inorganic compounds
Pentacobalt(II) divanadium(III) tetrakis(diphosphate), Co5V2(P2O7)4
aInstitut für Anorganische Chemie, Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
*Correspondence e-mail: rglaum@uni-bonn.de
Co5V2(P2O7)4 was crystallized by chemical vapour transport using HCl as transport agent. Its is isotypic to that of FeII5FeIII2(P2O7)4 and can be regarded as a member of the thortveitite structure family with corrugated layers of metal–oxygen polyhedra extending parallel to (010). Significant occupational disorder between cobalt(II) and vanadium(III) is observed. Four of the five cation sites are occupied by both cobalt and vanadium. The fifth cation site (Co1) is occupied by cobalt only. Sites Co1, M3 and M4 are located on twofold axes. Sites Co1, M2, M3 and M4 show octahedral coordination by oxygen; M5 has a square-pyramidal environment.
Related literature
For related structures, see: Cruickshank et al. (1962); Gossner & Mussgnug (1929); Krishnamachari & Calvo (1972); Litterscheid (2009); Malaman et al. (1992); Palkina et al. (1985); Stefanidis & Nord (1984); Zachariasen (1930). For the preparation, see: Binnewies et al. (2012); Litterscheid (2009).
Experimental
Crystal data
|
Data collection: X-AREA (Stoe & Cie, 2002); cell X-AREA; data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
https://doi.org/10.1107/S1600536813008507/br2223sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813008507/br2223Isup2.hkl
For the synthesis of CoII5VIII2(P2O7)4 a pellet was prepared of thoroughly ground V4(P2O7)3 (82.97 mg) and Co2P2O7 (166.99 mg). This pellet was transferred into a silica tube and sealed under vacuum. Heating at 1173 K for three days led to a single phase product. Pink single-crystals of Co5V2(P2O7)4 were obtained by chemical vapour transport (Binnewies et al., 2012) in a temperature gradient 1273 → 1173 K for seven days using HCl as transport agent. HCl was obtained by in situ reaction of NH4Cl (2.7 mg) and PtCl2 (19.9 mg). In agreement with chemical vapour transport of other phosphates by HCl(g) as transport agent, we suggest the following transport reaction:
Co5V2(P2O7)4(s) + 16 HCl(g) = 5 CoCl2(g) + VCl2(g) + VCl4(g) + 2 P4O10(g) + 8 H2O(g)
Cobalt/vanadium disorder has been refined assuming full occupancy of metal sites M1 to M5. To maintain charge balance the
was constrained to a total of 20 Co2+ and 8 V3+ in the The indicated no disorder for site M1, for which in the final cycles full occupancy by cobalt was assumed. Displacement parameters for sites with mixed occupancy Co/V were constrained to be identical for Co2+ and V3+. No hint on racemic was observed.Even after several hundred
cycles the occupancy ratio Co:V for site M2 showed a rather large value of 0.01 for the ratio shift/esd. Since there are no other hints on hidden problems with the we think that this indicator just reflects the problems generally encountered when refining occupancy factors for atoms of similar Actually, it was quite unexpected that the of the mixed occupancies Co/V proceeded without further problems.Equilibrium investigations in the ternary system CoO/V2O3/P2O5 revealed three new phosphates: CoII3VIII4(PO4)6, CoII3VIII2(P2O7)3, and CoII5VIII2(P2O7)4 (Litterscheid, 2009).
CoII5VIII2(P2O7)4 crystallizes in the orthorhombic
C2221. The is isotopic to that of FeII5FeIII2(P2O7)4 (Malaman et al., 1992). It consists of P2O7 groups and five independent polyhedra [MOn] (n = 5 or 6; Fig. 1). Four of the five cation sites are occupied by both cobalt and vanadium, two lying on a two-fold axis. The fifth cation site (Co1) is occupied by cobalt only. Sites Co1, M3 and M4 are located on two-fold axes. Sites Co1, M2, M3 and M4 show octahedral coordination by oxygen. M5 has a square-pyramidal enviroment. The metal oxygen polyhedra form corrugated layers (stacked along the b-axis). These layers are separated by P2O7 groups (Fig. 3).The pyrophosphate groups display bridging angles (P1,O5,P3)=134.8 ° and (P2,O9,P4)=135.2 °. The displacement parameters for O5 and O9 do not exhibit any anomalies. The pyrophosphate group (P1P3O7) shows a
while (P2P4O7) has an almost eclipsed one (Fig.2).Allowing for disorder in the
of Co5V2(P2O7)4 led to significantly improved residuals. This revealed disorder for four metal sites whereas the fifth site Co1 is fully occupied by cobalt (see table). The mean inter-atomic distances d(M-O) for the sites with mixed metal occupancy range from 2.01 Å to 2.17 Å. The average distance d(M-O) = 2.15 Å is found for [Co1O6]. All distances d(M-O) are in agreement with those already known from other cobalt(II) (Krishnamachari and Calvo, 1972) and vanadium(III) (Palkina et al., 1985) phosphates.The
of CoII5VIII2(P2O7)4 shows close similarity to the thortveitite structure family (Gossner & Mussgnug, 1929; Cruickshank et al., 1962; Zachariasen et al., 1930). This relation is visualized in Fig. 4 by comparison of the structures of CoII5VIII2(P2O7)4 and Mn2P2O7 (Stefanidis et al., 1984). With respect to the composition of the latter pyrophosphate 5/8 of the Mn2+ sites are occupied by Co2+, 2/8 by V3+ and 1/8 remains empty for charge balance. In contrast to the honeycomb network of [MnO6] octahedra (Fig. 4) in Mn2P2O7 the polyhedra [MOn] in CoII5VIII2(P2O7)4 show lower connectivity. This follows from the presence of octahedral voids and the reduced for polyhedron [M5O5].For related structures, see: Cruickshank et al. (1962); Gossner & Mussgnug (1929); Krishnamachari & Calvo (1972); Litterscheid (2009); Malaman et al. (1992); Palkina et al. (1985); Stefanidis & Nord (1984); Zachariasen (1930). For the preparation, see: Binnewies et al. (2012); Litterscheid (2009).
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).Co5V2(P2O7)4 | F(000) = 2100 |
Mr = 1092.29 | Dx = 3.75 Mg m−3 |
Orthorhombic, C2221 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C 2c 2 | Cell parameters from 4330 reflections |
a = 8.3551 (4) Å | θ = 1.0–29.1° |
b = 9.7067 (5) Å | µ = 5.92 mm−1 |
c = 23.8555 (11) Å | T = 293 K |
V = 1934.69 (16) Å3 | Isometric, pink |
Z = 4 | 0.08 × 0.08 × 0.08 mm |
Stoe IPDS 2T 2-circle goniometer diffractometer | 3800 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 2832 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.082 |
profile data from θ/2θ scans | θmax = 34.1°, θmin = 3.6° |
Absorption correction: multi-scan (Blessing, 1995) | h = −12→12 |
Tmin = 0.495, Tmax = 0.647 | k = −13→15 |
9445 measured reflections | l = −28→35 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0575P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.046 | (Δ/σ)max = 0.058 |
wR(F2) = 0.110 | Δρmax = 1.02 e Å−3 |
S = 0.92 | Δρmin = −1.17 e Å−3 |
3800 reflections | Extinction correction: SHELXL97 (Sheldrick, 2008) |
201 parameters | Extinction coefficient: 0.00114 (15) |
1 restraint | Absolute structure: Flack (1983), 2275 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.02 (2) |
Co5V2(P2O7)4 | V = 1934.69 (16) Å3 |
Mr = 1092.29 | Z = 4 |
Orthorhombic, C2221 | Mo Kα radiation |
a = 8.3551 (4) Å | µ = 5.92 mm−1 |
b = 9.7067 (5) Å | T = 293 K |
c = 23.8555 (11) Å | 0.08 × 0.08 × 0.08 mm |
Stoe IPDS 2T 2-circle goniometer diffractometer | 3800 independent reflections |
Absorption correction: multi-scan (Blessing, 1995) | 2832 reflections with I > 2σ(I) |
Tmin = 0.495, Tmax = 0.647 | Rint = 0.082 |
9445 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 1 restraint |
wR(F2) = 0.110 | Δρmax = 1.02 e Å−3 |
S = 0.92 | Δρmin = −1.17 e Å−3 |
3800 reflections | Absolute structure: Flack (1983), 2275 Friedel pairs |
201 parameters | Absolute structure parameter: −0.02 (2) |
Experimental. To reach the desired data resolution with the given experimental setup the image plate had been tilted by 15 degrees. This is also the explanation for the asymmetrie in the upper and lower limits of observed hkl values. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Co1 | −0.08177 (13) | 0 | −0.5 | 0.0231 (3) | |
Co2 | −0.06997 (9) | −0.35558 (9) | −0.38065 (4) | 0.01028 (16) | 0.3452 (5) |
V2 | −0.06997 (9) | −0.35558 (9) | −0.38065 (4) | 0.01028 (16) | 0.6548 (5) |
Co3 | 0.29241 (13) | 0 | −0.5 | 0.0162 (3) | 0.934 (19) |
V3 | 0.29241 (13) | 0 | −0.5 | 0.0162 (3) | 0.066 (19) |
Co4 | 0 | −0.71981 (12) | −0.25 | 0.0106 (3) | 0.72 (2) |
V4 | 0 | −0.71981 (12) | −0.25 | 0.0106 (3) | 0.28 (2) |
Co5 | 0.31161 (9) | −0.36011 (9) | −0.35848 (4) | 0.0146 (2) | 0.827 (12) |
V5 | 0.31161 (9) | −0.36011 (9) | −0.35848 (4) | 0.0146 (2) | 0.173 (12) |
P1 | 0.09658 (15) | −0.29386 (13) | −0.49912 (6) | 0.0084 (2) | |
P2 | 0.11867 (16) | −0.05623 (14) | −0.37555 (6) | 0.0088 (3) | |
P3 | 0.10814 (15) | −0.64697 (13) | −0.37996 (6) | 0.0075 (2) | |
P4 | 0.23708 (16) | −0.46167 (13) | −0.23058 (6) | 0.0088 (2) | |
O1 | 0.1176 (4) | −0.4895 (4) | −0.37362 (15) | 0.0091 (7) | |
O2 | 0.1166 (5) | −0.2135 (4) | −0.37347 (17) | 0.0128 (7) | |
O3 | 0.1028 (4) | −0.1378 (4) | −0.49593 (17) | 0.0119 (7) | |
O4 | 0.1778 (5) | −0.5885 (4) | −0.25902 (18) | 0.0148 (8) | |
O5 | 0.0296 (5) | −0.3310 (4) | −0.55996 (17) | 0.0161 (8) | |
O6 | −0.2299 (4) | −0.5048 (4) | −0.40502 (16) | 0.0119 (7) | |
O7 | −0.1713 (4) | −0.8684 (4) | −0.27171 (17) | 0.0121 (7) | |
O8 | −0.0110 (5) | −0.7125 (4) | −0.33991 (17) | 0.0144 (8) | |
O9 | 0.1241 (4) | −0.0051 (4) | −0.31260 (17) | 0.0138 (7) | |
O10 | −0.0396 (4) | −0.3561 (4) | −0.46426 (16) | 0.0116 (7) | |
O11 | −0.2444 (5) | 0.1430 (5) | −0.48668 (19) | 0.0174 (8) | |
O12 | 0.4680 (4) | −0.4907 (5) | −0.39934 (16) | 0.0132 (7) | |
O13 | −0.2302 (5) | −0.2113 (4) | −0.38130 (18) | 0.0131 (7) | |
O14 | 0.1101 (5) | −0.3849 (4) | −0.19772 (17) | 0.0132 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0073 (4) | 0.0060 (4) | 0.0559 (9) | 0 | 0 | −0.0023 (5) |
Co2 | 0.0092 (3) | 0.0085 (3) | 0.0131 (4) | 0.0004 (3) | −0.0003 (3) | 0.0004 (3) |
V2 | 0.0092 (3) | 0.0085 (3) | 0.0131 (4) | 0.0004 (3) | −0.0003 (3) | 0.0004 (3) |
Co3 | 0.0109 (5) | 0.0116 (5) | 0.0260 (7) | 0 | 0 | −0.0022 (5) |
V3 | 0.0109 (5) | 0.0116 (5) | 0.0260 (7) | 0 | 0 | −0.0022 (5) |
Co4 | 0.0102 (5) | 0.0075 (5) | 0.0140 (6) | 0 | 0.0005 (4) | 0 |
V4 | 0.0102 (5) | 0.0075 (5) | 0.0140 (6) | 0 | 0.0005 (4) | 0 |
Co5 | 0.0118 (3) | 0.0124 (4) | 0.0197 (4) | −0.0005 (3) | 0.0000 (3) | −0.0020 (3) |
V5 | 0.0118 (3) | 0.0124 (4) | 0.0197 (4) | −0.0005 (3) | 0.0000 (3) | −0.0020 (3) |
P1 | 0.0081 (5) | 0.0056 (5) | 0.0114 (6) | 0.0001 (4) | 0.0015 (5) | 0.0001 (5) |
P2 | 0.0078 (5) | 0.0064 (5) | 0.0123 (7) | −0.0010 (4) | −0.0001 (5) | −0.0002 (5) |
P3 | 0.0081 (5) | 0.0043 (5) | 0.0100 (5) | 0.0012 (5) | −0.0004 (5) | 0.0004 (5) |
P4 | 0.0086 (6) | 0.0070 (5) | 0.0107 (6) | −0.0016 (4) | 0.0009 (5) | 0.0008 (4) |
O1 | 0.0080 (14) | 0.0060 (15) | 0.0132 (18) | 0.0023 (14) | 0.0035 (14) | 0.0015 (14) |
O2 | 0.0141 (16) | 0.0110 (17) | 0.0133 (19) | −0.0008 (15) | 0.0011 (16) | 0.0030 (15) |
O3 | 0.0112 (16) | 0.0081 (15) | 0.0162 (18) | 0.0030 (14) | −0.0014 (16) | 0.0017 (16) |
O4 | 0.0163 (18) | 0.0109 (17) | 0.017 (2) | −0.0048 (15) | 0.0022 (16) | −0.0004 (15) |
O5 | 0.0145 (18) | 0.019 (2) | 0.0147 (19) | −0.0017 (15) | 0.0007 (16) | −0.0063 (16) |
O6 | 0.0106 (15) | 0.0094 (16) | 0.0157 (18) | −0.0007 (15) | 0.0007 (14) | −0.0009 (14) |
O7 | 0.0112 (15) | 0.0103 (17) | 0.0148 (18) | −0.0009 (14) | −0.0018 (14) | 0.0043 (15) |
O8 | 0.0179 (19) | 0.0112 (18) | 0.0142 (18) | −0.0027 (15) | −0.0001 (16) | −0.0004 (15) |
O9 | 0.0102 (15) | 0.0141 (17) | 0.0171 (19) | −0.0014 (15) | 0.0002 (14) | −0.0024 (16) |
O10 | 0.0116 (16) | 0.0128 (17) | 0.0104 (17) | 0.0014 (15) | 0.0032 (14) | 0.0001 (15) |
O11 | 0.0107 (16) | 0.0112 (17) | 0.030 (2) | 0.0046 (15) | 0.0018 (16) | 0.0011 (17) |
O12 | 0.0080 (15) | 0.0157 (18) | 0.0158 (19) | −0.0022 (14) | 0.0008 (14) | 0.0036 (16) |
O13 | 0.0114 (16) | 0.0065 (16) | 0.021 (2) | 0.0020 (13) | −0.0019 (16) | −0.0014 (15) |
O14 | 0.0122 (16) | 0.0170 (19) | 0.0102 (17) | 0.0015 (15) | 0.0014 (15) | −0.0011 (14) |
Co1—O11 | 1.968 (4) | Co5—O12 | 2.065 (4) |
Co1—O11i | 1.968 (4) | Co5—O7iv | 2.076 (4) |
Co1—O3i | 2.044 (4) | Co5—O1 | 2.082 (4) |
Co1—O3 | 2.044 (4) | Co5—O8iv | 2.109 (4) |
Co2—O14ii | 1.921 (4) | Co5—O2 | 2.192 (4) |
Co2—O13 | 1.937 (4) | P1—O11v | 1.493 (4) |
Co2—O10 | 2.010 (4) | P1—O3 | 1.518 (4) |
Co2—O1 | 2.043 (3) | P1—O10 | 1.533 (4) |
Co2—O6 | 2.055 (4) | P1—O5 | 1.597 (4) |
Co2—O2 | 2.089 (4) | P2—O12vi | 1.520 (4) |
Co3—O3i | 2.075 (4) | P2—O2 | 1.527 (4) |
Co3—O3 | 2.075 (4) | P2—O6iv | 1.531 (4) |
Co3—O10iii | 2.156 (4) | P2—O9 | 1.582 (4) |
Co3—O10iv | 2.156 (4) | P3—O13v | 1.489 (4) |
Co3—O6iii | 2.274 (4) | P3—O8 | 1.519 (4) |
Co3—O6iv | 2.274 (4) | P3—O1 | 1.538 (4) |
Co4—O4ii | 1.969 (4) | P3—O5vii | 1.591 (4) |
Co4—O4 | 1.969 (4) | P4—O4 | 1.490 (4) |
Co4—O7 | 2.097 (4) | P4—O14 | 1.515 (4) |
Co4—O7ii | 2.097 (4) | P4—O7iv | 1.539 (4) |
Co4—O8 | 2.148 (4) | P4—O9viii | 1.608 (4) |
Co4—O8ii | 2.148 (4) | ||
O11—Co1—O11i | 92.7 (3) | O11v—P1—O3 | 111.7 (2) |
O11—Co1—O3i | 93.86 (16) | O11v—P1—O10 | 113.0 (2) |
O11i—Co1—O3i | 167.12 (17) | O3—P1—O10 | 113.1 (2) |
O11—Co1—O3 | 167.12 (17) | O11v—P1—O5 | 113.6 (2) |
O11i—Co1—O3 | 93.86 (16) | O3—P1—O5 | 106.4 (2) |
O3i—Co1—O3 | 82.0 (2) | O10—P1—O5 | 98.3 (2) |
O14ii—Co2—O13 | 89.68 (18) | O12vi—P2—O2 | 114.9 (3) |
O14ii—Co2—O10 | 170.85 (19) | O12vi—P2—O6iv | 112.1 (2) |
O13—Co2—O10 | 94.66 (17) | O2—P2—O6iv | 110.5 (2) |
O14ii—Co2—O1 | 87.68 (16) | O12vi—P2—O9 | 104.3 (2) |
O13—Co2—O1 | 172.15 (17) | O2—P2—O9 | 106.4 (2) |
O10—Co2—O1 | 89.03 (15) | O6iv—P2—O9 | 108.1 (2) |
O14ii—Co2—O6 | 93.29 (17) | O13v—P3—O8 | 115.6 (2) |
O13—Co2—O6 | 93.32 (16) | O13v—P3—O1 | 111.9 (2) |
O10—Co2—O6 | 78.44 (16) | O8—P3—O1 | 112.8 (2) |
O1—Co2—O6 | 94.22 (15) | O13v—P3—O5vii | 107.4 (2) |
O14ii—Co2—O2 | 98.53 (17) | O8—P3—O5vii | 103.9 (2) |
O13—Co2—O2 | 92.24 (16) | O1—P3—O5vii | 104.1 (2) |
O10—Co2—O2 | 89.36 (16) | O4—P4—O14 | 114.2 (2) |
O1—Co2—O2 | 80.85 (15) | O4—P4—O7iv | 111.2 (2) |
O6—Co2—O2 | 166.96 (16) | O14—P4—O7iv | 112.9 (2) |
O3i—Co3—O3 | 80.5 (2) | O4—P4—O9viii | 108.3 (2) |
O3i—Co3—O10iii | 153.63 (15) | O14—P4—O9viii | 107.6 (2) |
O3—Co3—O10iii | 95.61 (15) | O7iv—P4—O9viii | 101.8 (2) |
O3i—Co3—O10iv | 95.62 (15) | P3—O1—Co2 | 125.8 (2) |
O3—Co3—O10iv | 153.62 (15) | P3—O1—Co5 | 131.1 (2) |
O10iii—Co3—O10iv | 98.8 (2) | Co2—O1—Co5 | 103.14 (16) |
O3i—Co3—O6iii | 82.97 (15) | P2—O2—Co2 | 131.7 (3) |
O3—Co3—O6iii | 89.84 (15) | P2—O2—Co5 | 130.2 (2) |
O10iii—Co3—O6iii | 70.88 (14) | Co2—O2—Co5 | 98.01 (17) |
O10iv—Co3—O6iii | 115.74 (14) | P1—O3—Co1 | 128.7 (2) |
O3i—Co3—O6iv | 89.84 (15) | P1—O3—Co3 | 131.9 (2) |
O3—Co3—O6iv | 82.97 (15) | Co1—O3—Co3 | 98.73 (16) |
O10iii—Co3—O6iv | 115.73 (14) | P4—O4—Co4 | 137.3 (3) |
O10iv—Co3—O6iv | 70.88 (14) | P3vii—O5—P1 | 134.8 (3) |
O6iii—Co3—O6iv | 170.60 (19) | P2ix—O6—Co2 | 129.6 (2) |
O4ii—Co4—O4 | 99.4 (3) | P2ix—O6—Co3ix | 122.1 (2) |
O4ii—Co4—O7 | 87.52 (17) | Co2—O6—Co3ix | 102.37 (16) |
O4—Co4—O7 | 158.93 (16) | P2ix—O6—V3ix | 122.1 (2) |
O4ii—Co4—O7ii | 158.93 (16) | Co2—O6—V3ix | 102.37 (16) |
O4—Co4—O7ii | 87.52 (17) | P4ix—O7—V5ix | 128.6 (2) |
O7—Co4—O7ii | 93.1 (2) | P4ix—O7—Co5ix | 128.6 (2) |
O4ii—Co4—O8 | 93.18 (17) | P4ix—O7—Co4 | 125.9 (2) |
O4—Co4—O8 | 84.36 (17) | V5ix—O7—Co4 | 105.46 (17) |
O7—Co4—O8 | 75.35 (15) | Co5ix—O7—Co4 | 105.46 (17) |
O7ii—Co4—O8 | 107.37 (16) | P3—O8—V5ix | 127.8 (2) |
O4ii—Co4—O8ii | 84.36 (17) | P3—O8—Co5ix | 127.8 (2) |
O4—Co4—O8ii | 93.18 (17) | P3—O8—Co4 | 127.9 (2) |
O7—Co4—O8ii | 107.37 (16) | V5ix—O8—Co4 | 102.55 (18) |
O7ii—Co4—O8ii | 75.35 (15) | Co5ix—O8—Co4 | 102.55 (18) |
O8—Co4—O8ii | 176.2 (2) | P2—O9—P4x | 135.3 (3) |
O12—Co5—O7iv | 113.79 (16) | P1—O10—Co2 | 129.1 (2) |
O12—Co5—O1 | 92.30 (15) | P1—O10—V3ix | 121.6 (2) |
O7iv—Co5—O1 | 101.71 (15) | Co2—O10—V3ix | 108.17 (17) |
O12—Co5—O8iv | 94.11 (16) | P1—O10—Co3ix | 121.6 (2) |
O7iv—Co5—O8iv | 76.62 (15) | Co2—O10—Co3ix | 108.17 (17) |
O1—Co5—O8iv | 173.51 (15) | P1vi—O11—Co1 | 150.7 (3) |
O12—Co5—O2 | 142.34 (16) | P2v—O12—Co5 | 127.2 (2) |
O7iv—Co5—O2 | 103.80 (15) | P3vi—O13—Co2 | 158.5 (3) |
O1—Co5—O2 | 77.59 (14) | P4—O14—V2ii | 134.3 (3) |
O8iv—Co5—O2 | 96.63 (16) | P4—O14—Co2ii | 134.3 (3) |
Symmetry codes: (i) x, −y, −z−1; (ii) −x, y, −z−1/2; (iii) x+1/2, −y−1/2, −z−1; (iv) x+1/2, y+1/2, z; (v) x+1/2, y−1/2, z; (vi) x−1/2, y+1/2, z; (vii) x, −y−1, −z−1; (viii) −x+1/2, y−1/2, −z−1/2; (ix) x−1/2, y−1/2, z; (x) −x+1/2, y+1/2, −z−1/2. |
Experimental details
Crystal data | |
Chemical formula | Co5V2(P2O7)4 |
Mr | 1092.29 |
Crystal system, space group | Orthorhombic, C2221 |
Temperature (K) | 293 |
a, b, c (Å) | 8.3551 (4), 9.7067 (5), 23.8555 (11) |
V (Å3) | 1934.69 (16) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.92 |
Crystal size (mm) | 0.08 × 0.08 × 0.08 |
Data collection | |
Diffractometer | Stoe IPDS 2T 2-circle goniometer |
Absorption correction | Multi-scan (Blessing, 1995) |
Tmin, Tmax | 0.495, 0.647 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9445, 3800, 2832 |
Rint | 0.082 |
(sin θ/λ)max (Å−1) | 0.790 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.110, 0.92 |
No. of reflections | 3800 |
No. of parameters | 201 |
No. of restraints | 1 |
Δρmax, Δρmin (e Å−3) | 1.02, −1.17 |
Absolute structure | Flack (1983), 2275 Friedel pairs |
Absolute structure parameter | −0.02 (2) |
Computer programs: X-AREA (Stoe & Cie, 2002), X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2008), WinGX (Farrugia, 2012).
Acknowledgements
We thank Dr G. Schnakenburg (University of Bonn) for the data collection.
References
Binnewies, M., Glaum, R., Schmidt, M. & Schmidt, P. (2012). In Chemical Vapor Transport Reactions. Berlin: W. de Gruyter. Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brandenburg, K. (2008). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Cruickshank, D. W. J., Lynton, H. & Barclay, G. A. (1962). Acta Cryst. 15, 491–498. CrossRef CAS IUCr Journals Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gossner, B. & Mussgnug, F. (1929). Centr. Min. Abt. No. I. Google Scholar
Krishnamachari, N. & Calvo, C. (1972). Acta Cryst. B28, 2883–2885. CrossRef CAS IUCr Journals Web of Science Google Scholar
Litterscheid, C. (2009). Dissertation, Universität Bonn, Germany. URL: http://hss.ulb.uni-bonn.de/2009/1928/1928.pdf. Google Scholar
Malaman, B., Ijjaali, M., Gerardin, R., Venturini, G. & Gleitzer, C. (1992). Eur. J. Solid State Inorg. Chem. 29, 1269–1284. CAS Google Scholar
Palkina, K. K., Maksimova, S. I., Chibiskova, N. T., Schlesinger, K. & Ladwig, G. (1985). Z. Anorg. Allg. Chem. 529, 89–96. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stefanidis, T. & Nord, A. G. (1984). Acta Cryst. C40, 1995–1999. CrossRef CAS Web of Science IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany. Google Scholar
Zachariasen, W. H. (1930). Z. Kristallogr. 73, 1–6. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Equilibrium investigations in the ternary system CoO/V2O3/P2O5 revealed three new phosphates: CoII3VIII4(PO4)6, CoII3VIII2(P2O7)3, and CoII5VIII2(P2O7)4 (Litterscheid, 2009).
CoII5VIII2(P2O7)4 crystallizes in the orthorhombic space group C2221. The crystal structure is isotopic to that of FeII5FeIII2(P2O7)4 (Malaman et al., 1992). It consists of P2O7 groups and five independent polyhedra [MOn] (n = 5 or 6; Fig. 1). Four of the five cation sites are occupied by both cobalt and vanadium, two lying on a two-fold axis. The fifth cation site (Co1) is occupied by cobalt only. Sites Co1, M3 and M4 are located on two-fold axes. Sites Co1, M2, M3 and M4 show octahedral coordination by oxygen. M5 has a square-pyramidal enviroment. The metal oxygen polyhedra form corrugated layers (stacked along the b-axis). These layers are separated by P2O7 groups (Fig. 3).
The pyrophosphate groups display bridging angles (P1,O5,P3)=134.8 ° and (P2,O9,P4)=135.2 °. The displacement parameters for O5 and O9 do not exhibit any anomalies. The pyrophosphate group (P1P3O7) shows a staggered conformation while (P2P4O7) has an almost eclipsed one (Fig.2).
Allowing for disorder in the crystal structure of Co5V2(P2O7)4 led to significantly improved residuals. This refinement revealed disorder for four metal sites whereas the fifth site Co1 is fully occupied by cobalt (see table). The mean inter-atomic distances d(M-O) for the sites with mixed metal occupancy range from 2.01 Å to 2.17 Å. The average distance d(M-O) = 2.15 Å is found for [Co1O6]. All distances d(M-O) are in agreement with those already known from other cobalt(II) (Krishnamachari and Calvo, 1972) and vanadium(III) (Palkina et al., 1985) phosphates.
The crystal structure of CoII5VIII2(P2O7)4 shows close similarity to the thortveitite structure family (Gossner & Mussgnug, 1929; Cruickshank et al., 1962; Zachariasen et al., 1930). This relation is visualized in Fig. 4 by comparison of the structures of CoII5VIII2(P2O7)4 and Mn2P2O7 (Stefanidis et al., 1984). With respect to the composition of the latter pyrophosphate 5/8 of the Mn2+ sites are occupied by Co2+, 2/8 by V3+ and 1/8 remains empty for charge balance. In contrast to the honeycomb network of [MnO6] octahedra (Fig. 4) in Mn2P2O7 the polyhedra [MOn] in CoII5VIII2(P2O7)4 show lower connectivity. This follows from the presence of octahedral voids and the reduced coordination number for polyhedron [M5O5].