organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2,3-Di­cyano­phen­yl)pyridin-1-ium-4-olate monohydrate

aSchool of Materials Science and Engineering of Shandong University, 250014 Jinan, People's Republic of China, bNew Materials Institute of Shandong Academy of Sciences, 250014 Jinan, People's Republic of China, and cSchool of Environmental Science and Engineering of Shandong University, 250100 Jinan, People's Republic of China
*Correspondence e-mail: fengsuping@126.com

(Received 5 November 2012; accepted 2 April 2013; online 20 April 2013)

In the crystal structure of the title compound, C13H7N3O·H2O, the components are associated into chains along [010] through strong O—H⋯O hydrogen bonds with the free water mol­ecules as bridging ligands. These chains are further cross-linked by C—H⋯O and C—H⋯N hydrogen bonds, forming a three-dimensional structure.

Related literature

For the preparation of the title compound, see: Archibald et al. (1994[Archibald, S. J., Blake, A. J., Schroder, M. & Winpenny, R. E. P. (1994). Chem. Commun. pp. 1669—1670.])

[Scheme 1]

Experimental

Crystal data
  • C13H7N3O·H2O

  • Mr = 239.23

  • Monoclinic, P 21 /c

  • a = 11.977 (2) Å

  • b = 7.2497 (12) Å

  • c = 13.850 (2) Å

  • β = 94.244 (3)°

  • V = 1199.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.989, Tmax = 0.993

  • 5795 measured reflections

  • 2112 independent reflections

  • 1349 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.124

  • S = 1.03

  • 2112 reflections

  • 172 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O1 0.98 (3) 1.79 (3) 2.763 (2) 170 (3)
O1W—H1WB⋯O1i 0.87 (3) 1.88 (3) 2.721 (2) 162 (3)
C6—H6A⋯O1Wii 0.93 2.37 3.302 (3) 177
C13—H13A⋯O1Wiii 0.93 2.38 3.311 (3) 175
C9—H9A⋯N1iv 0.93 2.55 3.440 (2) 160
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y, -z+1; (iv) x, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the crystal structure of the title compound, (C13H7N3O)(H2O), the units are associated into a chain through strong O—H···O hydrogen bonds with the free water molecules as the bridging ligands. These chains are further crosslinked by C-H···O interactions. In addition there are weak pairwise C—H···N hydrogen bonds.

Related literature top

For the preparation of the title compound, see: Archibald et al. (1994)

Experimental top

The preparation of the title compound, see, Archibald et al. (1994)

Refinement top

All hydrogen atoms bound to carbon were refined using a riding model with distance C—H = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic atoms. The H atoms of the water molecule were located from difference density maps and were refined isotrpically.

Structure description top

In the crystal structure of the title compound, (C13H7N3O)(H2O), the units are associated into a chain through strong O—H···O hydrogen bonds with the free water molecules as the bridging ligands. These chains are further crosslinked by C-H···O interactions. In addition there are weak pairwise C—H···N hydrogen bonds.

For the preparation of the title compound, see: Archibald et al. (1994)

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level; H atoms are given as spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing diagram of the title compound with hydrogen bonds shown as dashed lines.
1-(2,3-Dicyanophenyl)pyridin-1-ium-4-olate monohydrate top
Crystal data top
C13H7N3O·H2OF(000) = 496
Mr = 239.23Dx = 1.325 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2117 reflections
a = 11.977 (2) Åθ = 1.7–25.0°
b = 7.2497 (12) ŵ = 0.09 mm1
c = 13.850 (2) ÅT = 293 K
β = 94.244 (3)°Block, colorless
V = 1199.3 (3) Å30.12 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2112 independent reflections
Radiation source: fine-focus sealed tube1349 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
φ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1414
Tmin = 0.989, Tmax = 0.993k = 08
5795 measured reflectionsl = 016
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0572P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2112 reflectionsΔρmax = 0.12 e Å3
172 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (4)
Crystal data top
C13H7N3O·H2OV = 1199.3 (3) Å3
Mr = 239.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.977 (2) ŵ = 0.09 mm1
b = 7.2497 (12) ÅT = 293 K
c = 13.850 (2) Å0.12 × 0.10 × 0.08 mm
β = 94.244 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2112 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1349 reflections with I > 2σ(I)
Tmin = 0.989, Tmax = 0.993Rint = 0.042
5795 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.12 e Å3
2112 reflectionsΔρmin = 0.14 e Å3
172 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.44687 (15)0.4052 (2)0.64729 (11)0.0821 (6)
N10.14211 (16)0.0800 (2)0.38040 (14)0.0686 (6)
N20.00645 (18)0.1230 (3)0.11391 (13)0.0794 (7)
N30.29064 (13)0.35472 (19)0.37786 (11)0.0477 (5)
C10.23465 (16)0.3377 (2)0.28309 (13)0.0469 (5)
C20.17290 (15)0.1798 (2)0.25806 (13)0.0437 (5)
C30.11900 (16)0.1688 (2)0.16464 (14)0.0479 (5)
C40.12482 (18)0.3119 (3)0.09995 (14)0.0578 (6)
H4A0.08890.30320.03830.069*
C50.1844 (2)0.4680 (3)0.12749 (15)0.0652 (7)
H5A0.18750.56590.08440.078*
C60.23959 (19)0.4810 (3)0.21802 (16)0.0609 (6)
H6A0.28030.58670.23540.073*
C70.15735 (17)0.0352 (3)0.32680 (15)0.0482 (5)
C80.05625 (18)0.0052 (3)0.13666 (14)0.0561 (6)
C90.27488 (17)0.5072 (2)0.43253 (15)0.0536 (6)
H9A0.22730.59970.40750.064*
C100.32575 (18)0.5283 (3)0.52132 (15)0.0567 (6)
H10A0.31280.63490.55610.068*
C110.39919 (18)0.3909 (3)0.56354 (15)0.0578 (6)
C120.41474 (18)0.2360 (3)0.50307 (15)0.0618 (6)
H12A0.46270.14210.52570.074*
C130.36240 (17)0.2209 (3)0.41422 (14)0.0570 (6)
H13A0.37520.11760.37680.068*
O1W0.60702 (15)0.1549 (2)0.71708 (14)0.0732 (5)
H1WA0.544 (2)0.236 (4)0.6961 (19)0.121 (11)*
H1WB0.583 (2)0.095 (4)0.766 (2)0.120 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1059 (14)0.0738 (11)0.0615 (10)0.0203 (9)0.0291 (9)0.0165 (8)
N10.0756 (14)0.0545 (11)0.0750 (14)0.0007 (9)0.0007 (11)0.0099 (10)
N20.0927 (16)0.0754 (13)0.0685 (14)0.0333 (12)0.0050 (11)0.0101 (10)
N30.0482 (10)0.0384 (9)0.0549 (10)0.0008 (7)0.0071 (8)0.0087 (7)
C10.0472 (12)0.0433 (11)0.0494 (12)0.0008 (9)0.0022 (9)0.0062 (9)
C20.0458 (12)0.0385 (10)0.0467 (11)0.0013 (8)0.0019 (9)0.0029 (8)
C30.0481 (12)0.0464 (11)0.0492 (12)0.0050 (9)0.0033 (9)0.0060 (9)
C40.0663 (15)0.0606 (13)0.0452 (12)0.0070 (11)0.0046 (10)0.0017 (10)
C50.0849 (17)0.0540 (13)0.0557 (14)0.0102 (12)0.0026 (12)0.0070 (10)
C60.0718 (16)0.0459 (12)0.0637 (15)0.0143 (11)0.0042 (12)0.0005 (10)
C70.0487 (13)0.0419 (11)0.0531 (13)0.0006 (9)0.0016 (10)0.0078 (10)
C80.0590 (14)0.0586 (13)0.0497 (13)0.0132 (11)0.0019 (10)0.0053 (10)
C90.0571 (14)0.0377 (11)0.0640 (14)0.0032 (9)0.0082 (11)0.0077 (9)
C100.0642 (14)0.0435 (11)0.0608 (14)0.0065 (10)0.0062 (11)0.0141 (9)
C110.0654 (15)0.0504 (12)0.0555 (14)0.0030 (11)0.0088 (11)0.0090 (10)
C120.0653 (16)0.0503 (12)0.0667 (15)0.0159 (10)0.0148 (11)0.0088 (10)
C130.0585 (14)0.0434 (11)0.0673 (14)0.0088 (10)0.0082 (11)0.0128 (10)
O1W0.0750 (13)0.0633 (11)0.0813 (13)0.0009 (9)0.0063 (10)0.0050 (9)
Geometric parameters (Å, º) top
O1—C111.259 (2)C5—C61.376 (3)
N1—C71.141 (2)C5—H5A0.9300
N2—C81.136 (2)C6—H6A0.9300
N3—C91.361 (2)C9—C101.340 (3)
N3—C131.367 (2)C9—H9A0.9300
N3—C11.434 (2)C10—C111.425 (3)
C1—C61.379 (3)C10—H10A0.9300
C1—C21.393 (2)C11—C121.421 (3)
C2—C31.405 (2)C12—C131.343 (2)
C2—C71.437 (3)C12—H12A0.9300
C3—C41.375 (3)C13—H13A0.9300
C3—C81.442 (3)O1W—H1WA0.98 (3)
C4—C51.377 (3)O1W—H1WB0.87 (3)
C4—H4A0.9300
C9—N3—C13118.73 (16)C1—C6—H6A119.9
C9—N3—C1120.28 (15)N1—C7—C2178.2 (2)
C13—N3—C1120.98 (15)N2—C8—C3179.4 (2)
C6—C1—C2120.27 (17)C10—C9—N3122.07 (18)
C6—C1—N3119.57 (16)C10—C9—H9A119.0
C2—C1—N3120.14 (16)N3—C9—H9A119.0
C1—C2—C3118.35 (16)C9—C10—C11121.43 (18)
C1—C2—C7121.80 (16)C9—C10—H10A119.3
C3—C2—C7119.73 (16)C11—C10—H10A119.3
C4—C3—C2121.03 (17)O1—C11—C12122.52 (18)
C4—C3—C8119.71 (17)O1—C11—C10123.01 (18)
C2—C3—C8119.26 (17)C12—C11—C10114.47 (18)
C3—C4—C5119.31 (18)C13—C12—C11122.10 (18)
C3—C4—H4A120.3C13—C12—H12A119.0
C5—C4—H4A120.3C11—C12—H12A119.0
C6—C5—C4120.84 (19)C12—C13—N3121.17 (17)
C6—C5—H5A119.6C12—C13—H13A119.4
C4—C5—H5A119.6N3—C13—H13A119.4
C5—C6—C1120.18 (18)H1WA—O1W—H1WB104 (3)
C5—C6—H6A119.9
C9—N3—C1—C650.0 (3)C2—C1—C6—C50.7 (3)
C13—N3—C1—C6128.6 (2)N3—C1—C6—C5178.7 (2)
C9—N3—C1—C2128.0 (2)C1—C2—C7—N1140 (7)
C13—N3—C1—C253.4 (3)C3—C2—C7—N136 (7)
C6—C1—C2—C31.7 (3)C4—C3—C8—N29 (28)
N3—C1—C2—C3179.77 (17)C2—C3—C8—N2171 (100)
C6—C1—C2—C7174.18 (19)C13—N3—C9—C101.3 (3)
N3—C1—C2—C73.9 (3)C1—N3—C9—C10179.9 (2)
C1—C2—C3—C41.4 (3)N3—C9—C10—C110.2 (3)
C7—C2—C3—C4174.61 (19)C9—C10—C11—O1178.9 (2)
C1—C2—C3—C8178.93 (18)C9—C10—C11—C121.4 (3)
C7—C2—C3—C85.1 (3)O1—C11—C12—C13179.2 (2)
C2—C3—C4—C50.0 (3)C10—C11—C12—C131.1 (3)
C8—C3—C4—C5179.7 (2)C11—C12—C13—N30.4 (3)
C3—C4—C5—C61.1 (3)C9—N3—C13—C121.6 (3)
C4—C5—C6—C10.8 (3)C1—N3—C13—C12179.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O10.98 (3)1.79 (3)2.763 (2)170 (3)
O1W—H1WB···O1i0.87 (3)1.88 (3)2.721 (2)162 (3)
C6—H6A···O1Wii0.932.373.302 (3)177
C13—H13A···O1Wiii0.932.383.311 (3)175
C9—H9A···N1iv0.932.553.440 (2)160
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H7N3O·H2O
Mr239.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.977 (2), 7.2497 (12), 13.850 (2)
β (°) 94.244 (3)
V3)1199.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.989, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
5795, 2112, 1349
Rint0.042
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.124, 1.03
No. of reflections2112
No. of parameters172
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.14

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O10.98 (3)1.79 (3)2.763 (2)170 (3)
O1W—H1WB···O1i0.87 (3)1.88 (3)2.721 (2)162 (3)
C6—H6A···O1Wii0.932.373.302 (3)176.7
C13—H13A···O1Wiii0.932.383.311 (3)175.3
C9—H9A···N1iv0.932.553.440 (2)160
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (iv) x, y+1, z.
 

References

First citationArchibald, S. J., Blake, A. J., Schroder, M. & Winpenny, R. E. P. (1994). Chem. Commun. pp. 1669—1670.  Google Scholar
First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds