0.132 (8)0.025 (8)0.044 (7)0.004 (7)
C150.0883 (14)0.0631 (13)0.0762 (13)0.0012 (10)0.0137 (11)0.0020 (10)
C12'0.104 (4)0.097 (4)0.090 (4)0.011 (4)0.031 (3)0.026 (3)
C13'0.151 (6)0.101 (4)0.109 (4)0.011 (4)0.042 (4)0.037 (3)
N10.1314 (19)0.0732 (14)0.1099 (17)0.0159 (12)0.0344 (14)0.0056 (12)
O10.1454 (17)0.0902 (13)0.1006 (13)0.0211 (11)0.0524 (12)0.0065 (10)
O20.1456 (16)0.0791 (12)0.0937 (13)0.0125 (10)0.0435 (11)0.0220 (9)
Geometric parameters (Å, º) top
C1—C21.519 (4)C10—N11.147 (3)
C1—H1A0.9600C11—O11.201 (3)
C1—H1B0.9600C11—O21.324 (3)
C1—H1C0.9600C12—O21.496 (8)
C2—C71.363 (4)C12—C131.507 (6)
C2—C31.379 (4)C12—H12A0.9700
C3—C41.374 (4)C12—H12B0.9700
C3—H30.9300C13—H13A0.9600
C4—C51.385 (3)C13—H13B0.9600
C4—H40.9300C13—H13C0.9600
C5—C61.392 (3)C15—H150.9300
C5—C151.453 (3)C12'—C13'1.492 (5)
C6—C71.376 (4)C12'—O21.500 (5)
C6—H60.9300C12'—H12C0.9700
C7—H70.9300C12'—H12D0.9700
C9—C151.346 (3)C13'—H13D0.9600
C9—C101.435 (3)C13'—H13E0.9600
C9—C111.488 (3)C13'—H13F0.9600
C2—C1—H1A109.5N1—C10—C9179.5 (3)
C2—C1—H1B109.5O1—C11—O2123.8 (2)
H1A—C1—H1B109.5O1—C11—C9124.1 (2)
C2—C1—H1C109.5O2—C11—C9112.1 (2)
H1A—C1—H1C109.5O2—C12—C1396.8 (8)
H1B—C1—H1C109.5O2—C12—H12A112.4
C7—C2—C3117.4 (2)C13—C12—H12A112.4
C7—C2—C1120.9 (3)O2—C12—H12B112.4
C3—C2—C1121.6 (3)C13—C12—H12B112.4
C4—C3—C2122.0 (3)H12A—C12—H12B110.0
C4—C3—H3119.0C9—C15—C5132.4 (2)
C2—C3—H3119.0C9—C15—H15113.8
C3—C4—C5120.8 (2)C5—C15—H15113.8
C3—C4—H4119.6C13'—C12'—O2104.6 (4)
C5—C4—H4119.6C13'—C12'—H12C110.8
C4—C5—C6116.7 (2)O2—C12'—H12C110.8
C4—C5—C15125.9 (2)C13'—C12'—H12D110.8
C6—C5—C15117.4 (2)O2—C12'—H12D110.8
C7—C6—C5121.5 (2)H12C—C12'—H12D108.9
C7—C6—H6119.2C12'—C13'—H13D109.5
C5—C6—H6119.2C12'—C13'—H13E109.5
C2—C7—C6121.4 (3)H13D—C13'—H13E109.5
C2—C7—H7119.3C12'—C13'—H13F109.5
C6—C7—H7119.3H13D—C13'—H13F109.5
C15—C9—C10124.5 (2)H13E—C13'—H13F109.5
C15—C9—C11117.9 (2)C11—O2—C12124.9 (6)
C10—C9—C11117.57 (19)C11—O2—C12'110.8 (3)
C7—C2—C3—C42.1 (5)C10—C9—C11—O22.9 (3)
C1—C2—C3—C4179.9 (3)C10—C9—C15—C51.5 (4)
C2—C3—C4—C51.2 (5)C11—C9—C15—C5178.0 (2)
C3—C4—C5—C60.2 (4)C4—C5—C15—C92.2 (4)
C3—C4—C5—C15178.9 (3)C6—C5—C15—C9177.0 (2)
C4—C5—C6—C70.7 (4)O1—C11—O2—C1222.4 (7)
C15—C5—C6—C7178.5 (2)C9—C11—O2—C12158.7 (6)
C3—C2—C7—C61.6 (5)O1—C11—O2—C12'7.2 (5)
C1—C2—C7—C6179.6 (3)C9—C11—O2—C12'171.8 (4)
C5—C6—C7—C20.2 (5)C13—C12—O2—C11111.6 (10)
C15—C9—C11—O13.5 (4)C13—C12—O2—C12'42.2 (9)
C10—C9—C11—O1176.0 (2)C13'—C12'—O2—C11177.9 (7)
C15—C9—C11—O2177.5 (2)C13'—C12'—O2—C1253.2 (10)

Experimental details

Crystal data
Chemical formulaC13H13NO2
Mr215.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)4.7616 (4), 17.7989 (15), 14.2841 (12)
β (°) 93.8021 (10)
V3)1207.93 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
phi and omega scans
Tmin, Tmax0.984, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
8359, 2117, 1617
Rint0.020
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.192, 1.11
No. of reflections2117
No. of parameters168
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.21

Computer programs: APEX2 (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We gratefully acknowledge the NSFC(21101001), and the 211 Project of Anhui University for supporting this study.

References

First citationBruker (2002). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHe, Y., Shi, J. & Su, G. (1993). Acta Cryst. C49, 2000–2002.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X. J., Zhang, X. H., Wang, B., Zhang, C. Y., Chang, J. C., Lee, C. S. & Lee, S. T. (2008). J. Phys. Chem. C, pp. 16264–16268.  Google Scholar
First citationZhang, X. J., Zhang, X. H., Zou, K., Lee, C. S. & Lee, S. T. (2007). J. Am. Chem. Soc. 129, 3527–3532.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds