organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl 4-{5-[3-(tri­fluoro­meth­­oxy)phen­yl]-1,2,4-oxa­diazol-3-yl}piperazine-1-carboxyl­ate

aDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur, Karnataka 572 103, India, bDepartment of Physics, Governament First Grade College K.R. Pete, Karnataka 571 426, India, cDepartment of Studies and Research in Chemistry, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, and dDepartment of Studies and Research in Physics, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India
*Correspondence e-mail: palaksha.bspm@gmail.com

(Received 26 March 2013; accepted 13 April 2013; online 20 April 2013)

In the title compound, C18H21F3N4O4, the piperazine ring adopts a chair conformation and the dihedral angle between the oxa­diazole and benzene rings is 6.45 (14)°. The C atoms and their attached H atoms in the piperazine ring are disordered, with site-occupation factors of 0.576 (12) and 0.424 (12). In the crystal, mol­ecules are linked through weak C—H⋯O inter­actions, generating an R22(12) motif. Further, secondary C—H⋯O inter­molecular inter­actions link the mol­ecules into C(6) chains along [100].

Related literature

For the synthesis and biological activity of 1,2,4-oxa­diazo­les, see: Chimirri et al. (1996[Chimirri, A., Grasso, S., Molica, C., Monforte, A. M., Monforte, P., Zappalà, M. & Scopelliti, R. (1996). Il Farmaco, 51, 279-82.]); Nicolaides et al. (1998[Nicolaides, D. N., Fylaktakidou, K. C., Litinas, K. E. & Hadjipavlou-Litina, D. (1998). Eur. J. Med. Chem. 33, 715-724.]); Kemnitzer et al. (2009[Kemnitzer, W., Kuemmerle, J., Zhang, H. Z., Kasibhatla, S., Tseng, B., Drewe, J. & Cai, S. X. (2009). Bioorg. Med. Chem. Lett. 19, 4410-4415.]).

[Scheme 1]

Experimental

Crystal data
  • C18H21F3N4O4

  • Mr = 414.39

  • Triclinic, [P \overline 1]

  • a = 5.773 (2) Å

  • b = 11.168 (5) Å

  • c = 15.991 (7) Å

  • α = 96.092 (16)°

  • β = 100.316 (14)°

  • γ = 91.333 (14)°

  • V = 1007.7 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 300 K

  • 0.28 × 0.24 × 0.18 mm

Data collection
  • Bruker SMART X2S diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.980

  • 7493 measured reflections

  • 3521 independent reflections

  • 2233 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.207

  • S = 1.10

  • 3521 reflections

  • 303 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯O4i 0.96 2.56 3.393 (3) 145
C10A—H10C⋯O4ii 0.97 2.46 3.413 (10) 167
Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,2,4-Oxadiazoles exhibit diverse biological activities (Chimirri et al., 1996). They have been described as bio-isosteres for amides and esters. Due to increased hydrolytic and metabolic stabilities of the oxadiazole ring, improved pharmacokinetic and in vivo performance are often observed, which makes these heterocycles an important structural moiety for the pharmaceutical industry (Nicolaides et al., 1998). As a consequence of these, oxadiazoles have often been the target of numerous drug discovery programs as anti-inflammatory agents, anti-tumor agents, potential anticancer agents, Histamine H3 receptor antagonists as potent inhibitors of MIF biological function, and bell-tryptase inhibitors, In addition to these, 1,2,4-oxadiazoles are widely used as hydrolysis resisting amide bioisosteres in the development of peptidomimetics (Kemnitzer et al.,2009). Also, oxadiazoles exhibit wide range of antibacterial, antifungal and activities against Gram-positive and Gram-negative bacteria. Keeping this in mind, the crystal structure of the title compound was determined.

In the crystal structure of the title compound, C18H21F3N4O4, the piperazine ring adopts chair conformation, and the molecule is almost planar with the dihedral angle between the oxadiazole and the benzene ring is 6.45 (14)o. In the structure, the molecules are linked through weak C10A—H10C···O4 interactions generating a R22(12) motif. Further, C17—H17A···O4 intermolecular interactions link the molecules into C(6) chains along [100].

Related literature top

For the synthesis and biological activity of 1,2,4-oxadiazoles, see: Chimirri et al. (1996); Nicolaides et al. (1998); Kemnitzer et al. (2009).

Experimental top

To a solution of 1-N-carbidamide (2.14 mmol) in 5 ml N,N-dimethylformamide was added 3-trifluoromethoxy benzoic acid (2.36 mmol) and propylphosphonic anhydride (4.72 mmol). The reaction mixture was heated at 150°C for 12 h (reaction was monitored by TLC). The reaction mixture was poured to ice cold water. The solid obtained was filtered and washed with water. The crude product was purified by column chromatography using pet ether-ethyl acetate as the eluent.

Colourless prisms were obtained from slow evaporation of the solution of the compound in a mixture of pet ether and ethyl acetate (1:2).

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H, C—H = 0.97 Å for methylene H and C —H = 0.96 Å for methyl H, and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for all other H.

The C10, C11 C12 and C13 carbon atoms of a piperazine ring in the molecules were disordered over two sites and refined with site occupancy factors 0.576 (12):0.424 (12).

Structure description top

1,2,4-Oxadiazoles exhibit diverse biological activities (Chimirri et al., 1996). They have been described as bio-isosteres for amides and esters. Due to increased hydrolytic and metabolic stabilities of the oxadiazole ring, improved pharmacokinetic and in vivo performance are often observed, which makes these heterocycles an important structural moiety for the pharmaceutical industry (Nicolaides et al., 1998). As a consequence of these, oxadiazoles have often been the target of numerous drug discovery programs as anti-inflammatory agents, anti-tumor agents, potential anticancer agents, Histamine H3 receptor antagonists as potent inhibitors of MIF biological function, and bell-tryptase inhibitors, In addition to these, 1,2,4-oxadiazoles are widely used as hydrolysis resisting amide bioisosteres in the development of peptidomimetics (Kemnitzer et al.,2009). Also, oxadiazoles exhibit wide range of antibacterial, antifungal and activities against Gram-positive and Gram-negative bacteria. Keeping this in mind, the crystal structure of the title compound was determined.

In the crystal structure of the title compound, C18H21F3N4O4, the piperazine ring adopts chair conformation, and the molecule is almost planar with the dihedral angle between the oxadiazole and the benzene ring is 6.45 (14)o. In the structure, the molecules are linked through weak C10A—H10C···O4 interactions generating a R22(12) motif. Further, C17—H17A···O4 intermolecular interactions link the molecules into C(6) chains along [100].

For the synthesis and biological activity of 1,2,4-oxadiazoles, see: Chimirri et al. (1996); Nicolaides et al. (1998); Kemnitzer et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing of molecules in the crystal structure along a axis.
tert-Butyl 4-{5-[3-(trifluoromethoxy)phenyl]-1,2,4-oxadiazol-3-yl}piperazine-1-carboxylate top
Crystal data top
C18H21F3N4O4F(000) = 432
Mr = 414.39prism
Triclinic, P1Dx = 1.366 Mg m3
Hall symbol: -P 1Melting point: 435 K
a = 5.773 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.168 (5) ÅCell parameters from 3543 reflections
c = 15.991 (7) Åθ = 1.8–25°
α = 96.092 (16)°µ = 0.12 mm1
β = 100.316 (14)°T = 300 K
γ = 91.333 (14)°Prism, colourless
V = 1007.7 (8) Å30.28 × 0.24 × 0.18 mm
Z = 2
Data collection top
Bruker SMART X2S
diffractometer
3521 independent reflections
Radiation source: fine-focus sealed tube2233 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 1.20 pixels mm-1θmax = 25.0°, θmin = 1.8°
phi and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1313
Tmin = 0.968, Tmax = 0.980l = 1718
7493 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.207 w = 1/[σ2(Fo2) + (0.1182P)2 + 0.0138P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3521 reflectionsΔρmax = 0.40 e Å3
303 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.183 (18)
Primary atom site location: structure-invariant direct methods
Crystal data top
C18H21F3N4O4γ = 91.333 (14)°
Mr = 414.39V = 1007.7 (8) Å3
Triclinic, P1Z = 2
a = 5.773 (2) ÅMo Kα radiation
b = 11.168 (5) ŵ = 0.12 mm1
c = 15.991 (7) ÅT = 300 K
α = 96.092 (16)°0.28 × 0.24 × 0.18 mm
β = 100.316 (14)°
Data collection top
Bruker SMART X2S
diffractometer
3521 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2233 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.980Rint = 0.040
7493 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.207H-atom parameters constrained
S = 1.10Δρmax = 0.40 e Å3
3521 reflectionsΔρmin = 0.23 e Å3
303 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.1439 (5)0.1754 (2)0.02278 (16)0.1429 (9)
F20.1943 (5)0.1403 (2)0.03649 (15)0.1536 (11)
F30.1037 (5)0.31943 (19)0.01851 (15)0.1365 (9)
O31.2946 (3)0.41202 (15)0.72076 (12)0.0732 (6)
N10.3871 (4)0.16222 (17)0.37686 (14)0.0639 (6)
O10.1462 (4)0.20090 (16)0.09264 (14)0.0872 (7)
O41.0601 (3)0.56341 (15)0.68027 (12)0.0729 (6)
N40.9956 (4)0.37620 (18)0.61086 (15)0.0775 (8)
N30.7139 (4)0.20950 (18)0.49149 (15)0.0748 (7)
C80.3252 (4)0.0647 (2)0.32603 (17)0.0626 (7)
O20.4744 (3)0.02502 (15)0.33963 (13)0.0842 (7)
C171.5616 (5)0.5904 (3)0.7642 (2)0.0842 (9)
H17A1.65330.56030.72260.126*
H17B1.66300.63510.81200.126*
H17C1.44510.64210.73870.126*
C151.4403 (4)0.4856 (2)0.79455 (18)0.0675 (8)
C141.1144 (4)0.4601 (2)0.67156 (17)0.0598 (7)
C13B0.926 (4)0.1677 (18)0.5545 (17)0.120 (9)0.424 (12)
H13A0.87380.14650.60560.144*0.424 (12)
H13B0.99030.09710.52790.144*0.424 (12)
C12B1.099 (2)0.2613 (8)0.5762 (10)0.086 (4)0.424 (12)
H12A1.16400.27570.52610.103*0.424 (12)
H12B1.22610.23810.61910.103*0.424 (12)
C10B0.630 (2)0.3260 (9)0.5233 (12)0.088 (4)0.424 (12)
H10A0.57040.36620.47340.105*0.424 (12)
H10B0.49480.30790.54900.105*0.424 (12)
C11B0.752 (2)0.3985 (9)0.5728 (7)0.058 (3)0.424 (12)
H11A0.66980.41820.61990.070*0.424 (12)
H11B0.75840.47090.54450.070*0.424 (12)
C12A1.0048 (16)0.2456 (4)0.6218 (5)0.069 (2)0.576 (12)
H12C0.89640.22420.65820.083*0.576 (12)
H12D1.16260.22610.64760.083*0.576 (12)
C10A0.7026 (16)0.3384 (6)0.4823 (4)0.064 (2)0.576 (12)
H10C0.77410.35220.43350.076*0.576 (12)
H10D0.53740.35570.46740.076*0.576 (12)
C11A0.798 (3)0.4188 (9)0.5456 (10)0.118 (5)0.576 (12)
H11C0.67450.44810.57540.142*0.576 (12)
H11D0.85890.48660.52160.142*0.576 (12)
C13A0.935 (2)0.1786 (10)0.5329 (10)0.079 (3)0.576 (12)
H13C1.05190.19640.49900.095*0.576 (12)
H13D0.93230.09250.53710.095*0.576 (12)
C90.5908 (4)0.1308 (2)0.42731 (17)0.0650 (7)
C70.1175 (4)0.0417 (2)0.25840 (16)0.0602 (7)
C20.0872 (5)0.0670 (2)0.20452 (17)0.0643 (7)
H20.20130.12440.21020.077*
C30.1129 (5)0.0876 (2)0.14335 (17)0.0680 (7)
C10.0818 (7)0.2073 (3)0.0164 (2)0.0931 (10)
C161.2901 (5)0.5271 (3)0.8599 (2)0.0908 (10)
H16A1.17900.58290.83650.136*
H16B1.38930.56600.91060.136*
H16C1.20690.45880.87390.136*
C181.6170 (5)0.3967 (3)0.8286 (2)0.1016 (11)
H18A1.53530.32880.84400.152*
H18B1.72190.43490.87820.152*
H18C1.70590.36980.78540.152*
N20.6565 (4)0.02094 (19)0.40855 (17)0.0873 (8)
C60.0521 (5)0.1271 (2)0.24771 (19)0.0719 (8)
H60.03050.20070.28180.086*
C50.2519 (5)0.1028 (3)0.1868 (2)0.0873 (9)
H50.36730.15970.18130.105*
C40.2857 (5)0.0051 (3)0.13307 (19)0.0802 (9)
H40.42090.02080.09150.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1346 (19)0.166 (2)0.1214 (19)0.0219 (17)0.0325 (16)0.0246 (16)
F20.213 (3)0.157 (2)0.0844 (15)0.064 (2)0.0016 (16)0.0215 (14)
F30.176 (2)0.0978 (15)0.1147 (18)0.0047 (14)0.0031 (15)0.0393 (12)
O30.0603 (10)0.0590 (10)0.0896 (14)0.0103 (8)0.0093 (10)0.0032 (9)
N10.0682 (13)0.0509 (11)0.0667 (14)0.0126 (9)0.0016 (11)0.0007 (9)
O10.1116 (16)0.0655 (12)0.0754 (15)0.0164 (11)0.0025 (12)0.0052 (10)
O40.0692 (11)0.0581 (11)0.0865 (14)0.0138 (9)0.0067 (10)0.0043 (9)
N40.0780 (14)0.0522 (12)0.0861 (17)0.0204 (10)0.0215 (12)0.0078 (11)
N30.0790 (14)0.0505 (12)0.0815 (16)0.0204 (10)0.0169 (12)0.0041 (10)
C80.0711 (16)0.0492 (13)0.0654 (16)0.0117 (11)0.0056 (13)0.0056 (11)
O20.0890 (13)0.0546 (10)0.0924 (15)0.0194 (9)0.0193 (11)0.0095 (9)
C170.0629 (16)0.087 (2)0.101 (2)0.0115 (15)0.0223 (16)0.0084 (17)
C150.0530 (13)0.0693 (16)0.0728 (18)0.0025 (12)0.0011 (13)0.0046 (13)
C140.0553 (14)0.0519 (14)0.0706 (17)0.0082 (11)0.0102 (12)0.0006 (11)
C13B0.091 (9)0.085 (9)0.16 (2)0.005 (6)0.064 (10)0.038 (9)
C12B0.089 (6)0.061 (4)0.095 (8)0.033 (4)0.008 (6)0.013 (5)
C10B0.074 (6)0.074 (6)0.104 (10)0.032 (5)0.013 (6)0.000 (7)
C11B0.077 (5)0.030 (4)0.059 (5)0.024 (4)0.005 (4)0.007 (4)
C12A0.089 (4)0.053 (3)0.056 (4)0.014 (3)0.011 (3)0.004 (3)
C10A0.080 (5)0.053 (3)0.051 (4)0.023 (3)0.008 (3)0.000 (3)
C11A0.108 (7)0.062 (4)0.160 (11)0.005 (4)0.056 (7)0.048 (6)
C13A0.098 (6)0.045 (4)0.077 (5)0.037 (4)0.024 (4)0.014 (4)
C90.0667 (15)0.0521 (13)0.0700 (17)0.0135 (11)0.0035 (13)0.0037 (11)
C70.0646 (14)0.0509 (13)0.0630 (16)0.0045 (11)0.0064 (13)0.0047 (11)
C20.0717 (16)0.0513 (13)0.0677 (17)0.0062 (11)0.0052 (14)0.0081 (11)
C30.0798 (17)0.0557 (14)0.0625 (17)0.0042 (12)0.0012 (14)0.0009 (11)
C10.105 (3)0.079 (2)0.080 (2)0.0066 (18)0.012 (2)0.0086 (17)
C160.0748 (18)0.122 (3)0.076 (2)0.0063 (17)0.0193 (16)0.0046 (18)
C180.0774 (19)0.094 (2)0.120 (3)0.0150 (16)0.0166 (19)0.007 (2)
N20.0873 (15)0.0587 (13)0.0973 (19)0.0220 (11)0.0248 (14)0.0095 (12)
C60.0728 (17)0.0633 (15)0.0734 (18)0.0102 (13)0.0005 (14)0.0005 (13)
C50.0749 (18)0.0794 (19)0.100 (2)0.0201 (15)0.0017 (18)0.0023 (17)
C40.0660 (16)0.086 (2)0.080 (2)0.0004 (15)0.0055 (15)0.0018 (15)
Geometric parameters (Å, º) top
F1—C11.326 (4)C12B—H12B0.9700
F2—C11.287 (4)C10B—C11B1.192 (16)
F3—C11.309 (3)C10B—H10A0.9700
O3—C141.346 (3)C10B—H10B0.9700
O3—C151.477 (3)C11B—H11A0.9700
N1—C81.290 (3)C11B—H11B0.9700
N1—C91.377 (3)C12A—C13A1.517 (15)
O1—C11.333 (4)C12A—H12C0.9700
O1—C31.418 (3)C12A—H12D0.9700
O4—C141.203 (3)C10A—C11A1.311 (14)
N4—C141.352 (3)C10A—H10C0.9700
N4—C11B1.466 (13)C10A—H10D0.9700
N4—C12A1.488 (5)C11A—H11C0.9700
N4—C12B1.522 (8)C11A—H11D0.9700
N4—C11A1.525 (12)C13A—H13C0.9700
N3—C91.360 (3)C13A—H13D0.9700
N3—C13A1.396 (13)C9—N21.313 (3)
N3—C10A1.464 (6)C7—C61.384 (3)
N3—C10B1.471 (10)C7—C21.400 (3)
N3—C13B1.55 (2)C2—C31.371 (4)
C8—O21.346 (3)C2—H20.9300
C8—C71.461 (4)C3—C41.374 (4)
O2—N21.423 (3)C16—H16A0.9600
C17—C151.517 (4)C16—H16B0.9600
C17—H17A0.9600C16—H16C0.9600
C17—H17B0.9600C18—H18A0.9600
C17—H17C0.9600C18—H18B0.9600
C15—C181.513 (4)C18—H18C0.9600
C15—C161.516 (4)C6—C51.371 (4)
C13B—C12B1.40 (2)C6—H60.9300
C13B—H13A0.9700C5—C41.392 (4)
C13B—H13B0.9700C5—H50.9300
C12B—H12A0.9700C4—H40.9300
C14—O3—C15120.64 (19)H11A—C11B—H11B106.6
C8—N1—C9102.38 (19)N4—C12A—C13A106.2 (7)
C1—O1—C3117.1 (2)N4—C12A—H12C110.5
C14—N4—C11B118.3 (4)C13A—C12A—H12C110.5
C14—N4—C12A121.0 (3)N4—C12A—H12D110.5
C11B—N4—C12A107.1 (5)C13A—C12A—H12D110.5
C14—N4—C12B124.7 (4)H12C—C12A—H12D108.7
C11B—N4—C12B116.9 (5)C11A—C10A—N3120.6 (6)
C12A—N4—C12B39.3 (4)C11A—C10A—H10C107.2
C14—N4—C11A117.5 (5)N3—C10A—H10C107.2
C11B—N4—C11A23.3 (7)C11A—C10A—H10D107.2
C12A—N4—C11A119.0 (5)N3—C10A—H10D107.2
C12B—N4—C11A112.1 (6)H10C—C10A—H10D106.8
C9—N3—C13A119.0 (4)C10A—C11A—N4116.1 (7)
C9—N3—C10A117.9 (3)C10A—C11A—H11C108.3
C13A—N3—C10A112.6 (7)N4—C11A—H11C108.3
C9—N3—C10B124.8 (5)C10A—C11A—H11D108.3
C13A—N3—C10B116.2 (6)N4—C11A—H11D108.3
C10A—N3—C10B34.1 (5)H11C—C11A—H11D107.4
C9—N3—C13B120.7 (8)N3—C13A—C12A112.4 (7)
C13A—N3—C13B13.8 (16)N3—C13A—H13C109.1
C10A—N3—C13B117.7 (8)C12A—C13A—H13C109.1
C10B—N3—C13B112.4 (10)N3—C13A—H13D109.1
N1—C8—O2113.7 (2)C12A—C13A—H13D109.1
N1—C8—C7128.1 (2)H13C—C13A—H13D107.9
O2—C8—C7118.2 (2)N2—C9—N3123.0 (2)
C8—O2—N2106.38 (18)N2—C9—N1115.3 (2)
C15—C17—H17A109.5N3—C9—N1121.6 (2)
C15—C17—H17B109.5C6—C7—C2119.5 (2)
H17A—C17—H17B109.5C6—C7—C8120.1 (2)
C15—C17—H17C109.5C2—C7—C8120.4 (2)
H17A—C17—H17C109.5C3—C2—C7119.2 (2)
H17B—C17—H17C109.5C3—C2—H2120.4
O3—C15—C18102.0 (2)C7—C2—H2120.4
O3—C15—C16110.1 (2)C2—C3—C4122.2 (2)
C18—C15—C16111.2 (3)C2—C3—O1118.2 (2)
O3—C15—C17109.9 (2)C4—C3—O1119.5 (2)
C18—C15—C17111.0 (2)F2—C1—F3109.1 (3)
C16—C15—C17112.2 (2)F2—C1—F1105.3 (4)
O4—C14—O3125.4 (2)F3—C1—F1105.4 (3)
O4—C14—N4123.3 (2)F2—C1—O1115.3 (3)
O3—C14—N4111.3 (2)F3—C1—O1109.3 (3)
C12B—C13B—N3109.2 (16)F1—C1—O1111.8 (3)
C12B—C13B—H13A109.8C15—C16—H16A109.5
N3—C13B—H13A109.8C15—C16—H16B109.5
C12B—C13B—H13B109.8H16A—C16—H16B109.5
N3—C13B—H13B109.8C15—C16—H16C109.5
H13A—C13B—H13B108.3H16A—C16—H16C109.5
C13B—C12B—N4110.6 (13)H16B—C16—H16C109.5
C13B—C12B—H12A109.5C15—C18—H18A109.5
N4—C12B—H12A109.5C15—C18—H18B109.5
C13B—C12B—H12B109.5H18A—C18—H18B109.5
N4—C12B—H12B109.5C15—C18—H18C109.5
H12A—C12B—H12B108.1H18A—C18—H18C109.5
C11B—C10B—N3122.9 (9)H18B—C18—H18C109.5
C11B—C10B—H10A106.6C9—N2—O2102.18 (19)
N3—C10B—H10A106.6C5—C6—C7119.9 (2)
C11B—C10B—H10B106.6C5—C6—H6120.1
N3—C10B—H10B106.6C7—C6—H6120.1
H10A—C10B—H10B106.6C6—C5—C4121.4 (3)
C10B—C11B—N4122.7 (7)C6—C5—H5119.3
C10B—C11B—H11A106.7C4—C5—H5119.3
N4—C11B—H11A106.7C3—C4—C5117.9 (3)
C10B—C11B—H11B106.7C3—C4—H4121.0
N4—C11B—H11B106.7C5—C4—H4121.0
C9—N1—C8—O20.7 (3)N3—C10A—C11A—N423.9 (15)
C9—N1—C8—C7178.7 (3)C14—N4—C11A—C10A173.0 (8)
N1—C8—O2—N20.1 (3)C11B—N4—C11A—C10A88.8 (19)
C7—C8—O2—N2179.4 (2)C12A—N4—C11A—C10A24.8 (13)
C14—O3—C15—C18179.3 (2)C12B—N4—C11A—C10A18.3 (13)
C14—O3—C15—C1662.6 (3)C9—N3—C13A—C12A156.9 (8)
C14—O3—C15—C1761.5 (3)C10A—N3—C13A—C12A59.0 (15)
C15—O3—C14—O42.3 (4)C10B—N3—C13A—C12A21.6 (19)
C15—O3—C14—N4176.4 (2)C13B—N3—C13A—C12A56 (4)
C11B—N4—C14—O420.6 (7)N4—C12A—C13A—N356.6 (15)
C12A—N4—C14—O4156.0 (6)C13A—N3—C9—N28.0 (10)
C12B—N4—C14—O4157.0 (9)C10A—N3—C9—N2150.3 (5)
C11A—N4—C14—O45.9 (8)C10B—N3—C9—N2170.3 (9)
C11B—N4—C14—O3158.2 (6)C13B—N3—C9—N27.8 (12)
C12A—N4—C14—O322.7 (6)C13A—N3—C9—N1171.5 (9)
C12B—N4—C14—O324.3 (10)C10A—N3—C9—N129.2 (6)
C11A—N4—C14—O3175.4 (7)C10B—N3—C9—N110.2 (10)
C9—N3—C13B—C12B144.2 (13)C13B—N3—C9—N1172.6 (12)
C13A—N3—C13B—C12B58 (4)C8—N1—C9—N21.2 (3)
C10A—N3—C13B—C12B14 (2)C8—N1—C9—N3179.2 (3)
C10B—N3—C13B—C12B51 (2)N1—C8—C7—C65.7 (4)
N3—C13B—C12B—N455 (2)O2—C8—C7—C6173.7 (2)
C14—N4—C12B—C13B147.2 (14)N1—C8—C7—C2174.9 (3)
C11B—N4—C12B—C13B35.2 (19)O2—C8—C7—C25.7 (4)
C12A—N4—C12B—C13B49.1 (16)C6—C7—C2—C31.4 (4)
C11A—N4—C12B—C13B60.3 (18)C8—C7—C2—C3178.0 (2)
C9—N3—C10B—C11B171.3 (12)C7—C2—C3—C40.0 (4)
C13A—N3—C10B—C11B10 (2)C7—C2—C3—O1176.6 (2)
C10A—N3—C10B—C11B81.8 (16)C1—O1—C3—C296.5 (3)
C13B—N3—C10B—C11B25 (2)C1—O1—C3—C486.9 (3)
N3—C10B—C11B—N44 (2)C3—O1—C1—F262.4 (4)
C14—N4—C11B—C10B174.7 (12)C3—O1—C1—F3174.2 (2)
C12A—N4—C11B—C10B33.7 (15)C3—O1—C1—F157.9 (4)
C12B—N4—C11B—C10B7.5 (18)N3—C9—N2—O2179.3 (3)
C11A—N4—C11B—C10B91 (2)N1—C9—N2—O21.1 (3)
C14—N4—C12A—C13A159.4 (7)C8—O2—N2—C90.6 (3)
C11B—N4—C12A—C13A60.8 (9)C2—C7—C6—C52.4 (4)
C12B—N4—C12A—C13A51.0 (9)C8—C7—C6—C5177.0 (3)
C11A—N4—C12A—C13A38.9 (11)C7—C6—C5—C42.0 (5)
C9—N3—C10A—C11A173.1 (9)C2—C3—C4—C50.5 (4)
C13A—N3—C10A—C11A42.4 (13)O1—C3—C4—C5177.0 (3)
C10B—N3—C10A—C11A61.3 (11)C6—C5—C4—C30.6 (5)
C13B—N3—C10A—C11A28.1 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···O4i0.962.563.393 (3)145
C10A—H10C···O4ii0.972.463.413 (10)167
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H21F3N4O4
Mr414.39
Crystal system, space groupTriclinic, P1
Temperature (K)300
a, b, c (Å)5.773 (2), 11.168 (5), 15.991 (7)
α, β, γ (°)96.092 (16), 100.316 (14), 91.333 (14)
V3)1007.7 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.28 × 0.24 × 0.18
Data collection
DiffractometerBruker SMART X2S
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.968, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
7493, 3521, 2233
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.207, 1.10
No. of reflections3521
No. of parameters303
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.23

Computer programs: APEX2 (Bruker, 2009), APEX2 and SAINT-Plus (Bruker, 2009), SAINT-Plus and XPREP (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···O4i0.962.563.393 (3)145.4
C10A—H10C···O4ii0.972.463.413 (10)166.7
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+1.
 

Acknowledgements

The authors thank Dr S. C. Sharma, Vice Chancellor, Tumkur University, for his constant encouragement and Professor T. N. Guru Row and Vijith Kumar, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for their help and valuable suggestions. BSPM thanks Dr H. C. Devarajegowda, Department of Physics, Yuvarajas College (constituent), University of Mysore, for his guidance.

References

First citationBruker (2009). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChimirri, A., Grasso, S., Molica, C., Monforte, A. M., Monforte, P., Zappalà, M. & Scopelliti, R. (1996). Il Farmaco, 51, 279–82.  CAS PubMed Web of Science Google Scholar
First citationKemnitzer, W., Kuemmerle, J., Zhang, H. Z., Kasibhatla, S., Tseng, B., Drewe, J. & Cai, S. X. (2009). Bioorg. Med. Chem. Lett. 19, 4410–4415.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNicolaides, D. N., Fylaktakidou, K. C., Litinas, K. E. & Hadjipavlou-Litina, D. (1998). Eur. J. Med. Chem. 33, 715–724.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds