organic compounds
4-(4-Fluorophenyl)-6-methylamino-5-nitro-2-phenyl-4H-pyran-3-carbonitrile
aDepartment of Physics, The Madura College, Madurai 625 011, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com
In the title compound, C19H14FN3O3, the central pyran ring adopts a boat conformation with the O atom and the quaternary C atom diagonally opposite displaced by 0.068 (1) and 0.075 (1) Å, respectively, above the mean plane defined by the other four ring atoms. The co-planar atoms of the pyran ring and the fluorophenyl ring are nearly perpendicular, as evidenced by the dihedral angle of 87.11 (1)°. The amine group forms an intramolecular N—H⋯O(nitro) hydrogen bond. In the crystal, molecules are linked into parallel chains along [100] by weak N—H⋯N and C—H⋯N(nitro) hydrogen bonds, generating C(8) and C(9) graph-set motifs, respectively.
Related literature
For the biological activity of substituted pyran derivatives, see: Lokaj et al. (1990); Marco et al. (1993). Some 4H-pyran derivatives are potential bioactive compounds and can be used as calcium antagonists, see: Suárez et al. (2002). For hydrogen-bonding graph-set motifs, see: Bernstein et al. (1995). For ring conformation analysis, see: Cremer & Pople (1975). The title compound and some related compounds are widely used as organic intermediates in organic chemistry (Liang et al., 2009). For related structures, see: Nesterov et al. (2004); Nesterov & Viltchinskaia (2001). For a description of the Cambridge Structural Database, see: Allen (2002). For standard bond lengths, see: Allen et al. (1987).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536813009008/bh2475sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813009008/bh2475Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536813009008/bh2475Isup3.cml
A mixture of benzoylacetonitrile (1.0 mmol), 4-fluoroaldehyde (1.0 mmol), Et3N (1.0 mmol) and 10 ml EtOH were taken in 50 ml round bottom flask. The reaction mixture was stirred at room temperature for 5–10 min. Then N-methyl-1-(methylthio)-2-nitroethenamine was added into the reaction mixture and the system refluxed at 80°C. The consumption of starting material was monitored by TLC. After 90 min., the solid product was filtered and washed with diethyl ether (5 ml) and dried under vacuum condition to afford the pure product. Melting point: 210°C; Yield: 94%
H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å, N—H = 0.86 Å. Uiso =1.2Ueq(C,N) for NH and CH groups and Uiso = 1.5Ueq(C6) for the methyl group.
The title compound and some related compounds are widely used as organic intermediates in organic chemistry (Liang et al., 2009). Much interest has recently been paid to the design of polyfunctionalized substituted pyran derivatives, owing to their wide range of biological activities (Lokaj et al., 1990; Marco et al., 1993). Some 4H-pyran derivatives are potential bioactive compounds and can be used as calcium antagonists (Suárez et al., 2002). Thus, there has been a growing interest in the structures of 4H-pyran derivatives. The high biologically active value of these compounds in conjunction with our research interests prompted us to synthesize and report the X-ray study of the title compound.
In the title compound (C19H14FN3O3, Fig. 1) the six-membered central pyran ring adopts a boat conformation as evidenced by the puckering parameters q2 = 0.0826 (12) Å, θ = 88.18 (4)°, φ = 127.06 (4)° (Cremer & Pople, 1975). The dihedral angle between the pseudo-axial aryl substituent and the flat part of the pyran ring is 87.11 (1)°. There is conjugation between the donor (NH) and the acceptor (CN) groups via the C4═C5 double bond, as found in other related compounds (Nesterov et al., 2001, 2004). Thus, the C5—N2 distance is 1.3130 (17) Å, which is shorter than the average conjugated C—N single bond, 1.370 (1) Å, found in the Cambridge Structural Database (Allen, 2002). In contrast, the C4═C5 bond is elongated in comparison with the C1═C2 bond and the standard value (Allen et al., 1987). The C4—N1 distance, 1.3855 (17) Å, is considerably shorter than usual C—NO2 distance (1.468 Å, Allen et al., 1987) and the N1—O2 distance, 1.2558 (16) Å, is longer than the standard value (Allen et al., 1987). The dihedral angle between the flat part of the pyran ring and the phneyl ring at C1 is 49.22 (2)°. The phenyl and the fluorophenyl rings are substituting the pyran ring in a (–)-syn-clinal conformation, with torsion angles C2—C1—C11—C12 and C4—C3—C31—C32 of -51.4 (2)° and -60.76 (17)° respectively. The nitro group is bonded to the pyran ring at C4 with the torsion angle C5—C4—N1—O2 of -7.09 (3)°, indicating a (–)-syn-periplanar conformation for this group.
In the
the molecules are linked together, to form an infinite one dimensional chain along [100], through intermolecular N2—H2···N3 and C6—H6A···N3 hydrogen bonds, generating graph set motifs C(8) and C(9) respectively (Fig. 2; Bernstein et al., 1995). In addition, there is a N—H···O intramolecular interaction which stabilizes the molecular conformation.For the biological activity of substituted pyran derivatives, see: Lokaj et al. (1990); Marco et al. (1993). Some 4H-pyran derivatives are potential bioactive compounds and can be used as calcium antagonists, see: Suárez et al. (2002). For hydrogen-bonding graph-set motifs, see: Bernstein et al. (1995). For ring conformation analysis, see: Cremer & Pople (1975). The title compound and some related compounds are widely used as organic intermediates in organic chemistry (Liang et al., 2009). For related structures, see: Nesterov et al. (2004); Nesterov & Viltchinskaia (2001). For a description of the Cambridge Structural Database, see: Allen (2002). For standard bond lengths, see: Allen et al. (1987).
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C19H14FN3O3 | Z = 2 |
Mr = 351.33 | F(000) = 364 |
Triclinic, P1 | Dx = 1.379 Mg m−3 |
Hall symbol: -P 1 | Melting point: 483 K |
a = 9.3898 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.9752 (3) Å | Cell parameters from 2000 reflections |
c = 11.1324 (3) Å | θ = 2–27° |
α = 98.765 (1)° | µ = 0.10 mm−1 |
β = 113.991 (1)° | T = 293 K |
γ = 109.520 (1)° | Block, colourless |
V = 846.09 (4) Å3 | 0.23 × 0.20 × 0.19 mm |
Bruker Kappa APEXII diffractometer | 3680 independent reflections |
Radiation source: fine-focus sealed tube | 2993 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
Detector resolution: 0 pixels mm-1 | θmax = 27.0°, θmin = 2.1° |
ω and φ scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −11→12 |
Tmin = 0.967, Tmax = 0.974 | l = −14→14 |
16948 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.118 | w = 1/[σ2(Fo2) + (0.054P)2 + 0.2234P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
3680 reflections | Δρmax = 0.24 e Å−3 |
236 parameters | Δρmin = −0.22 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 constraints | Extinction coefficient: 0.047 (4) |
Primary atom site location: structure-invariant direct methods |
C19H14FN3O3 | γ = 109.520 (1)° |
Mr = 351.33 | V = 846.09 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.3898 (3) Å | Mo Kα radiation |
b = 9.9752 (3) Å | µ = 0.10 mm−1 |
c = 11.1324 (3) Å | T = 293 K |
α = 98.765 (1)° | 0.23 × 0.20 × 0.19 mm |
β = 113.991 (1)° |
Bruker Kappa APEXII diffractometer | 3680 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2993 reflections with I > 2σ(I) |
Tmin = 0.967, Tmax = 0.974 | Rint = 0.026 |
16948 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.24 e Å−3 |
3680 reflections | Δρmin = −0.22 e Å−3 |
236 parameters |
x | y | z | Uiso*/Ueq | ||
C1 | 0.90505 (16) | 0.73779 (15) | 0.01317 (13) | 0.0338 (3) | |
C2 | 0.99879 (16) | 0.69360 (14) | 0.11020 (13) | 0.0332 (3) | |
C3 | 0.96024 (16) | 0.65343 (14) | 0.22245 (13) | 0.0331 (3) | |
H3 | 0.9429 | 0.5490 | 0.2121 | 0.040* | |
C4 | 0.79214 (17) | 0.65768 (15) | 0.19639 (13) | 0.0350 (3) | |
C5 | 0.70197 (17) | 0.70668 (15) | 0.09468 (13) | 0.0345 (3) | |
C6 | 0.4686 (2) | 0.7677 (2) | −0.04503 (17) | 0.0510 (4) | |
H6A | 0.3650 | 0.7650 | −0.0459 | 0.076* | |
H6B | 0.4388 | 0.7028 | −0.1331 | 0.076* | |
H6C | 0.5440 | 0.8691 | −0.0293 | 0.076* | |
C11 | 0.92473 (17) | 0.76501 (15) | −0.10669 (14) | 0.0359 (3) | |
C12 | 1.0837 (2) | 0.85749 (18) | −0.08937 (16) | 0.0461 (4) | |
H12 | 1.1788 | 0.9101 | −0.0002 | 0.055* | |
C13 | 1.1012 (2) | 0.8717 (2) | −0.20466 (17) | 0.0538 (4) | |
H13 | 1.2085 | 0.9336 | −0.1929 | 0.065* | |
C14 | 0.9618 (2) | 0.79536 (19) | −0.33610 (17) | 0.0535 (4) | |
H14 | 0.9749 | 0.8041 | −0.4134 | 0.064* | |
C15 | 0.8026 (2) | 0.7059 (2) | −0.35402 (16) | 0.0561 (4) | |
H15 | 0.7076 | 0.6555 | −0.4434 | 0.067* | |
C16 | 0.7828 (2) | 0.69049 (19) | −0.23976 (15) | 0.0479 (4) | |
H16 | 0.6746 | 0.6303 | −0.2521 | 0.057* | |
C21 | 1.13736 (18) | 0.66852 (16) | 0.10462 (14) | 0.0384 (3) | |
C31 | 1.11327 (17) | 0.75233 (15) | 0.36706 (13) | 0.0352 (3) | |
C32 | 1.1702 (2) | 0.90599 (18) | 0.41307 (17) | 0.0535 (4) | |
H32 | 1.1129 | 0.9507 | 0.3556 | 0.064* | |
C33 | 1.3112 (3) | 0.9951 (2) | 0.54360 (19) | 0.0682 (5) | |
H33 | 1.3490 | 1.0989 | 0.5750 | 0.082* | |
C34 | 1.3930 (2) | 0.9269 (2) | 0.62448 (17) | 0.0636 (5) | |
C35 | 1.3422 (2) | 0.7764 (2) | 0.58302 (18) | 0.0657 (5) | |
H35 | 1.4015 | 0.7332 | 0.6409 | 0.079* | |
C36 | 1.2002 (2) | 0.68821 (19) | 0.45290 (16) | 0.0515 (4) | |
H36 | 1.1630 | 0.5843 | 0.4230 | 0.062* | |
N1 | 0.72180 (15) | 0.59726 (14) | 0.27462 (12) | 0.0421 (3) | |
N2 | 0.55637 (15) | 0.71659 (15) | 0.06560 (12) | 0.0433 (3) | |
H2 | 0.5096 | 0.6909 | 0.1159 | 0.052* | |
N3 | 1.24589 (17) | 0.64228 (17) | 0.10373 (16) | 0.0549 (4) | |
O1 | 0.76236 (12) | 0.75260 (11) | 0.00900 (10) | 0.0393 (2) | |
O2 | 0.58447 (15) | 0.60002 (16) | 0.26385 (13) | 0.0625 (3) | |
O3 | 0.79677 (15) | 0.53945 (13) | 0.35412 (11) | 0.0523 (3) | |
F | 1.53011 (18) | 1.01296 (16) | 0.75406 (12) | 0.1082 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0310 (6) | 0.0395 (7) | 0.0353 (7) | 0.0147 (5) | 0.0211 (6) | 0.0115 (5) |
C2 | 0.0314 (6) | 0.0383 (7) | 0.0328 (6) | 0.0150 (5) | 0.0190 (5) | 0.0104 (5) |
C3 | 0.0350 (7) | 0.0355 (6) | 0.0338 (6) | 0.0166 (5) | 0.0197 (6) | 0.0137 (5) |
C4 | 0.0338 (7) | 0.0421 (7) | 0.0334 (6) | 0.0147 (6) | 0.0212 (6) | 0.0140 (5) |
C5 | 0.0318 (7) | 0.0405 (7) | 0.0341 (6) | 0.0142 (6) | 0.0205 (5) | 0.0112 (5) |
C6 | 0.0396 (8) | 0.0696 (10) | 0.0509 (9) | 0.0300 (8) | 0.0219 (7) | 0.0255 (8) |
C11 | 0.0388 (7) | 0.0423 (7) | 0.0354 (7) | 0.0199 (6) | 0.0231 (6) | 0.0163 (6) |
C12 | 0.0416 (8) | 0.0537 (9) | 0.0415 (8) | 0.0146 (7) | 0.0239 (7) | 0.0173 (7) |
C13 | 0.0538 (9) | 0.0618 (10) | 0.0579 (10) | 0.0201 (8) | 0.0396 (8) | 0.0275 (8) |
C14 | 0.0731 (11) | 0.0616 (10) | 0.0465 (9) | 0.0319 (9) | 0.0425 (9) | 0.0265 (8) |
C15 | 0.0614 (10) | 0.0669 (11) | 0.0342 (8) | 0.0229 (8) | 0.0225 (7) | 0.0167 (7) |
C16 | 0.0410 (8) | 0.0590 (9) | 0.0407 (8) | 0.0158 (7) | 0.0218 (7) | 0.0186 (7) |
C21 | 0.0354 (7) | 0.0435 (7) | 0.0385 (7) | 0.0164 (6) | 0.0208 (6) | 0.0139 (6) |
C31 | 0.0355 (7) | 0.0410 (7) | 0.0337 (7) | 0.0170 (6) | 0.0201 (6) | 0.0148 (5) |
C32 | 0.0596 (10) | 0.0441 (8) | 0.0478 (9) | 0.0218 (7) | 0.0186 (8) | 0.0168 (7) |
C33 | 0.0755 (13) | 0.0427 (9) | 0.0531 (10) | 0.0088 (9) | 0.0198 (9) | 0.0062 (8) |
C34 | 0.0530 (10) | 0.0673 (11) | 0.0362 (8) | 0.0059 (9) | 0.0102 (7) | 0.0117 (8) |
C35 | 0.0593 (11) | 0.0757 (12) | 0.0454 (9) | 0.0271 (9) | 0.0106 (8) | 0.0284 (9) |
C36 | 0.0544 (9) | 0.0491 (9) | 0.0445 (8) | 0.0236 (7) | 0.0164 (7) | 0.0198 (7) |
N1 | 0.0393 (7) | 0.0504 (7) | 0.0388 (6) | 0.0150 (5) | 0.0241 (5) | 0.0170 (5) |
N2 | 0.0362 (6) | 0.0633 (8) | 0.0435 (7) | 0.0258 (6) | 0.0260 (5) | 0.0237 (6) |
N3 | 0.0446 (8) | 0.0647 (9) | 0.0710 (9) | 0.0295 (7) | 0.0370 (7) | 0.0240 (7) |
O1 | 0.0381 (5) | 0.0574 (6) | 0.0411 (5) | 0.0273 (5) | 0.0273 (4) | 0.0259 (5) |
O2 | 0.0495 (7) | 0.0981 (9) | 0.0680 (8) | 0.0353 (7) | 0.0449 (6) | 0.0453 (7) |
O3 | 0.0570 (7) | 0.0622 (7) | 0.0492 (6) | 0.0258 (6) | 0.0314 (5) | 0.0328 (5) |
F | 0.0874 (9) | 0.0959 (10) | 0.0492 (7) | −0.0025 (7) | −0.0066 (6) | 0.0070 (6) |
C1—C2 | 1.3293 (18) | C13—H13 | 0.9300 |
C1—O1 | 1.3795 (15) | C14—C15 | 1.372 (2) |
C1—C11 | 1.4717 (17) | C14—H14 | 0.9300 |
C2—C21 | 1.4276 (18) | C15—C16 | 1.382 (2) |
C2—C3 | 1.5089 (17) | C15—H15 | 0.9300 |
C3—C4 | 1.5012 (18) | C16—H16 | 0.9300 |
C3—C31 | 1.5222 (18) | C21—N3 | 1.1369 (18) |
C3—H3 | 0.9800 | C31—C32 | 1.374 (2) |
C4—C5 | 1.3796 (19) | C31—C36 | 1.374 (2) |
C4—N1 | 1.3855 (17) | C32—C33 | 1.382 (2) |
C5—N2 | 1.3130 (17) | C32—H32 | 0.9300 |
C5—O1 | 1.3566 (15) | C33—C34 | 1.354 (3) |
C6—N2 | 1.4498 (19) | C33—H33 | 0.9300 |
C6—H6A | 0.9600 | C34—C35 | 1.351 (3) |
C6—H6B | 0.9600 | C34—F | 1.3599 (19) |
C6—H6C | 0.9600 | C35—C36 | 1.381 (2) |
C11—C12 | 1.382 (2) | C35—H35 | 0.9300 |
C11—C16 | 1.386 (2) | C36—H36 | 0.9300 |
C12—C13 | 1.380 (2) | N1—O3 | 1.2375 (16) |
C12—H12 | 0.9300 | N1—O2 | 1.2558 (16) |
C13—C14 | 1.368 (2) | N2—H2 | 0.8600 |
C2—C1—O1 | 121.49 (11) | C13—C14—H14 | 120.0 |
C2—C1—C11 | 127.43 (12) | C15—C14—H14 | 120.0 |
O1—C1—C11 | 110.91 (11) | C14—C15—C16 | 120.27 (15) |
C1—C2—C21 | 119.74 (12) | C14—C15—H15 | 119.9 |
C1—C2—C3 | 124.43 (11) | C16—C15—H15 | 119.9 |
C21—C2—C3 | 115.60 (11) | C15—C16—C11 | 119.75 (14) |
C4—C3—C2 | 108.51 (10) | C15—C16—H16 | 120.1 |
C4—C3—C31 | 114.77 (10) | C11—C16—H16 | 120.1 |
C2—C3—C31 | 111.06 (10) | N3—C21—C2 | 175.98 (15) |
C4—C3—H3 | 107.4 | C32—C31—C36 | 118.79 (14) |
C2—C3—H3 | 107.4 | C32—C31—C3 | 121.42 (12) |
C31—C3—H3 | 107.4 | C36—C31—C3 | 119.77 (12) |
C5—C4—N1 | 120.05 (12) | C31—C32—C33 | 120.93 (15) |
C5—C4—C3 | 123.99 (11) | C31—C32—H32 | 119.5 |
N1—C4—C3 | 115.78 (11) | C33—C32—H32 | 119.5 |
N2—C5—O1 | 111.37 (11) | C34—C33—C32 | 118.19 (16) |
N2—C5—C4 | 128.35 (12) | C34—C33—H33 | 120.9 |
O1—C5—C4 | 120.27 (11) | C32—C33—H33 | 120.9 |
N2—C6—H6A | 109.5 | C35—C34—C33 | 122.83 (16) |
N2—C6—H6B | 109.5 | C35—C34—F | 118.40 (17) |
H6A—C6—H6B | 109.5 | C33—C34—F | 118.76 (18) |
N2—C6—H6C | 109.5 | C34—C35—C36 | 118.57 (16) |
H6A—C6—H6C | 109.5 | C34—C35—H35 | 120.7 |
H6B—C6—H6C | 109.5 | C36—C35—H35 | 120.7 |
C12—C11—C16 | 119.61 (13) | C31—C36—C35 | 120.69 (15) |
C12—C11—C1 | 121.15 (12) | C31—C36—H36 | 119.7 |
C16—C11—C1 | 119.16 (12) | C35—C36—H36 | 119.7 |
C13—C12—C11 | 119.86 (14) | O3—N1—O2 | 121.01 (11) |
C13—C12—H12 | 120.1 | O3—N1—C4 | 118.35 (12) |
C11—C12—H12 | 120.1 | O2—N1—C4 | 120.64 (12) |
C14—C13—C12 | 120.41 (15) | C5—N2—C6 | 124.79 (12) |
C14—C13—H13 | 119.8 | C5—N2—H2 | 117.6 |
C12—C13—H13 | 119.8 | C6—N2—H2 | 117.6 |
C13—C14—C15 | 120.07 (14) | C5—O1—C1 | 120.68 (10) |
O1—C1—C2—C21 | 175.21 (12) | C1—C11—C16—C15 | −175.02 (14) |
C11—C1—C2—C21 | 0.5 (2) | C1—C2—C21—N3 | −149 (2) |
O1—C1—C2—C3 | 0.9 (2) | C3—C2—C21—N3 | 25 (2) |
C11—C1—C2—C3 | −173.81 (12) | C4—C3—C31—C32 | −60.76 (17) |
C1—C2—C3—C4 | 5.36 (18) | C2—C3—C31—C32 | 62.76 (17) |
C21—C2—C3—C4 | −169.14 (11) | C4—C3—C31—C36 | 120.98 (14) |
C1—C2—C3—C31 | −121.67 (14) | C2—C3—C31—C36 | −115.50 (14) |
C21—C2—C3—C31 | 63.83 (14) | C36—C31—C32—C33 | −0.5 (3) |
C2—C3—C4—C5 | −6.35 (18) | C3—C31—C32—C33 | −178.80 (15) |
C31—C3—C4—C5 | 118.52 (14) | C31—C32—C33—C34 | 0.6 (3) |
C2—C3—C4—N1 | 168.72 (11) | C32—C33—C34—C35 | −0.2 (3) |
C31—C3—C4—N1 | −66.41 (15) | C32—C33—C34—F | −178.89 (18) |
N1—C4—C5—N2 | 6.2 (2) | C33—C34—C35—C36 | −0.4 (3) |
C3—C4—C5—N2 | −178.88 (13) | F—C34—C35—C36 | 178.36 (17) |
N1—C4—C5—O1 | −173.76 (12) | C32—C31—C36—C35 | 0.0 (2) |
C3—C4—C5—O1 | 1.1 (2) | C3—C31—C36—C35 | 178.28 (15) |
C2—C1—C11—C12 | −51.4 (2) | C34—C35—C36—C31 | 0.5 (3) |
O1—C1—C11—C12 | 133.39 (14) | C5—C4—N1—O3 | 172.24 (12) |
C2—C1—C11—C16 | 125.37 (16) | C3—C4—N1—O3 | −3.05 (18) |
O1—C1—C11—C16 | −49.82 (17) | C5—C4—N1—O2 | −7.1 (2) |
C16—C11—C12—C13 | −1.8 (2) | C3—C4—N1—O2 | 177.62 (12) |
C1—C11—C12—C13 | 174.97 (14) | O1—C5—N2—C6 | 0.9 (2) |
C11—C12—C13—C14 | 0.3 (3) | C4—C5—N2—C6 | −179.11 (14) |
C12—C13—C14—C15 | 1.1 (3) | N2—C5—O1—C1 | −173.84 (11) |
C13—C14—C15—C16 | −1.1 (3) | C4—C5—O1—C1 | 6.16 (19) |
C14—C15—C16—C11 | −0.4 (3) | C2—C1—O1—C5 | −7.26 (19) |
C12—C11—C16—C15 | 1.8 (2) | C11—C1—O1—C5 | 168.27 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O2 | 0.86 | 1.99 | 2.6089 (16) | 128 |
N2—H2···N3i | 0.86 | 2.30 | 2.9811 (17) | 136 |
C6—H6A···N3i | 0.96 | 2.60 | 3.222 (2) | 123 |
Symmetry code: (i) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C19H14FN3O3 |
Mr | 351.33 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 9.3898 (3), 9.9752 (3), 11.1324 (3) |
α, β, γ (°) | 98.765 (1), 113.991 (1), 109.520 (1) |
V (Å3) | 846.09 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.23 × 0.20 × 0.19 |
Data collection | |
Diffractometer | Bruker Kappa APEXII |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.967, 0.974 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16948, 3680, 2993 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.118, 1.06 |
No. of reflections | 3680 |
No. of parameters | 236 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.22 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O2 | 0.86 | 1.99 | 2.6089 (16) | 127.7 |
N2—H2···N3i | 0.86 | 2.30 | 2.9811 (17) | 136.2 |
C6—H6A···N3i | 0.96 | 2.60 | 3.222 (2) | 122.9 |
Symmetry code: (i) x−1, y, z. |
Acknowledgements
JS thanks the UGC for the FIST support. JS and RV thank the management of the Madura College for their encouragement and support. RRK thanks the DST, New Delhi, for funds under the fast-track scheme (No. SR/FT/CS-073/2009).
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Liang, F., Cheng, X., Liu, J. & Liu, Q. (2009). Chem. Commun. pp. 3636–3638. Web of Science CSD CrossRef Google Scholar
Lokaj, J., Kettmann, V., Pavelčík, F., Ilavský, D. & Marchalín, Š. (1990). Acta Cryst. C46, 788–791. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Marco, J. L., Martín, G., Martín, N., Martínez-Grau, A., Seoane, C., Albert, A. & Cano, F. H. (1993). Tetrahedron, 49, 7133–7144. CSD CrossRef CAS Web of Science Google Scholar
Nesterov, V. N. & Viltchinskaia, E. A. (2001). Acta Cryst. C57, 616–618. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nesterov, V. N., Wiedenfeld, D. J., Nesterova, S. V. & Minton, M. A. (2004). Acta Cryst. C60, o334–o337. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suárez, M., Salfrán, E., Verdecia, Y., Ochoa, E., Alba, L., Martín, N., Martínez, R., Quinteiro, M., Seoane, C., Novoa, H., Blaton, N., Peeters, O. M. & De Ranter, C. (2002). Tetrahedron, 58, 953–960. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound and some related compounds are widely used as organic intermediates in organic chemistry (Liang et al., 2009). Much interest has recently been paid to the design of polyfunctionalized substituted pyran derivatives, owing to their wide range of biological activities (Lokaj et al., 1990; Marco et al., 1993). Some 4H-pyran derivatives are potential bioactive compounds and can be used as calcium antagonists (Suárez et al., 2002). Thus, there has been a growing interest in the structures of 4H-pyran derivatives. The high biologically active value of these compounds in conjunction with our research interests prompted us to synthesize and report the X-ray study of the title compound.
In the title compound (C19H14FN3O3, Fig. 1) the six-membered central pyran ring adopts a boat conformation as evidenced by the puckering parameters q2 = 0.0826 (12) Å, θ = 88.18 (4)°, φ = 127.06 (4)° (Cremer & Pople, 1975). The dihedral angle between the pseudo-axial aryl substituent and the flat part of the pyran ring is 87.11 (1)°. There is conjugation between the donor (NH) and the acceptor (CN) groups via the C4═C5 double bond, as found in other related compounds (Nesterov et al., 2001, 2004). Thus, the C5—N2 distance is 1.3130 (17) Å, which is shorter than the average conjugated C—N single bond, 1.370 (1) Å, found in the Cambridge Structural Database (Allen, 2002). In contrast, the C4═C5 bond is elongated in comparison with the C1═C2 bond and the standard value (Allen et al., 1987). The C4—N1 distance, 1.3855 (17) Å, is considerably shorter than usual C—NO2 distance (1.468 Å, Allen et al., 1987) and the N1—O2 distance, 1.2558 (16) Å, is longer than the standard value (Allen et al., 1987). The dihedral angle between the flat part of the pyran ring and the phneyl ring at C1 is 49.22 (2)°. The phenyl and the fluorophenyl rings are substituting the pyran ring in a (–)-syn-clinal conformation, with torsion angles C2—C1—C11—C12 and C4—C3—C31—C32 of -51.4 (2)° and -60.76 (17)° respectively. The nitro group is bonded to the pyran ring at C4 with the torsion angle C5—C4—N1—O2 of -7.09 (3)°, indicating a (–)-syn-periplanar conformation for this group.
In the crystal structure, the molecules are linked together, to form an infinite one dimensional chain along [100], through intermolecular N2—H2···N3 and C6—H6A···N3 hydrogen bonds, generating graph set motifs C(8) and C(9) respectively (Fig. 2; Bernstein et al., 1995). In addition, there is a N—H···O intramolecular interaction which stabilizes the molecular conformation.