organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-[2-(4-Eth­­oxy­phen­yl)ethen­yl]-1-methyl­pyridinium naphthalene-2-sulfonate

aCentre for Crystal Growth, School of Advanced Sciences, VIT University, Vellore 632 014, India, bCrystal Growth and Crystallography Division, School of Advanced Sciences, VIT University, Vellore 632 014, India, cSophisticated Test and Instrumentation Centre (STIC), Cochin University PO, Cochin 682 022, Kerala, India, and dDepartment of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
*Correspondence e-mail: jpodder59@gmail.com

(Received 23 February 2013; accepted 4 April 2013; online 13 April 2013)

In the title salt, C16H18NO+·C10H7O3S, the substituents attached to the central C=C bond adopt a trans conformation and the benzene and pyridinium rings are nearly coplanar, making a dihedral angle of 6.01 (9)°. The crystal structure features weak C—H⋯O hydrogen bonds and C—H⋯π inter­actions .

Related literature

The title compound was synthesized as part of a search for materials with non-linear optical properties, see: Okada et al. (1990[Okada, S., Masaki, A., Matsuda, H., Nakanishi, H., Kato, M., Muramatsu, R. & Otsuka, M. (1990). Jpn. J. Appl. Phys. 29, 1112-1115.]); Yang et al. (2007[Yang, Z., Jazbinsek, M., Ruiz, B., Aravazhi, S., Gramlich, V. & Günter, P. (2007). Chem. Mater. 19, 3512-3518.]). For the synthesis of the pyridinium precursor, see: Okada et al. (1990[Okada, S., Masaki, A., Matsuda, H., Nakanishi, H., Kato, M., Muramatsu, R. & Otsuka, M. (1990). Jpn. J. Appl. Phys. 29, 1112-1115.]). For related compounds, see: Ruiz et al. (2006[Ruiz, B., Yang, Z., Gramlich, V., Jazbinsek, M. & Günter, P. (2006). J. Mater. Chem. 16, 2839-2842.]); Murugavel et al. (2009[Murugavel, S., SubbiahPandi, A., Srikanth, C. & Kalainathan, S. (2009). Acta Cryst. E65, o71.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18NO+·C10H7O3S

  • Mr = 447.53

  • Monoclinic, P 21 /n

  • a = 10.896 (1) Å

  • b = 17.2838 (16) Å

  • c = 11.8888 (10) Å

  • β = 92.752 (4)°

  • V = 2236.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 296 K

  • 0.40 × 0.35 × 0.30 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.932, Tmax = 0.949

  • 9220 measured reflections

  • 5354 independent reflections

  • 3678 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.159

  • S = 1.03

  • 5354 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C20–C24 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O3i 0.93 2.52 3.433 (3) 168
C11—H11⋯O3ii 0.93 2.42 3.323 (3) 165
C12—H12B⋯O4ii 0.96 2.58 3.488 (3) 159
C15—H15⋯O2iii 0.93 2.31 3.189 (3) 158
C25—H25⋯O3iv 0.93 2.45 3.323 (3) 156
C14—H14⋯Cg1v 0.93 2.84 3.686 (3) 152
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x+1, y, z; (iv) -x, -y+1, -z; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.])'; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound was synthesized in the search for materials with non-linear optical properties (Okada et al., 1990; Ruiz et al., 2006; Yang et al., 2007). In the title compound, C16H18NO+.C10H7O2S-, the pyridinium and benzene rings in the cation make a dihedral angle of 6.01 (9)°. This cation possess trans configuration, which can be confirmed from the torsion angle C6—C7—C8—C9, -177.8 (2)°. The C7C8 group links the benzene and pyridinium rings, with a characteristic bond length of 1.329 (3) Å. These features are similar to those found in related compounds (Ruiz et al., 2006; Murugavel et al., 2009). All deviations from expected values for bond lengths are within ca. 0.05 Å. The ethoxy group has C1 and O1 atoms slightly deviated from the mean plane of the benzene ring, by 0.130 (2) and 0.015 (2) Å, respectively. The anion and cation are placed almost perpendicular each to other, the mean planes making an angle of 81.72 (6) Å.

Regarding the crystal packing, weak C—H···O hydrogen bonds and C—H···π interactions are stabilizing the crystal structure. The inter and intramolecular C—H···O interactions are formed mainly in cation-anion and anion-anion pairs. The pyridinium ring is significantly involved in the formation of C—H···O hydrogen bonds. Interestingly, there is a dimeric hydrogen bond between two symmetry-related anions (C25—H25···O3), and other hydrogen bonds exist between anions and cations (see Table 1). In addition, one C—H···π interaction is observed between the cation and the anion: C14—H14···Cgi (Cg is the centroid of ring C20/C21/C22/C24/C25/C26; symmetry code i: -1/2+x,1/2-y,1/2+z; see Table 1).

Related literature top

The title compound was synthesized as part of a search for materials with non-linear optical properties, see: Okada et al. (1990); Yang et al. (2007). For the synthesis of the pyridinium precursor, see: Okada et al. (1990). For related compounds, see: Ruiz et al. (2006); Murugavel et al. (2009).

Experimental top

4-[2-(4-Ethoxy-phenyl)-vinyl-pyridinium iodide was obtained by condensation reaction between 1,4-dimethyl pyridinium iodide, which was prepared from 4-methylpyridine and methyl iodide, and 4-ethoxybenzaldehyde (all were taken in an equimolar ratio) in the presence of piperidine added as a catalyst. The solution was refluxed for 5 h, yielding the expected pyridinium salt after filtration (Okada et al., 1990). Then the iodide salt was dissolved in water (20 ml) and aqueous sodium 2-naphthalenesulfonate was added. A yellow precipitate was formed, which was filtered off and dried in an oven at 413 K for 1 h (Ruiz et al., 2006). Single crystals suitable for X-ray diffraction were obtained by successive recrystallization (three times) from a methanol/water (8:2 v/v) mixture.

Refinement top

H atoms were placed in calculated positions and allowed to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(parent C) for CH and CH2 groups, and Uiso(H) = 1.5Ueq(parent C) for methyl groups.

Structure description top

The title compound was synthesized in the search for materials with non-linear optical properties (Okada et al., 1990; Ruiz et al., 2006; Yang et al., 2007). In the title compound, C16H18NO+.C10H7O2S-, the pyridinium and benzene rings in the cation make a dihedral angle of 6.01 (9)°. This cation possess trans configuration, which can be confirmed from the torsion angle C6—C7—C8—C9, -177.8 (2)°. The C7C8 group links the benzene and pyridinium rings, with a characteristic bond length of 1.329 (3) Å. These features are similar to those found in related compounds (Ruiz et al., 2006; Murugavel et al., 2009). All deviations from expected values for bond lengths are within ca. 0.05 Å. The ethoxy group has C1 and O1 atoms slightly deviated from the mean plane of the benzene ring, by 0.130 (2) and 0.015 (2) Å, respectively. The anion and cation are placed almost perpendicular each to other, the mean planes making an angle of 81.72 (6) Å.

Regarding the crystal packing, weak C—H···O hydrogen bonds and C—H···π interactions are stabilizing the crystal structure. The inter and intramolecular C—H···O interactions are formed mainly in cation-anion and anion-anion pairs. The pyridinium ring is significantly involved in the formation of C—H···O hydrogen bonds. Interestingly, there is a dimeric hydrogen bond between two symmetry-related anions (C25—H25···O3), and other hydrogen bonds exist between anions and cations (see Table 1). In addition, one C—H···π interaction is observed between the cation and the anion: C14—H14···Cgi (Cg is the centroid of ring C20/C21/C22/C24/C25/C26; symmetry code i: -1/2+x,1/2-y,1/2+z; see Table 1).

The title compound was synthesized as part of a search for materials with non-linear optical properties, see: Okada et al. (1990); Yang et al. (2007). For the synthesis of the pyridinium precursor, see: Okada et al. (1990). For related compounds, see: Ruiz et al. (2006); Murugavel et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006)'; software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title salt, showing weak C—H···O, π···π aromatic and C—H···π interactions.
(E)-4-[2-(4-Ethoxyphenyl)ethenyl]-1-methylpyridinium naphthalene-2-sulfonate top
Crystal data top
C16H18NO+·C10H7O3SF(000) = 944
Mr = 447.53Dx = 1.329 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2935 reflections
a = 10.896 (1) Åθ = 4.7–55.0°
b = 17.2838 (16) ŵ = 0.18 mm1
c = 11.8888 (10) ÅT = 296 K
β = 92.752 (4)°Block, yellow
V = 2236.4 (3) Å30.40 × 0.35 × 0.30 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
5354 independent reflections
Radiation source: fine-focus sealed tube3678 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω and φ scanθmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1414
Tmin = 0.932, Tmax = 0.949k = 2211
9220 measured reflectionsl = 159
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0795P)2 + 0.5684P]
where P = (Fo2 + 2Fc2)/3
5354 reflections(Δ/σ)max = 0.004
291 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.32 e Å3
0 constraints
Crystal data top
C16H18NO+·C10H7O3SV = 2236.4 (3) Å3
Mr = 447.53Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.896 (1) ŵ = 0.18 mm1
b = 17.2838 (16) ÅT = 296 K
c = 11.8888 (10) Å0.40 × 0.35 × 0.30 mm
β = 92.752 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
5354 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
3678 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.949Rint = 0.020
9220 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.03Δρmax = 0.52 e Å3
5354 reflectionsΔρmin = 0.32 e Å3
291 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.13928 (4)0.46834 (3)0.22800 (4)0.03758 (16)
O10.22890 (17)0.26974 (11)0.70188 (18)0.0674 (5)
O20.17437 (15)0.39399 (10)0.27088 (15)0.0621 (5)
O30.15214 (14)0.47353 (9)0.10620 (13)0.0496 (4)
O40.19562 (15)0.53257 (11)0.28333 (15)0.0614 (5)
N10.67371 (16)0.21961 (12)0.39556 (15)0.0439 (4)
C10.4210 (2)0.24499 (16)0.7732 (2)0.0598 (7)
H1A0.40180.27840.83610.090*
H1B0.47580.20490.79560.090*
H1C0.45960.27440.71290.090*
C20.3040 (2)0.20899 (16)0.7340 (2)0.0569 (6)
H2A0.26360.17940.79430.068*
H2B0.32210.17470.67080.068*
C30.1151 (2)0.25166 (14)0.66518 (19)0.0464 (5)
C40.0432 (2)0.31443 (15)0.6413 (2)0.0565 (6)
H40.07410.36410.65010.068*
C50.0732 (2)0.30478 (14)0.6047 (2)0.0502 (6)
H50.12000.34800.58850.060*
C60.12266 (19)0.23083 (13)0.59137 (17)0.0382 (5)
C70.24500 (19)0.21686 (13)0.55280 (17)0.0396 (5)
H70.26980.16540.55000.048*
C80.3257 (2)0.26921 (13)0.52101 (18)0.0431 (5)
H80.30420.32110.52550.052*
C90.44579 (19)0.25042 (12)0.47955 (17)0.0389 (5)
C100.4916 (2)0.17538 (13)0.47388 (19)0.0457 (5)
H100.44520.13430.49920.055*
C110.6037 (2)0.16135 (14)0.4317 (2)0.0487 (5)
H110.63220.11070.42790.058*
C120.7940 (2)0.20278 (17)0.3504 (2)0.0599 (7)
H12A0.81800.24490.30360.090*
H12B0.78880.15620.30660.090*
H12C0.85400.19630.41150.090*
C130.0494 (2)0.16808 (14)0.6163 (2)0.0469 (5)
H130.08010.11830.60820.056*
C140.0689 (2)0.17784 (14)0.6530 (2)0.0504 (6)
H140.11660.13500.66920.060*
C150.6331 (2)0.29222 (15)0.4003 (2)0.0551 (6)
H150.68180.33230.37520.066*
C160.5214 (2)0.30866 (15)0.4413 (2)0.0559 (6)
H160.49530.35980.44380.067*
C170.02063 (18)0.47725 (11)0.26229 (16)0.0335 (4)
C180.0604 (2)0.46691 (12)0.37619 (17)0.0403 (5)
H180.00450.45190.42870.048*
C190.1800 (2)0.47885 (13)0.40938 (18)0.0457 (5)
H190.20460.47330.48490.055*
C200.26751 (19)0.49955 (13)0.33080 (19)0.0417 (5)
C210.3931 (2)0.51132 (15)0.3618 (2)0.0567 (7)
H210.41940.50740.43720.068*
C220.4766 (2)0.52831 (16)0.2831 (3)0.0651 (8)
H220.55900.53480.30490.078*
C230.10290 (18)0.49640 (11)0.18361 (16)0.0341 (4)
H230.07610.50220.10860.041*
C240.22918 (18)0.50750 (12)0.21552 (17)0.0367 (4)
C250.3178 (2)0.52578 (13)0.1359 (2)0.0476 (5)
H250.29380.53090.06010.057*
C260.4380 (2)0.53582 (16)0.1703 (3)0.0620 (7)
H260.49520.54790.11740.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0314 (3)0.0373 (3)0.0442 (3)0.0046 (2)0.00312 (19)0.0015 (2)
O10.0487 (10)0.0612 (12)0.0944 (14)0.0025 (9)0.0244 (9)0.0087 (10)
O20.0515 (10)0.0550 (11)0.0799 (12)0.0178 (8)0.0034 (9)0.0173 (9)
O30.0410 (8)0.0584 (10)0.0486 (9)0.0081 (7)0.0055 (6)0.0012 (8)
O40.0419 (9)0.0679 (12)0.0748 (11)0.0089 (8)0.0046 (8)0.0213 (9)
N10.0359 (9)0.0542 (12)0.0424 (9)0.0050 (8)0.0097 (7)0.0004 (9)
C10.0369 (13)0.0729 (19)0.0707 (17)0.0030 (12)0.0144 (11)0.0028 (14)
C20.0491 (14)0.0530 (16)0.0687 (16)0.0018 (12)0.0035 (12)0.0022 (13)
C30.0359 (11)0.0528 (14)0.0512 (13)0.0054 (10)0.0108 (9)0.0038 (11)
C40.0502 (14)0.0406 (13)0.0805 (17)0.0066 (11)0.0215 (12)0.0006 (12)
C50.0466 (13)0.0386 (13)0.0669 (15)0.0026 (10)0.0168 (11)0.0035 (11)
C60.0348 (10)0.0409 (12)0.0393 (10)0.0007 (9)0.0057 (8)0.0026 (9)
C70.0403 (11)0.0370 (11)0.0419 (11)0.0008 (9)0.0057 (8)0.0021 (9)
C80.0422 (12)0.0369 (12)0.0510 (12)0.0015 (9)0.0118 (9)0.0027 (10)
C90.0380 (11)0.0397 (12)0.0395 (10)0.0029 (9)0.0069 (8)0.0030 (9)
C100.0423 (12)0.0394 (12)0.0568 (13)0.0086 (10)0.0158 (10)0.0021 (10)
C110.0465 (13)0.0411 (13)0.0597 (13)0.0033 (10)0.0146 (10)0.0030 (11)
C120.0354 (12)0.082 (2)0.0635 (15)0.0020 (12)0.0175 (10)0.0022 (14)
C130.0407 (12)0.0381 (12)0.0628 (14)0.0024 (10)0.0105 (10)0.0025 (11)
C140.0423 (12)0.0450 (14)0.0648 (14)0.0072 (10)0.0114 (10)0.0062 (11)
C150.0482 (14)0.0476 (14)0.0710 (16)0.0131 (11)0.0179 (11)0.0094 (12)
C160.0498 (14)0.0390 (13)0.0807 (17)0.0032 (11)0.0209 (12)0.0096 (12)
C170.0336 (10)0.0283 (10)0.0386 (10)0.0002 (8)0.0004 (8)0.0022 (8)
C180.0456 (12)0.0398 (12)0.0358 (10)0.0006 (9)0.0050 (8)0.0006 (9)
C190.0521 (13)0.0468 (13)0.0374 (10)0.0054 (10)0.0070 (9)0.0005 (10)
C200.0391 (11)0.0334 (11)0.0517 (12)0.0025 (9)0.0084 (9)0.0011 (10)
C210.0458 (13)0.0534 (15)0.0688 (15)0.0015 (11)0.0197 (12)0.0015 (12)
C220.0343 (12)0.0618 (17)0.098 (2)0.0072 (12)0.0126 (13)0.0035 (15)
C230.0341 (10)0.0322 (10)0.0359 (9)0.0023 (8)0.0008 (7)0.0015 (8)
C240.0341 (10)0.0308 (10)0.0449 (11)0.0008 (8)0.0004 (8)0.0015 (9)
C250.0386 (12)0.0463 (13)0.0581 (13)0.0033 (10)0.0036 (10)0.0060 (11)
C260.0391 (13)0.0583 (17)0.089 (2)0.0074 (11)0.0099 (12)0.0050 (14)
Geometric parameters (Å, º) top
S1—O21.4408 (17)C10—H100.9300
S1—O41.4425 (17)C11—H110.9300
S1—O31.4510 (16)C12—H12A0.9600
S1—C171.777 (2)C12—H12B0.9600
O1—C31.371 (3)C12—H12C0.9600
O1—C21.396 (3)C13—C141.390 (3)
N1—C151.333 (3)C13—H130.9300
N1—C111.346 (3)C14—H140.9300
N1—C121.470 (3)C15—C161.362 (3)
C1—C21.512 (3)C15—H150.9300
C1—H1A0.9600C16—H160.9300
C1—H1B0.9600C17—C231.367 (3)
C1—H1C0.9600C17—C181.413 (3)
C2—H2A0.9700C18—C191.359 (3)
C2—H2B0.9700C18—H180.9300
C3—C41.375 (3)C19—C201.412 (3)
C3—C141.382 (3)C19—H190.9300
C4—C51.371 (3)C20—C211.415 (3)
C4—H40.9300C20—C241.420 (3)
C5—C61.399 (3)C21—C221.368 (4)
C5—H50.9300C21—H210.9300
C6—C131.387 (3)C22—C261.392 (4)
C6—C71.451 (3)C22—H220.9300
C7—C81.329 (3)C23—C241.423 (3)
C7—H70.9300C23—H230.9300
C8—C91.457 (3)C24—C251.420 (3)
C8—H80.9300C25—C261.365 (3)
C9—C161.391 (3)C25—H250.9300
C9—C101.393 (3)C26—H260.9300
C10—C111.364 (3)
O2—S1—O4113.52 (11)N1—C12—H12A109.5
O2—S1—O3113.19 (10)N1—C12—H12B109.5
O4—S1—O3112.62 (11)H12A—C12—H12B109.5
O2—S1—C17105.67 (10)N1—C12—H12C109.5
O4—S1—C17105.23 (10)H12A—C12—H12C109.5
O3—S1—C17105.68 (9)H12B—C12—H12C109.5
C3—O1—C2117.9 (2)C6—C13—C14121.6 (2)
C15—N1—C11119.78 (19)C6—C13—H13119.2
C15—N1—C12120.4 (2)C14—C13—H13119.2
C11—N1—C12119.9 (2)C3—C14—C13119.5 (2)
C2—C1—H1A109.5C3—C14—H14120.2
C2—C1—H1B109.5C13—C14—H14120.2
H1A—C1—H1B109.5N1—C15—C16121.0 (2)
C2—C1—H1C109.5N1—C15—H15119.5
H1A—C1—H1C109.5C16—C15—H15119.5
H1B—C1—H1C109.5C15—C16—C9121.3 (2)
O1—C2—C1106.8 (2)C15—C16—H16119.4
O1—C2—H2A110.4C9—C16—H16119.4
C1—C2—H2A110.4C23—C17—C18120.35 (18)
O1—C2—H2B110.4C23—C17—S1122.14 (15)
C1—C2—H2B110.4C18—C17—S1117.46 (15)
H2A—C2—H2B108.6C19—C18—C17120.31 (19)
O1—C3—C4114.7 (2)C19—C18—H18119.8
O1—C3—C14125.7 (2)C17—C18—H18119.8
C4—C3—C14119.5 (2)C18—C19—C20120.97 (19)
C5—C4—C3120.9 (2)C18—C19—H19119.5
C5—C4—H4119.5C20—C19—H19119.5
C3—C4—H4119.5C19—C20—C21122.6 (2)
C4—C5—C6121.0 (2)C19—C20—C24119.10 (18)
C4—C5—H5119.5C21—C20—C24118.3 (2)
C6—C5—H5119.5C22—C21—C20121.3 (2)
C13—C6—C5117.5 (2)C22—C21—H21119.4
C13—C6—C7119.0 (2)C20—C21—H21119.4
C5—C6—C7123.6 (2)C21—C22—C26120.0 (2)
C8—C7—C6127.4 (2)C21—C22—H22120.0
C8—C7—H7116.3C26—C22—H22120.0
C6—C7—H7116.3C17—C23—C24120.52 (17)
C7—C8—C9124.2 (2)C17—C23—H23119.7
C7—C8—H8117.9C24—C23—H23119.7
C9—C8—H8117.9C25—C24—C20119.16 (19)
C16—C9—C10116.0 (2)C25—C24—C23122.15 (18)
C16—C9—C8120.3 (2)C20—C24—C23118.69 (18)
C10—C9—C8123.65 (19)C26—C25—C24120.2 (2)
C11—C10—C9120.9 (2)C26—C25—H25119.9
C11—C10—H10119.6C24—C25—H25119.9
C9—C10—H10119.6C25—C26—C22121.2 (2)
N1—C11—C10121.0 (2)C25—C26—H26119.4
N1—C11—H11119.5C22—C26—H26119.4
C10—C11—H11119.5
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C20–C24 ring.
D—H···AD—HH···AD···AD—H···A
C23—H23···O30.932.542.912 (2)105
C10—H10···O3i0.932.523.433 (3)168
C11—H11···O3ii0.932.423.323 (3)165
C12—H12B···O4ii0.962.583.488 (3)159
C15—H15···O2iii0.932.313.189 (3)158
C25—H25···O3iv0.932.453.323 (3)156
C14—H14···Cg1v0.932.843.686 (3)152
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y, z; (iv) x, y+1, z; (v) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H18NO+·C10H7O3S
Mr447.53
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.896 (1), 17.2838 (16), 11.8888 (10)
β (°) 92.752 (4)
V3)2236.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.40 × 0.35 × 0.30
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.932, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
9220, 5354, 3678
Rint0.020
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.159, 1.03
No. of reflections5354
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.32

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006)'.

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C20–C24 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10···O3i0.932.523.433 (3)167.64
C11—H11···O3ii0.932.423.323 (3)164.53
C12—H12B···O4ii0.962.583.488 (3)159.00
C15—H15···O2iii0.932.313.189 (3)158.36
C25—H25···O3iv0.932.453.323 (3)156.26
C14—H14···Cg1v0.932.843.686 (3)152.39
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y, z; (iv) x, y+1, z; (v) x1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge STIC, Cochin-682022, for single-crystal XRD facility. The authors also thank VIT University for providing the research facilities.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMurugavel, S., SubbiahPandi, A., Srikanth, C. & Kalainathan, S. (2009). Acta Cryst. E65, o71.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkada, S., Masaki, A., Matsuda, H., Nakanishi, H., Kato, M., Muramatsu, R. & Otsuka, M. (1990). Jpn. J. Appl. Phys. 29, 1112–1115.  CSD CrossRef CAS Web of Science Google Scholar
First citationRuiz, B., Yang, Z., Gramlich, V., Jazbinsek, M. & Günter, P. (2006). J. Mater. Chem. 16, 2839–2842.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Z., Jazbinsek, M., Ruiz, B., Aravazhi, S., Gramlich, V. & Günter, P. (2007). Chem. Mater. 19, 3512–3518.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds