organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Bromo­styr­yl)-1-methylpyridinium tosyl­ate

aDepartment of Physics, Presidency College, Chennai 600 005, India, and bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, mohan66@hotmail.com

(Received 1 April 2013; accepted 4 April 2013; online 10 April 2013)

In the cation of the title compound, C14H13BrN+·C7H7O3S, the dihedral angle between the benzene and pyridine rings is 8.34 (11)°. The Br atom is disordered over two positions with site occupancies of 0.74 (2) and 0.26 (2). The mol­ecular structure is stabilized by a weak intra­molecular C—H⋯O inter­actions. The crystal structure exhibits weak C—H⋯O and ππ [centroid–centroid distance = 3.7466 (17) Å] inter­actions, forming a three dimensional network.

Related literature

For mol­ecular compounds with non-linear optical properties, see: Bosshard et al. (1995[Bosshard, Ch., Sutter, K., Prêtre, Ph., Hulliger, J., Flörsheimer, M., Kaatz, P. & Günter, P. (1995). Editors. Organic Nonlinear Optical Materials. Advances in Nonlinear Optics, Vol. 1. Amsterdam: Gordon & Breach.]); Nalwa & Miyata (1997[Nalwa, H. S. & Miyata, S. (1997). Nonlinear Optics of Organic Molecules and Polymers. Boca Raton: CRC Press.]). For similar structures, see: Krishnakumar et al. (2012[Krishnakumar, M., Sudhahar, S., Silambarasan, A., Chakkaravarthi, G. & Mohankumar, R. (2012). Acta Cryst. E68, o3268.]); Okada et al. (1990[Okada, S., Masaki, A., Matsuda, H., Nakanishi, H., Kato, M. & Muramatsu, R. (1990). Jpn. J. Appl. Phys. 29, 1112-1115.]); Sivakumar et al. (2012[Sivakumar, P. K., Krishnakumar, M., Kanagadurai, R., Chakkaravarthi, G. & Mohankumar, R. (2012). Acta Cryst. E68, o3059.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13BrN+·C7H7O3S

  • Mr = 446.35

  • Monoclinic, P 21 /c

  • a = 9.0502 (2) Å

  • b = 6.4201 (1) Å

  • c = 33.9280 (7) Å

  • β = 94.469 (1)°

  • V = 1965.33 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.22 mm−1

  • T = 295 K

  • 0.28 × 0.22 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.575, Tmax = 0.665

  • 22764 measured reflections

  • 5596 independent reflections

  • 3012 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.130

  • S = 1.01

  • 5596 reflections

  • 256 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O1 0.93 2.57 3.415 (3) 151
C12—H12⋯O2i 0.93 2.39 3.247 (3) 153
C14—H14B⋯O1ii 0.96 2.53 3.438 (4) 157
Symmetry codes: (i) x-1, y-1, z; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In continuation of our studies of molecular compounds with non linear optical properties which are used in optoelectronic and photonic devices (Bosshard et al., 1995; Nalwa & Miyata, 1997), we herewith report the crystal structure of the title compound (I) (Fig. 1).

The asymmetric unit of the title compound consists of C14H13BrN+ cations and C7H7O3S- anios. The geometric parameters of the title compound are agree well with those of reported structures (Krishnakumar et al., 2012; Sivakumar et al., 2012; Okada et al., 1990). In the cation, the bromine atom is disordered over two positions, with the site occupancies of 0.74 (2) and 0.26 (2). The cation is planar [torision angle C4-C7=C8-C9 = 178.1 (3)°] about the double bond between the two rings in the cation. The dihedral angle between the benzene ring and pyridinium ring in the cation is 8.34 (11)°.

The molecular structure is stabilized by weak intramolecular C-H···O interactions. In the crystal structure, adjacent anions and cations are linked by weak C—H···O (Table 1 & Fig.2) and π···π [Cg1···Cg2 (x,-1/2-y,1/2+z) = 3.7466 (17)Å and Cg2···Cg1 (x,1+y,z) distance = 3.7468 (17)Å; Cg1 and Cg2 are the centroids of the rings (C9/C10/C11/N1/C12/C13) and (C1-C6), respectively] interactions.

Related literature top

For molecular compounds with non-linear optical properties, see: Bosshard et al. (1995); Nalwa & Miyata (1997). For similar structures, see: Krishnakumar et al. (2012); Okada et al. (1990); Sivakumar et al. (2012).

Experimental top

The title compound was synthesized by the condensation of 4-methyl-N-methyl pyridinium tosylate, which was prepared from 4-picoline (4.65g, 5 mmol) and methyl p-toluenesulfonate (9.31g, 5 mmol), and 4-bromobenzaldehyde (9.24 g, 5 mmol) in the presence of piperidine. The single crystals suitable for X-ray diffraction were grown by slow evaporation method in room temperature.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C-H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C-H, C-H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3. The components of the anisotropic displacement parameters in the direction of C4 and C7 were restrained to be equal within an effective deviation of 0.001 using DELU command in SHELXL (Sheldrick, 2008). The disorder of the bromine ligand suggests also disorder of the aromatic ring to which it is attached, but no split model for this ring could be found.

Structure description top

In continuation of our studies of molecular compounds with non linear optical properties which are used in optoelectronic and photonic devices (Bosshard et al., 1995; Nalwa & Miyata, 1997), we herewith report the crystal structure of the title compound (I) (Fig. 1).

The asymmetric unit of the title compound consists of C14H13BrN+ cations and C7H7O3S- anios. The geometric parameters of the title compound are agree well with those of reported structures (Krishnakumar et al., 2012; Sivakumar et al., 2012; Okada et al., 1990). In the cation, the bromine atom is disordered over two positions, with the site occupancies of 0.74 (2) and 0.26 (2). The cation is planar [torision angle C4-C7=C8-C9 = 178.1 (3)°] about the double bond between the two rings in the cation. The dihedral angle between the benzene ring and pyridinium ring in the cation is 8.34 (11)°.

The molecular structure is stabilized by weak intramolecular C-H···O interactions. In the crystal structure, adjacent anions and cations are linked by weak C—H···O (Table 1 & Fig.2) and π···π [Cg1···Cg2 (x,-1/2-y,1/2+z) = 3.7466 (17)Å and Cg2···Cg1 (x,1+y,z) distance = 3.7468 (17)Å; Cg1 and Cg2 are the centroids of the rings (C9/C10/C11/N1/C12/C13) and (C1-C6), respectively] interactions.

For molecular compounds with non-linear optical properties, see: Bosshard et al. (1995); Nalwa & Miyata (1997). For similar structures, see: Krishnakumar et al. (2012); Okada et al. (1990); Sivakumar et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed down b axis. Intermolecular Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
4-[2-(4-Bromophenyl)ethenyl]-1-methylpyridin-1-ium 4-methylbenzene-1-sulfonate top
Crystal data top
C14H13BrN+·C7H7O3SF(000) = 912
Mr = 446.35Dx = 1.509 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4367 reflections
a = 9.0502 (2) Åθ = 2.4–24.1°
b = 6.4201 (1) ŵ = 2.22 mm1
c = 33.9280 (7) ÅT = 295 K
β = 94.469 (1)°Block, orange
V = 1965.33 (7) Å30.28 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
5596 independent reflections
Radiation source: fine-focus sealed tube3012 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω and φ scanθmax = 29.8°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.575, Tmax = 0.665k = 88
22764 measured reflectionsl = 4747
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0525P)2 + 0.7449P]
where P = (Fo2 + 2Fc2)/3
5596 reflections(Δ/σ)max < 0.001
256 parametersΔρmax = 0.34 e Å3
1 restraintΔρmin = 0.30 e Å3
Crystal data top
C14H13BrN+·C7H7O3SV = 1965.33 (7) Å3
Mr = 446.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0502 (2) ŵ = 2.22 mm1
b = 6.4201 (1) ÅT = 295 K
c = 33.9280 (7) Å0.28 × 0.22 × 0.20 mm
β = 94.469 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5596 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3012 reflections with I > 2σ(I)
Tmin = 0.575, Tmax = 0.665Rint = 0.044
22764 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0491 restraint
wR(F2) = 0.130H-atom parameters constrained
S = 1.01Δρmax = 0.34 e Å3
5596 reflectionsΔρmin = 0.30 e Å3
256 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.6169 (3)0.7372 (4)0.03376 (7)0.0820 (5)0.74 (2)
Br1A0.661 (3)0.7520 (14)0.0342 (2)0.114 (3)0.26 (2)
S11.20686 (7)0.07504 (10)0.18347 (2)0.04224 (18)
O11.07764 (19)0.0120 (3)0.19985 (6)0.0565 (5)
O21.34369 (19)0.0096 (3)0.20147 (6)0.0577 (5)
O31.2060 (3)0.3000 (3)0.18168 (7)0.0682 (6)
N10.7301 (2)0.7025 (3)0.21855 (6)0.0415 (5)
C10.6600 (4)0.5062 (5)0.06660 (8)0.0565 (8)
C20.7976 (4)0.4692 (5)0.08326 (10)0.0673 (9)
H20.87490.55970.07880.081*
C30.8230 (3)0.2970 (5)0.10686 (10)0.0627 (8)
H30.91810.27280.11830.075*
C40.7112 (3)0.1586 (4)0.11408 (8)0.0473 (6)
C50.5724 (3)0.2032 (5)0.09664 (11)0.0670 (9)
H50.49410.11430.10090.080*
C60.5463 (4)0.3750 (5)0.07309 (11)0.0714 (9)
H60.45140.40170.06160.086*
C70.7449 (3)0.0240 (4)0.13914 (8)0.0504 (7)
H70.84410.04910.14690.061*
C80.6481 (3)0.1545 (5)0.15144 (9)0.0521 (7)
H80.54870.12690.14430.063*
C90.6818 (3)0.3409 (4)0.17554 (8)0.0455 (6)
C100.8234 (3)0.4050 (4)0.18908 (8)0.0493 (7)
H100.90460.32400.18370.059*
C110.8453 (3)0.5847 (4)0.21009 (8)0.0470 (6)
H110.94110.62580.21860.056*
C120.5923 (3)0.6440 (5)0.20655 (9)0.0512 (7)
H120.51270.72590.21280.061*
C130.5670 (3)0.4672 (4)0.18542 (9)0.0530 (7)
H130.47000.43000.17740.064*
C140.7558 (3)0.8921 (4)0.24243 (9)0.0569 (7)
H14A0.77140.85500.26980.085*
H14B0.84160.96330.23430.085*
H14C0.67090.98180.23870.085*
C151.1957 (2)0.0120 (4)0.13392 (7)0.0364 (5)
C161.1865 (3)0.2225 (4)0.12499 (9)0.0510 (7)
H161.18660.32070.14510.061*
C171.1773 (4)0.2852 (4)0.08614 (10)0.0608 (8)
H171.17200.42690.08050.073*
C181.1756 (3)0.1453 (5)0.05514 (9)0.0552 (7)
C191.1841 (3)0.0620 (4)0.06475 (9)0.0581 (8)
H191.18250.16020.04460.070*
C201.1949 (3)0.1286 (4)0.10329 (9)0.0506 (7)
H201.20170.27030.10880.061*
C211.1620 (5)0.2217 (6)0.01292 (11)0.0876 (12)
H21A1.21170.12650.00340.131*
H21B1.05920.23010.00370.131*
H21C1.20650.35710.01170.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1112 (16)0.0651 (6)0.0679 (8)0.0001 (6)0.0054 (9)0.0221 (5)
Br1A0.221 (9)0.0675 (15)0.056 (2)0.014 (4)0.035 (3)0.0058 (14)
S10.0401 (3)0.0448 (3)0.0418 (4)0.0058 (3)0.0029 (3)0.0025 (3)
O10.0419 (10)0.0793 (14)0.0494 (12)0.0104 (9)0.0113 (9)0.0024 (10)
O20.0403 (10)0.0760 (13)0.0552 (13)0.0059 (9)0.0076 (9)0.0081 (11)
O30.0979 (16)0.0441 (11)0.0628 (15)0.0029 (11)0.0076 (12)0.0069 (10)
N10.0467 (13)0.0424 (11)0.0358 (12)0.0019 (9)0.0053 (10)0.0073 (9)
C10.081 (2)0.0525 (16)0.0361 (16)0.0023 (15)0.0046 (15)0.0002 (13)
C20.064 (2)0.070 (2)0.069 (2)0.0132 (16)0.0120 (17)0.0067 (17)
C30.0457 (17)0.076 (2)0.066 (2)0.0034 (15)0.0024 (15)0.0074 (17)
C40.0510 (16)0.0518 (14)0.0388 (15)0.0038 (12)0.0018 (12)0.0070 (11)
C50.0480 (17)0.073 (2)0.079 (2)0.0073 (15)0.0014 (16)0.0167 (18)
C60.061 (2)0.076 (2)0.075 (2)0.0052 (17)0.0104 (17)0.0167 (19)
C70.0467 (15)0.0560 (15)0.0480 (17)0.0027 (13)0.0005 (13)0.0029 (12)
C80.0437 (15)0.0581 (16)0.0536 (18)0.0031 (13)0.0022 (13)0.0059 (14)
C90.0499 (16)0.0482 (14)0.0382 (15)0.0011 (12)0.0026 (12)0.0095 (12)
C100.0436 (15)0.0543 (15)0.0497 (17)0.0118 (12)0.0026 (12)0.0000 (13)
C110.0361 (13)0.0595 (16)0.0449 (16)0.0010 (12)0.0010 (11)0.0060 (13)
C120.0409 (15)0.0594 (17)0.0534 (18)0.0091 (12)0.0052 (13)0.0055 (14)
C130.0393 (15)0.0634 (18)0.0561 (19)0.0012 (13)0.0025 (13)0.0013 (14)
C140.076 (2)0.0468 (15)0.0483 (18)0.0000 (14)0.0070 (15)0.0009 (13)
C150.0309 (12)0.0393 (12)0.0389 (14)0.0003 (9)0.0024 (10)0.0049 (10)
C160.0661 (18)0.0366 (13)0.0499 (18)0.0002 (12)0.0017 (14)0.0081 (12)
C170.082 (2)0.0402 (15)0.060 (2)0.0009 (14)0.0030 (17)0.0045 (14)
C180.0548 (17)0.0639 (18)0.0465 (18)0.0039 (14)0.0019 (14)0.0039 (15)
C190.077 (2)0.0534 (16)0.0438 (18)0.0008 (15)0.0046 (15)0.0125 (14)
C200.0622 (17)0.0384 (13)0.0515 (18)0.0031 (12)0.0069 (14)0.0067 (12)
C210.111 (3)0.097 (3)0.054 (2)0.002 (2)0.003 (2)0.016 (2)
Geometric parameters (Å, º) top
Br1—C11.878 (4)C9—C101.390 (4)
Br1A—C11.924 (9)C10—C111.362 (4)
S1—O21.4435 (19)C10—H100.9300
S1—O31.445 (2)C11—H110.9300
S1—O11.4458 (19)C12—C131.352 (4)
S1—C151.767 (3)C12—H120.9300
N1—C121.335 (3)C13—H130.9300
N1—C111.337 (3)C14—H14A0.9600
N1—C141.471 (3)C14—H14B0.9600
C1—C21.348 (4)C14—H14C0.9600
C1—C61.361 (4)C15—C201.376 (4)
C2—C31.374 (4)C15—C161.387 (3)
C2—H20.9300C16—C171.375 (4)
C3—C41.383 (4)C16—H160.9300
C3—H30.9300C17—C181.382 (4)
C4—C51.376 (4)C17—H170.9300
C4—C71.466 (4)C18—C191.371 (4)
C5—C61.372 (4)C18—C211.510 (5)
C5—H50.9300C19—C201.372 (4)
C6—H60.9300C19—H190.9300
C7—C81.304 (4)C20—H200.9300
C7—H70.9300C21—H21A0.9600
C8—C91.468 (4)C21—H21B0.9600
C8—H80.9300C21—H21C0.9600
C9—C131.380 (4)
O2—S1—O3113.31 (13)C9—C10—H10119.5
O2—S1—O1112.63 (12)N1—C11—C10120.5 (2)
O3—S1—O1113.60 (13)N1—C11—H11119.8
O2—S1—C15105.49 (12)C10—C11—H11119.8
O3—S1—C15106.03 (12)N1—C12—C13120.9 (3)
O1—S1—C15104.81 (11)N1—C12—H12119.6
C12—N1—C11120.1 (2)C13—C12—H12119.6
C12—N1—C14120.3 (2)C12—C13—C9121.5 (3)
C11—N1—C14119.6 (2)C12—C13—H13119.2
C2—C1—C6120.6 (3)C9—C13—H13119.2
C2—C1—Br1122.0 (3)N1—C14—H14A109.5
C6—C1—Br1117.4 (3)N1—C14—H14B109.5
C2—C1—Br1A109.9 (10)H14A—C14—H14B109.5
C6—C1—Br1A129.5 (10)N1—C14—H14C109.5
C1—C2—C3119.5 (3)H14A—C14—H14C109.5
C1—C2—H2120.2H14B—C14—H14C109.5
C3—C2—H2120.2C20—C15—C16118.5 (3)
C2—C3—C4122.0 (3)C20—C15—S1120.5 (2)
C2—C3—H3119.0C16—C15—S1120.9 (2)
C4—C3—H3119.0C17—C16—C15119.5 (3)
C5—C4—C3116.5 (3)C17—C16—H16120.2
C5—C4—C7123.9 (3)C15—C16—H16120.2
C3—C4—C7119.6 (2)C16—C17—C18122.4 (3)
C6—C5—C4121.9 (3)C16—C17—H17118.8
C6—C5—H5119.1C18—C17—H17118.8
C4—C5—H5119.1C19—C18—C17116.9 (3)
C1—C6—C5119.6 (3)C19—C18—C21122.7 (3)
C1—C6—H6120.2C17—C18—C21120.4 (3)
C5—C6—H6120.2C18—C19—C20121.8 (3)
C8—C7—C4125.7 (3)C18—C19—H19119.1
C8—C7—H7117.1C20—C19—H19119.1
C4—C7—H7117.1C19—C20—C15120.8 (3)
C7—C8—C9125.9 (3)C19—C20—H20119.6
C7—C8—H8117.1C15—C20—H20119.6
C9—C8—H8117.1C18—C21—H21A109.5
C13—C9—C10116.0 (3)C18—C21—H21B109.5
C13—C9—C8119.2 (2)H21A—C21—H21B109.5
C10—C9—C8124.9 (2)C18—C21—H21C109.5
C11—C10—C9121.1 (2)H21A—C21—H21C109.5
C11—C10—H10119.5H21B—C21—H21C109.5
C6—C1—C2—C30.2 (5)C11—N1—C12—C130.7 (4)
Br1—C1—C2—C3179.6 (3)C14—N1—C12—C13178.3 (3)
Br1A—C1—C2—C3178.3 (3)N1—C12—C13—C90.1 (5)
C1—C2—C3—C40.2 (5)C10—C9—C13—C120.9 (4)
C2—C3—C4—C50.5 (5)C8—C9—C13—C12178.0 (3)
C2—C3—C4—C7179.3 (3)O2—S1—C15—C20117.6 (2)
C3—C4—C5—C60.4 (5)O3—S1—C15—C202.8 (2)
C7—C4—C5—C6179.4 (3)O1—S1—C15—C20123.3 (2)
C2—C1—C6—C50.3 (5)O2—S1—C15—C1662.9 (2)
Br1—C1—C6—C5179.5 (3)O3—S1—C15—C16176.7 (2)
Br1A—C1—C6—C5177.8 (4)O1—S1—C15—C1656.2 (2)
C4—C5—C6—C10.0 (6)C20—C15—C16—C170.2 (4)
C5—C4—C7—C87.5 (5)S1—C15—C16—C17179.7 (2)
C3—C4—C7—C8172.8 (3)C15—C16—C17—C180.5 (5)
C4—C7—C8—C9178.1 (3)C16—C17—C18—C190.2 (5)
C7—C8—C9—C13178.3 (3)C16—C17—C18—C21178.7 (3)
C7—C8—C9—C100.5 (5)C17—C18—C19—C200.5 (5)
C13—C9—C10—C111.3 (4)C21—C18—C19—C20179.3 (3)
C8—C9—C10—C11177.5 (3)C18—C19—C20—C150.8 (5)
C12—N1—C11—C100.3 (4)C16—C15—C20—C190.5 (4)
C14—N1—C11—C10177.9 (3)S1—C15—C20—C19179.1 (2)
C9—C10—C11—N10.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O10.932.573.415 (3)151
C20—H20···O30.932.482.873 (4)106
C12—H12···O2i0.932.393.247 (3)153
C14—H14B···O1ii0.962.533.438 (4)157
Symmetry codes: (i) x1, y1, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC14H13BrN+·C7H7O3S
Mr446.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)9.0502 (2), 6.4201 (1), 33.9280 (7)
β (°) 94.469 (1)
V3)1965.33 (7)
Z4
Radiation typeMo Kα
µ (mm1)2.22
Crystal size (mm)0.28 × 0.22 × 0.20
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.575, 0.665
No. of measured, independent and
observed [I > 2σ(I)] reflections
22764, 5596, 3012
Rint0.044
(sin θ/λ)max1)0.700
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.130, 1.01
No. of reflections5596
No. of parameters256
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.30

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O10.932.573.415 (3)151
C12—H12···O2i0.932.393.247 (3)153
C14—H14B···O1ii0.962.533.438 (4)157
Symmetry codes: (i) x1, y1, z; (ii) x, y1, z.
 

Acknowledgements

MK would like to thank the Council of Scientific and Industrial Research, New Delhi, India, for providing financial support [project No. 03 (1200)/11/EMR-II)].

References

First citationBosshard, Ch., Sutter, K., Prêtre, Ph., Hulliger, J., Flörsheimer, M., Kaatz, P. & Günter, P. (1995). Editors. Organic Nonlinear Optical Materials. Advances in Nonlinear Optics, Vol. 1. Amsterdam: Gordon & Breach.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKrishnakumar, M., Sudhahar, S., Silambarasan, A., Chakkaravarthi, G. & Mohankumar, R. (2012). Acta Cryst. E68, o3268.  CSD CrossRef IUCr Journals Google Scholar
First citationNalwa, H. S. & Miyata, S. (1997). Nonlinear Optics of Organic Molecules and Polymers. Boca Raton: CRC Press.  Google Scholar
First citationOkada, S., Masaki, A., Matsuda, H., Nakanishi, H., Kato, M. & Muramatsu, R. (1990). Jpn. J. Appl. Phys. 29, 1112–1115.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSivakumar, P. K., Krishnakumar, M., Kanagadurai, R., Chakkaravarthi, G. & Mohankumar, R. (2012). Acta Cryst. E68, o3059.  CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds