organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Fluoro­phen­yl)-6-methyl­amino-5-nitro-2-phenyl-4H-pyran-3-carbo­nitrile

aDepartment of Physics, The Madura College, Madurai 625 011, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

(Received 28 February 2013; accepted 2 April 2013; online 10 April 2013)

In the title compound, C19H14FN3O3, the central pyran ring adopts a boat conformation with the O atom and the quaternary C atom diagonally opposite displaced by 0.068 (1) and 0.075 (1) Å, respectively, above the mean plane defined by the other four ring atoms. The co-planar atoms of the pyran ring and the fluoro­phenyl ring are nearly perpendicular, as evidenced by the dihedral angle of 87.11 (1)°. The amine group forms an intra­molecular N—H⋯O(nitro) hydrogen bond. In the crystal, mol­ecules are linked into parallel chains along [100] by weak N—H⋯N and C—H⋯N(nitro) hydrogen bonds, generating C(8) and C(9) graph-set motifs, respectively.

Related literature

For the biological activity of substituted pyran derivatives, see: Lokaj et al. (1990[Lokaj, J., Kettmann, V., Pavelčík, F., Ilavský, D. & Marchalín, Š. (1990). Acta Cryst. C46, 788-791.]); Marco et al. (1993[Marco, J. L., Martín, G., Martín, N., Martínez-Grau, A., Seoane, C., Albert, A. & Cano, F. H. (1993). Tetrahedron, 49, 7133-7144.]). Some 4H-pyran derivatives are potential bioactive compounds and can be used as calcium antagonists, see: Suárez et al. (2002[Suárez, M., Salfrán, E., Verdecia, Y., Ochoa, E., Alba, L., Martín, N., Martínez, R., Quinteiro, M., Seoane, C., Novoa, H., Blaton, N., Peeters, O. M. & De Ranter, C. (2002). Tetrahedron, 58, 953-960.]). For hydrogen-bonding graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). The title compound and some related compounds are widely used as organic inter­mediates in organic chemistry (Liang et al., 2009[Liang, F., Cheng, X., Liu, J. & Liu, Q. (2009). Chem. Commun. pp. 3636-3638.]). For related structures, see: Nesterov et al. (2004[Nesterov, V. N., Wiedenfeld, D. J., Nesterova, S. V. & Minton, M. A. (2004). Acta Cryst. C60, o334-o337.]); Nesterov & Viltchinskaia (2001[Nesterov, V. N. & Viltchinskaia, E. A. (2001). Acta Cryst. C57, 616-618.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C19H14FN3O3

  • Mr = 351.33

  • Triclinic, [P \overline 1]

  • a = 9.3898 (3) Å

  • b = 9.9752 (3) Å

  • c = 11.1324 (3) Å

  • α = 98.765 (1)°

  • β = 113.991 (1)°

  • γ = 109.520 (1)°

  • V = 846.09 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.23 × 0.20 × 0.19 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.974

  • 16948 measured reflections

  • 3680 independent reflections

  • 2993 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.118

  • S = 1.06

  • 3680 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.86 1.99 2.6089 (16) 128
N2—H2⋯N3i 0.86 2.30 2.9811 (17) 136
C6—H6A⋯N3i 0.96 2.60 3.222 (2) 123
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound and some related compounds are widely used as organic intermediates in organic chemistry (Liang et al., 2009). Much interest has recently been paid to the design of polyfunctionalized substituted pyran derivatives, owing to their wide range of biological activities (Lokaj et al., 1990; Marco et al., 1993). Some 4H-pyran derivatives are potential bioactive compounds and can be used as calcium antagonists (Suárez et al., 2002). Thus, there has been a growing interest in the structures of 4H-pyran derivatives. The high biologically active value of these compounds in conjunction with our research interests prompted us to synthesize and report the X-ray study of the title compound.

In the title compound (C19H14FN3O3, Fig. 1) the six-membered central pyran ring adopts a boat conformation as evidenced by the puckering parameters q2 = 0.0826 (12) Å, θ = 88.18 (4)°, φ = 127.06 (4)° (Cremer & Pople, 1975). The dihedral angle between the pseudo-axial aryl substituent and the flat part of the pyran ring is 87.11 (1)°. There is conjugation between the donor (NH) and the acceptor (CN) groups via the C4C5 double bond, as found in other related compounds (Nesterov et al., 2001, 2004). Thus, the C5—N2 distance is 1.3130 (17) Å, which is shorter than the average conjugated C—N single bond, 1.370 (1) Å, found in the Cambridge Structural Database (Allen, 2002). In contrast, the C4C5 bond is elongated in comparison with the C1C2 bond and the standard value (Allen et al., 1987). The C4—N1 distance, 1.3855 (17) Å, is considerably shorter than usual C—NO2 distance (1.468 Å, Allen et al., 1987) and the N1—O2 distance, 1.2558 (16) Å, is longer than the standard value (Allen et al., 1987). The dihedral angle between the flat part of the pyran ring and the phneyl ring at C1 is 49.22 (2)°. The phenyl and the fluorophenyl rings are substituting the pyran ring in a (–)-syn-clinal conformation, with torsion angles C2—C1—C11—C12 and C4—C3—C31—C32 of -51.4 (2)° and -60.76 (17)° respectively. The nitro group is bonded to the pyran ring at C4 with the torsion angle C5—C4—N1—O2 of -7.09 (3)°, indicating a (–)-syn-periplanar conformation for this group.

In the crystal structure, the molecules are linked together, to form an infinite one dimensional chain along [100], through intermolecular N2—H2···N3 and C6—H6A···N3 hydrogen bonds, generating graph set motifs C(8) and C(9) respectively (Fig. 2; Bernstein et al., 1995). In addition, there is a N—H···O intramolecular interaction which stabilizes the molecular conformation.

Related literature top

For the biological activity of substituted pyran derivatives, see: Lokaj et al. (1990); Marco et al. (1993). Some 4H-pyran derivatives are potential bioactive compounds and can be used as calcium antagonists, see: Suárez et al. (2002). For hydrogen-bonding graph-set motifs, see: Bernstein et al. (1995). For ring conformation analysis, see: Cremer & Pople (1975). The title compound and some related compounds are widely used as organic intermediates in organic chemistry (Liang et al., 2009). For related structures, see: Nesterov et al. (2004); Nesterov & Viltchinskaia (2001). For a description of the Cambridge Structural Database, see: Allen (2002). For standard bond lengths, see: Allen et al. (1987).

Experimental top

A mixture of benzoylacetonitrile (1.0 mmol), 4-fluoroaldehyde (1.0 mmol), Et3N (1.0 mmol) and 10 ml EtOH were taken in 50 ml round bottom flask. The reaction mixture was stirred at room temperature for 5–10 min. Then N-methyl-1-(methylthio)-2-nitroethenamine was added into the reaction mixture and the system refluxed at 80°C. The consumption of starting material was monitored by TLC. After 90 min., the solid product was filtered and washed with diethyl ether (5 ml) and dried under vacuum condition to afford the pure product. Melting point: 210°C; Yield: 94%

Refinement top

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å, N—H = 0.86 Å. Uiso =1.2Ueq(C,N) for NH and CH groups and Uiso = 1.5Ueq(C6) for the methyl group.

Structure description top

The title compound and some related compounds are widely used as organic intermediates in organic chemistry (Liang et al., 2009). Much interest has recently been paid to the design of polyfunctionalized substituted pyran derivatives, owing to their wide range of biological activities (Lokaj et al., 1990; Marco et al., 1993). Some 4H-pyran derivatives are potential bioactive compounds and can be used as calcium antagonists (Suárez et al., 2002). Thus, there has been a growing interest in the structures of 4H-pyran derivatives. The high biologically active value of these compounds in conjunction with our research interests prompted us to synthesize and report the X-ray study of the title compound.

In the title compound (C19H14FN3O3, Fig. 1) the six-membered central pyran ring adopts a boat conformation as evidenced by the puckering parameters q2 = 0.0826 (12) Å, θ = 88.18 (4)°, φ = 127.06 (4)° (Cremer & Pople, 1975). The dihedral angle between the pseudo-axial aryl substituent and the flat part of the pyran ring is 87.11 (1)°. There is conjugation between the donor (NH) and the acceptor (CN) groups via the C4C5 double bond, as found in other related compounds (Nesterov et al., 2001, 2004). Thus, the C5—N2 distance is 1.3130 (17) Å, which is shorter than the average conjugated C—N single bond, 1.370 (1) Å, found in the Cambridge Structural Database (Allen, 2002). In contrast, the C4C5 bond is elongated in comparison with the C1C2 bond and the standard value (Allen et al., 1987). The C4—N1 distance, 1.3855 (17) Å, is considerably shorter than usual C—NO2 distance (1.468 Å, Allen et al., 1987) and the N1—O2 distance, 1.2558 (16) Å, is longer than the standard value (Allen et al., 1987). The dihedral angle between the flat part of the pyran ring and the phneyl ring at C1 is 49.22 (2)°. The phenyl and the fluorophenyl rings are substituting the pyran ring in a (–)-syn-clinal conformation, with torsion angles C2—C1—C11—C12 and C4—C3—C31—C32 of -51.4 (2)° and -60.76 (17)° respectively. The nitro group is bonded to the pyran ring at C4 with the torsion angle C5—C4—N1—O2 of -7.09 (3)°, indicating a (–)-syn-periplanar conformation for this group.

In the crystal structure, the molecules are linked together, to form an infinite one dimensional chain along [100], through intermolecular N2—H2···N3 and C6—H6A···N3 hydrogen bonds, generating graph set motifs C(8) and C(9) respectively (Fig. 2; Bernstein et al., 1995). In addition, there is a N—H···O intramolecular interaction which stabilizes the molecular conformation.

For the biological activity of substituted pyran derivatives, see: Lokaj et al. (1990); Marco et al. (1993). Some 4H-pyran derivatives are potential bioactive compounds and can be used as calcium antagonists, see: Suárez et al. (2002). For hydrogen-bonding graph-set motifs, see: Bernstein et al. (1995). For ring conformation analysis, see: Cremer & Pople (1975). The title compound and some related compounds are widely used as organic intermediates in organic chemistry (Liang et al., 2009). For related structures, see: Nesterov et al. (2004); Nesterov & Viltchinskaia (2001). For a description of the Cambridge Structural Database, see: Allen (2002). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, showing 40% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Packing diagram showing the chain motifs C(8) and C(9) along the [100] direction.
4-(4-Fluorophenyl)-6-methylamino-5-nitro-2-phenyl-4H-pyran-3-carbonitrile top
Crystal data top
C19H14FN3O3Z = 2
Mr = 351.33F(000) = 364
Triclinic, P1Dx = 1.379 Mg m3
Hall symbol: -P 1Melting point: 483 K
a = 9.3898 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9752 (3) ÅCell parameters from 2000 reflections
c = 11.1324 (3) Åθ = 2–27°
α = 98.765 (1)°µ = 0.10 mm1
β = 113.991 (1)°T = 293 K
γ = 109.520 (1)°Block, colourless
V = 846.09 (4) Å30.23 × 0.20 × 0.19 mm
Data collection top
Bruker Kappa APEXII
diffractometer
3680 independent reflections
Radiation source: fine-focus sealed tube2993 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 0 pixels mm-1θmax = 27.0°, θmin = 2.1°
ω and φ scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1112
Tmin = 0.967, Tmax = 0.974l = 1414
16948 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.054P)2 + 0.2234P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3680 reflectionsΔρmax = 0.24 e Å3
236 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.047 (4)
Primary atom site location: structure-invariant direct methods
Crystal data top
C19H14FN3O3γ = 109.520 (1)°
Mr = 351.33V = 846.09 (4) Å3
Triclinic, P1Z = 2
a = 9.3898 (3) ÅMo Kα radiation
b = 9.9752 (3) ŵ = 0.10 mm1
c = 11.1324 (3) ÅT = 293 K
α = 98.765 (1)°0.23 × 0.20 × 0.19 mm
β = 113.991 (1)°
Data collection top
Bruker Kappa APEXII
diffractometer
3680 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2993 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.974Rint = 0.026
16948 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.06Δρmax = 0.24 e Å3
3680 reflectionsΔρmin = 0.22 e Å3
236 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.90505 (16)0.73779 (15)0.01317 (13)0.0338 (3)
C20.99879 (16)0.69360 (14)0.11020 (13)0.0332 (3)
C30.96024 (16)0.65343 (14)0.22245 (13)0.0331 (3)
H30.94290.54900.21210.040*
C40.79214 (17)0.65768 (15)0.19639 (13)0.0350 (3)
C50.70197 (17)0.70668 (15)0.09468 (13)0.0345 (3)
C60.4686 (2)0.7677 (2)0.04503 (17)0.0510 (4)
H6A0.36500.76500.04590.076*
H6B0.43880.70280.13310.076*
H6C0.54400.86910.02930.076*
C110.92473 (17)0.76501 (15)0.10669 (14)0.0359 (3)
C121.0837 (2)0.85749 (18)0.08937 (16)0.0461 (4)
H121.17880.91010.00020.055*
C131.1012 (2)0.8717 (2)0.20466 (17)0.0538 (4)
H131.20850.93360.19290.065*
C140.9618 (2)0.79536 (19)0.33610 (17)0.0535 (4)
H140.97490.80410.41340.064*
C150.8026 (2)0.7059 (2)0.35402 (16)0.0561 (4)
H150.70760.65550.44340.067*
C160.7828 (2)0.69049 (19)0.23976 (15)0.0479 (4)
H160.67460.63030.25210.057*
C211.13736 (18)0.66852 (16)0.10462 (14)0.0384 (3)
C311.11327 (17)0.75233 (15)0.36706 (13)0.0352 (3)
C321.1702 (2)0.90599 (18)0.41307 (17)0.0535 (4)
H321.11290.95070.35560.064*
C331.3112 (3)0.9951 (2)0.54360 (19)0.0682 (5)
H331.34901.09890.57500.082*
C341.3930 (2)0.9269 (2)0.62448 (17)0.0636 (5)
C351.3422 (2)0.7764 (2)0.58302 (18)0.0657 (5)
H351.40150.73320.64090.079*
C361.2002 (2)0.68821 (19)0.45290 (16)0.0515 (4)
H361.16300.58430.42300.062*
N10.72180 (15)0.59726 (14)0.27462 (12)0.0421 (3)
N20.55637 (15)0.71659 (15)0.06560 (12)0.0433 (3)
H20.50960.69090.11590.052*
N31.24589 (17)0.64228 (17)0.10373 (16)0.0549 (4)
O10.76236 (12)0.75260 (11)0.00900 (10)0.0393 (2)
O20.58447 (15)0.60002 (16)0.26385 (13)0.0625 (3)
O30.79677 (15)0.53945 (13)0.35412 (11)0.0523 (3)
F1.53011 (18)1.01296 (16)0.75406 (12)0.1082 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0310 (6)0.0395 (7)0.0353 (7)0.0147 (5)0.0211 (6)0.0115 (5)
C20.0314 (6)0.0383 (7)0.0328 (6)0.0150 (5)0.0190 (5)0.0104 (5)
C30.0350 (7)0.0355 (6)0.0338 (6)0.0166 (5)0.0197 (6)0.0137 (5)
C40.0338 (7)0.0421 (7)0.0334 (6)0.0147 (6)0.0212 (6)0.0140 (5)
C50.0318 (7)0.0405 (7)0.0341 (6)0.0142 (6)0.0205 (5)0.0112 (5)
C60.0396 (8)0.0696 (10)0.0509 (9)0.0300 (8)0.0219 (7)0.0255 (8)
C110.0388 (7)0.0423 (7)0.0354 (7)0.0199 (6)0.0231 (6)0.0163 (6)
C120.0416 (8)0.0537 (9)0.0415 (8)0.0146 (7)0.0239 (7)0.0173 (7)
C130.0538 (9)0.0618 (10)0.0579 (10)0.0201 (8)0.0396 (8)0.0275 (8)
C140.0731 (11)0.0616 (10)0.0465 (9)0.0319 (9)0.0425 (9)0.0265 (8)
C150.0614 (10)0.0669 (11)0.0342 (8)0.0229 (8)0.0225 (7)0.0167 (7)
C160.0410 (8)0.0590 (9)0.0407 (8)0.0158 (7)0.0218 (7)0.0186 (7)
C210.0354 (7)0.0435 (7)0.0385 (7)0.0164 (6)0.0208 (6)0.0139 (6)
C310.0355 (7)0.0410 (7)0.0337 (7)0.0170 (6)0.0201 (6)0.0148 (5)
C320.0596 (10)0.0441 (8)0.0478 (9)0.0218 (7)0.0186 (8)0.0168 (7)
C330.0755 (13)0.0427 (9)0.0531 (10)0.0088 (9)0.0198 (9)0.0062 (8)
C340.0530 (10)0.0673 (11)0.0362 (8)0.0059 (9)0.0102 (7)0.0117 (8)
C350.0593 (11)0.0757 (12)0.0454 (9)0.0271 (9)0.0106 (8)0.0284 (9)
C360.0544 (9)0.0491 (9)0.0445 (8)0.0236 (7)0.0164 (7)0.0198 (7)
N10.0393 (7)0.0504 (7)0.0388 (6)0.0150 (5)0.0241 (5)0.0170 (5)
N20.0362 (6)0.0633 (8)0.0435 (7)0.0258 (6)0.0260 (5)0.0237 (6)
N30.0446 (8)0.0647 (9)0.0710 (9)0.0295 (7)0.0370 (7)0.0240 (7)
O10.0381 (5)0.0574 (6)0.0411 (5)0.0273 (5)0.0273 (4)0.0259 (5)
O20.0495 (7)0.0981 (9)0.0680 (8)0.0353 (7)0.0449 (6)0.0453 (7)
O30.0570 (7)0.0622 (7)0.0492 (6)0.0258 (6)0.0314 (5)0.0328 (5)
F0.0874 (9)0.0959 (10)0.0492 (7)0.0025 (7)0.0066 (6)0.0070 (6)
Geometric parameters (Å, º) top
C1—C21.3293 (18)C13—H130.9300
C1—O11.3795 (15)C14—C151.372 (2)
C1—C111.4717 (17)C14—H140.9300
C2—C211.4276 (18)C15—C161.382 (2)
C2—C31.5089 (17)C15—H150.9300
C3—C41.5012 (18)C16—H160.9300
C3—C311.5222 (18)C21—N31.1369 (18)
C3—H30.9800C31—C321.374 (2)
C4—C51.3796 (19)C31—C361.374 (2)
C4—N11.3855 (17)C32—C331.382 (2)
C5—N21.3130 (17)C32—H320.9300
C5—O11.3566 (15)C33—C341.354 (3)
C6—N21.4498 (19)C33—H330.9300
C6—H6A0.9600C34—C351.351 (3)
C6—H6B0.9600C34—F1.3599 (19)
C6—H6C0.9600C35—C361.381 (2)
C11—C121.382 (2)C35—H350.9300
C11—C161.386 (2)C36—H360.9300
C12—C131.380 (2)N1—O31.2375 (16)
C12—H120.9300N1—O21.2558 (16)
C13—C141.368 (2)N2—H20.8600
C2—C1—O1121.49 (11)C13—C14—H14120.0
C2—C1—C11127.43 (12)C15—C14—H14120.0
O1—C1—C11110.91 (11)C14—C15—C16120.27 (15)
C1—C2—C21119.74 (12)C14—C15—H15119.9
C1—C2—C3124.43 (11)C16—C15—H15119.9
C21—C2—C3115.60 (11)C15—C16—C11119.75 (14)
C4—C3—C2108.51 (10)C15—C16—H16120.1
C4—C3—C31114.77 (10)C11—C16—H16120.1
C2—C3—C31111.06 (10)N3—C21—C2175.98 (15)
C4—C3—H3107.4C32—C31—C36118.79 (14)
C2—C3—H3107.4C32—C31—C3121.42 (12)
C31—C3—H3107.4C36—C31—C3119.77 (12)
C5—C4—N1120.05 (12)C31—C32—C33120.93 (15)
C5—C4—C3123.99 (11)C31—C32—H32119.5
N1—C4—C3115.78 (11)C33—C32—H32119.5
N2—C5—O1111.37 (11)C34—C33—C32118.19 (16)
N2—C5—C4128.35 (12)C34—C33—H33120.9
O1—C5—C4120.27 (11)C32—C33—H33120.9
N2—C6—H6A109.5C35—C34—C33122.83 (16)
N2—C6—H6B109.5C35—C34—F118.40 (17)
H6A—C6—H6B109.5C33—C34—F118.76 (18)
N2—C6—H6C109.5C34—C35—C36118.57 (16)
H6A—C6—H6C109.5C34—C35—H35120.7
H6B—C6—H6C109.5C36—C35—H35120.7
C12—C11—C16119.61 (13)C31—C36—C35120.69 (15)
C12—C11—C1121.15 (12)C31—C36—H36119.7
C16—C11—C1119.16 (12)C35—C36—H36119.7
C13—C12—C11119.86 (14)O3—N1—O2121.01 (11)
C13—C12—H12120.1O3—N1—C4118.35 (12)
C11—C12—H12120.1O2—N1—C4120.64 (12)
C14—C13—C12120.41 (15)C5—N2—C6124.79 (12)
C14—C13—H13119.8C5—N2—H2117.6
C12—C13—H13119.8C6—N2—H2117.6
C13—C14—C15120.07 (14)C5—O1—C1120.68 (10)
O1—C1—C2—C21175.21 (12)C1—C11—C16—C15175.02 (14)
C11—C1—C2—C210.5 (2)C1—C2—C21—N3149 (2)
O1—C1—C2—C30.9 (2)C3—C2—C21—N325 (2)
C11—C1—C2—C3173.81 (12)C4—C3—C31—C3260.76 (17)
C1—C2—C3—C45.36 (18)C2—C3—C31—C3262.76 (17)
C21—C2—C3—C4169.14 (11)C4—C3—C31—C36120.98 (14)
C1—C2—C3—C31121.67 (14)C2—C3—C31—C36115.50 (14)
C21—C2—C3—C3163.83 (14)C36—C31—C32—C330.5 (3)
C2—C3—C4—C56.35 (18)C3—C31—C32—C33178.80 (15)
C31—C3—C4—C5118.52 (14)C31—C32—C33—C340.6 (3)
C2—C3—C4—N1168.72 (11)C32—C33—C34—C350.2 (3)
C31—C3—C4—N166.41 (15)C32—C33—C34—F178.89 (18)
N1—C4—C5—N26.2 (2)C33—C34—C35—C360.4 (3)
C3—C4—C5—N2178.88 (13)F—C34—C35—C36178.36 (17)
N1—C4—C5—O1173.76 (12)C32—C31—C36—C350.0 (2)
C3—C4—C5—O11.1 (2)C3—C31—C36—C35178.28 (15)
C2—C1—C11—C1251.4 (2)C34—C35—C36—C310.5 (3)
O1—C1—C11—C12133.39 (14)C5—C4—N1—O3172.24 (12)
C2—C1—C11—C16125.37 (16)C3—C4—N1—O33.05 (18)
O1—C1—C11—C1649.82 (17)C5—C4—N1—O27.1 (2)
C16—C11—C12—C131.8 (2)C3—C4—N1—O2177.62 (12)
C1—C11—C12—C13174.97 (14)O1—C5—N2—C60.9 (2)
C11—C12—C13—C140.3 (3)C4—C5—N2—C6179.11 (14)
C12—C13—C14—C151.1 (3)N2—C5—O1—C1173.84 (11)
C13—C14—C15—C161.1 (3)C4—C5—O1—C16.16 (19)
C14—C15—C16—C110.4 (3)C2—C1—O1—C57.26 (19)
C12—C11—C16—C151.8 (2)C11—C1—O1—C5168.27 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.861.992.6089 (16)128
N2—H2···N3i0.862.302.9811 (17)136
C6—H6A···N3i0.962.603.222 (2)123
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC19H14FN3O3
Mr351.33
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.3898 (3), 9.9752 (3), 11.1324 (3)
α, β, γ (°)98.765 (1), 113.991 (1), 109.520 (1)
V3)846.09 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.23 × 0.20 × 0.19
Data collection
DiffractometerBruker Kappa APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.967, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
16948, 3680, 2993
Rint0.026
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.118, 1.06
No. of reflections3680
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.22

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.861.992.6089 (16)127.7
N2—H2···N3i0.862.302.9811 (17)136.2
C6—H6A···N3i0.962.603.222 (2)122.9
Symmetry code: (i) x1, y, z.
 

Acknowledgements

JS thanks the UGC for the FIST support. JS and RV thank the management of the Madura College for their encouragement and support. RRK thanks the DST, New Delhi, for funds under the fast-track scheme (No. SR/FT/CS-073/2009).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationLiang, F., Cheng, X., Liu, J. & Liu, Q. (2009). Chem. Commun. pp. 3636–3638.  Web of Science CSD CrossRef Google Scholar
First citationLokaj, J., Kettmann, V., Pavelčík, F., Ilavský, D. & Marchalín, Š. (1990). Acta Cryst. C46, 788–791.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMarco, J. L., Martín, G., Martín, N., Martínez-Grau, A., Seoane, C., Albert, A. & Cano, F. H. (1993). Tetrahedron, 49, 7133–7144.  CSD CrossRef CAS Web of Science Google Scholar
First citationNesterov, V. N. & Viltchinskaia, E. A. (2001). Acta Cryst. C57, 616–618.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNesterov, V. N., Wiedenfeld, D. J., Nesterova, S. V. & Minton, M. A. (2004). Acta Cryst. C60, o334–o337.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuárez, M., Salfrán, E., Verdecia, Y., Ochoa, E., Alba, L., Martín, N., Martínez, R., Quinteiro, M., Seoane, C., Novoa, H., Blaton, N., Peeters, O. M. & De Ranter, C. (2002). Tetrahedron, 58, 953–960.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds