metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Iodido{4-phenyl-1-[1-(1,3-thia­zol-2-yl-κN)ethyl­­idene]thio­semicarbazidato-κ2N′,S}{4-phenyl-1-[1-(1,3-thia­zol-2-yl)ethyl­­idene]thio­semicarbazide-κS}cadmium(II)

aDepartment of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217-0510, USA, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
*Correspondence e-mail: ramaiyer.venkatraman@jsums.edu

(Received 13 February 2013; accepted 3 April 2013; online 10 April 2013)

In the title complex, [Cd(C12H11N4S2)I(C12H12N4S2)], the CdII ion is penta­coordinated by two thio­semicarbazone ligands (one neutral and the other anionic) and one iodide ion in a distorted square pyramidal (τ = 0.35) geometry. The central ion is coordinated by the thia­zole N atom, the thio­ureido N and the S atom of the deprotonated thio­semicarbazone ligand. The other ligand is linked with the central ion through the C=S group. The deprotonated ligand intra­molecularly hydrogen bonds to the thia­zole ring N atom, while the ligand forms an inter­molecular hydrogen bond to the thiol­ate S atom of the second ligand. The deprotonation of the tridentate ligand and its coordination to the CdII ion via the S atom strikingly affects the C—S bond lengths. The C—S bond lengths in the neutral and deprotonated ligands in the metal complex are 1.709 (3) and 1.748 (2) Å, respectively, whereas it is 1.671 (3) Å in the free ligand. In the metal complex, the Cd—S distances are 2.6449 (6) and 2.5510 (6) Å. The Cd—I bond length is 2.7860 (2) Å.

Related literature

For properties of thio­semicarbazones and Cd complexes, see: Casas et al. (2000[Casas, J. S., Garcia-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197-261.]); Milczarska et al. (1998[Milczarska, B., Foks, H., Trapkowski, Z., Milzynska-Kolaczek, A., Janowiec, M., Zwolska, Z. & Andrzejczyk, Z. (1998). Acta Pol. Pharm. Drug Res. 5, 289-295.]); Venkatraman et al. (2009[Venkatraman, R., Ameera, H., Sitole, L., Ellis, E., Fronczek, F. R. & Valente, E. J. (2009). J. Chem. Crystallogr. 30, 711-718.]); Dasary et al. (2011[Dasary, S. S. R., Arumugam, S. R., Yu, H., Venkatraman, R. & Fronczek, F. R. (2011). Acta Cryst. E67, m816-m817.]); Viñuelas-Zahínos et al. (2011[Viñuelas-Zahínos, E., Luna-Giles, F., Torres-García, P. & Fernández-Calderón, M. C. (2011). Eur. J. Med. Chem. 1, 150-159.]); Arumugam et al. (2011[Arumugam, S. R., Dasary, S. S. R., Venkatraman, R., Yu, H. & Fronczek, F. R. (2011). Acta Cryst. E67, m1409-m1410.]). For a description of the geometry of complexes with five-coordinate metal atoms, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C12H11N4S2)I(C12H12N4S2)]

  • Mr = 791.04

  • Triclinic, [P \overline 1]

  • a = 8.6685 (4) Å

  • b = 10.1323 (5) Å

  • c = 16.7220 (8) Å

  • α = 76.607 (2)°

  • β = 79.481 (2)°

  • γ = 77.910 (2)°

  • V = 1383.15 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.24 mm−1

  • T = 90 K

  • 0.13 × 0.06 × 0.05 mm

Data collection
  • Bruker Kappa APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.760, Tmax = 0.896

  • 14913 measured reflections

  • 8142 independent reflections

  • 6715 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.060

  • S = 1.02

  • 8142 reflections

  • 354 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4N⋯S2i 0.84 (2) 2.74 (2) 3.559 (2) 166 (2)
N7—H7N⋯N5 0.86 (2) 1.90 (2) 2.651 (3) 144 (3)
Symmetry code: (i) -x, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Heterocyclic thiosemicarbazones are versatile ligands forming complexes with a variety of transition metal ions. These ligands and their metal complexes are found to exhibit cytotoxic effects (Casas et al., 2000, Milczarska et al., 1998). Among several metals ions that complex with thiosemicarbazones, cadmium (II) has received less attention (Viñuelas-Zahínos et al. 2011). In continuation of our structural studies of metal thiosemicarbazones (Venkatraman et al., 2009; Dasary et al., 2011; Arumugam et al. 2011), we herein report the CdII complex of 2- acetyl thiazole N(4) phenyl thiosemicarbazone. The title complex is obtained from the reaction of cadmium (II) iodide with two equivalents of neutral ligands in methanol. This complex is an isomorph of the Hg complex reported by us earlier (Dasary et al., 2011). In this complex, the CdII is tridentately attached to one of the deprotonated ligand through the donor groups of N1, N2 and S2, while the metal ion is singly coordinated to the other ligand via S4. As shown in Fig. 1, one iodide is found to coordinate with the central metal ion from other side forming a pentacoodinated complex (τ= 0.35) with a pyramidal square planar geometry (Addison et al., 1984). The deprotonated ligand is twisted due to intra-molecularly hydrogen bonds (N7H···N5), while the ligand forms an intermolecular hydrogen bond via S2 with NH group (N4) from the other ligand (Fig. 2). The deprotonation of the tridentate ligand and its coordination to the Cd via the S atom strikingly affects the C—S bond lengths. The C—S bond distances in the neutral and deprotonated ligands in the metal complex are 1.709 (3) Å and 1.748 (2) Å respectively whereas it is 1.671 (3) Å in the free ligand. In the metal complex, the Cd—S distances are 2.6449 (6) Å, 2.5510 (6) Å. The Cd—I bond distance is 2.7860 (2) Å. The torsion angles (N2—N3—C6—N4), and (N6—N7—C18—N8) for two ligands is 179.48 (8)° and 8.5 (3)° respectively. Hydrogen bonding details are given in Table 1.

Related literature top

For properties of thiosemicarbazones and Cd complexes, see: Casas et al. (2000); Milczarska et al. (1998); Venkatraman et al. (2009); Dasary et al. (2011); Viñuelas-Zahínos et al. (2011); Arumugam et al. (2011). For a description of the geometry of complexes with five-coordinate metal atoms, see: Addison et al. (1984);

Experimental top

To a boiling methanol solution (50 ml) containing 2-acetylthiazole phenylthiosemicarbazone (1.38 g, 5 mmol) was added an equimolar of cadmium (II) iodide (1.38 g, 5 mmol) in 20 ml of methanol solution (Venkatraman et al., 2009)). The mixture was refluxed for 3 to 4 h under stirring. The resulting bright yellow solid obtained was filtered and dried (65% yield). Crystals suitable for diffraction were obtained from the mother liquor at ambient temperature after two days in a methanol–DMF mixture (5:1 V/V).

Refinement top

H atoms on C were placed in idealized positions with C—H distances 0.98 Å for methyl groups and 0.95 Å for others, and thereafter treated as riding. Coordinates of the NH hydrogen atoms were refined, with all N—H distances restrained to be equal. Uiso for H were assigned as 1.2 times Ueq of the attached atoms (1.5 for methyl).

Structure description top

Heterocyclic thiosemicarbazones are versatile ligands forming complexes with a variety of transition metal ions. These ligands and their metal complexes are found to exhibit cytotoxic effects (Casas et al., 2000, Milczarska et al., 1998). Among several metals ions that complex with thiosemicarbazones, cadmium (II) has received less attention (Viñuelas-Zahínos et al. 2011). In continuation of our structural studies of metal thiosemicarbazones (Venkatraman et al., 2009; Dasary et al., 2011; Arumugam et al. 2011), we herein report the CdII complex of 2- acetyl thiazole N(4) phenyl thiosemicarbazone. The title complex is obtained from the reaction of cadmium (II) iodide with two equivalents of neutral ligands in methanol. This complex is an isomorph of the Hg complex reported by us earlier (Dasary et al., 2011). In this complex, the CdII is tridentately attached to one of the deprotonated ligand through the donor groups of N1, N2 and S2, while the metal ion is singly coordinated to the other ligand via S4. As shown in Fig. 1, one iodide is found to coordinate with the central metal ion from other side forming a pentacoodinated complex (τ= 0.35) with a pyramidal square planar geometry (Addison et al., 1984). The deprotonated ligand is twisted due to intra-molecularly hydrogen bonds (N7H···N5), while the ligand forms an intermolecular hydrogen bond via S2 with NH group (N4) from the other ligand (Fig. 2). The deprotonation of the tridentate ligand and its coordination to the Cd via the S atom strikingly affects the C—S bond lengths. The C—S bond distances in the neutral and deprotonated ligands in the metal complex are 1.709 (3) Å and 1.748 (2) Å respectively whereas it is 1.671 (3) Å in the free ligand. In the metal complex, the Cd—S distances are 2.6449 (6) Å, 2.5510 (6) Å. The Cd—I bond distance is 2.7860 (2) Å. The torsion angles (N2—N3—C6—N4), and (N6—N7—C18—N8) for two ligands is 179.48 (8)° and 8.5 (3)° respectively. Hydrogen bonding details are given in Table 1.

For properties of thiosemicarbazones and Cd complexes, see: Casas et al. (2000); Milczarska et al. (1998); Venkatraman et al. (2009); Dasary et al. (2011); Viñuelas-Zahínos et al. (2011); Arumugam et al. (2011). For a description of the geometry of complexes with five-coordinate metal atoms, see: Addison et al. (1984);

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Intra- and inter-molecular H-hydrogen bonding of the compound (1) viewed along b axis.
Iodido{4-phenyl-1-[1-(1,3-thiazol-2-yl-κN)ethylidene]thiosemicarbazidato-κ2N',S}{4-phenyl-1-[1-(1,3-thiazol-2-yl)ethylidene]thiosemicarbazide-κS}cadmium(II) top
Crystal data top
[Cd(C12H11N4S2)I(C12H12N4S2)]Z = 2
Mr = 791.04F(000) = 776
Triclinic, P1Dx = 1.899 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6685 (4) ÅCell parameters from 6604 reflections
b = 10.1323 (5) Åθ = 2.5–30.9°
c = 16.7220 (8) ŵ = 2.24 mm1
α = 76.607 (2)°T = 90 K
β = 79.481 (2)°Needle, yellow
γ = 77.910 (2)°0.13 × 0.06 × 0.05 mm
V = 1383.15 (11) Å3
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
8142 independent reflections
Radiation source: fine-focus sealed tube6715 reflections with I > 2σ(I)
TRIUMPH curved graphite monochromatorRint = 0.024
φ and ω scansθmax = 31.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1212
Tmin = 0.760, Tmax = 0.896k = 1414
14913 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0252P)2 + 0.1767P]
where P = (Fo2 + 2Fc2)/3
8142 reflections(Δ/σ)max = 0.002
354 parametersΔρmax = 0.92 e Å3
3 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Cd(C12H11N4S2)I(C12H12N4S2)]γ = 77.910 (2)°
Mr = 791.04V = 1383.15 (11) Å3
Triclinic, P1Z = 2
a = 8.6685 (4) ÅMo Kα radiation
b = 10.1323 (5) ŵ = 2.24 mm1
c = 16.7220 (8) ÅT = 90 K
α = 76.607 (2)°0.13 × 0.06 × 0.05 mm
β = 79.481 (2)°
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
8142 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
6715 reflections with I > 2σ(I)
Tmin = 0.760, Tmax = 0.896Rint = 0.024
14913 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0273 restraints
wR(F2) = 0.060H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.92 e Å3
8142 reflectionsΔρmin = 0.60 e Å3
354 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.330279 (19)0.896637 (16)0.264500 (10)0.01247 (4)
I10.213720 (18)1.080081 (15)0.128204 (9)0.01602 (4)
S10.89644 (7)0.80381 (6)0.20293 (4)0.01885 (12)
S20.16206 (7)0.96342 (6)0.39576 (4)0.01535 (11)
S30.98373 (7)0.36995 (6)0.41505 (4)0.01949 (12)
S40.27226 (7)0.64947 (6)0.26713 (4)0.01495 (11)
N10.5972 (2)0.86012 (19)0.19861 (12)0.0142 (4)
N20.5065 (2)0.85083 (19)0.36308 (12)0.0128 (4)
N30.4565 (2)0.84714 (19)0.44586 (12)0.0140 (4)
N40.2430 (2)0.8941 (2)0.54478 (12)0.0133 (4)
H4N0.144 (2)0.921 (3)0.5524 (17)0.016*
N50.6877 (2)0.4726 (2)0.41015 (13)0.0158 (4)
N60.7257 (2)0.49547 (19)0.22678 (13)0.0151 (4)
N70.5761 (2)0.5403 (2)0.26598 (13)0.0147 (4)
H7N0.570 (3)0.534 (3)0.3188 (13)0.018*
N80.4803 (2)0.5489 (2)0.14662 (13)0.0174 (4)
H8N0.571 (3)0.504 (3)0.1322 (18)0.021*
C10.6688 (3)0.8655 (2)0.11853 (15)0.0186 (5)
H10.61000.88700.07310.022*
C20.8309 (3)0.8379 (3)0.10863 (16)0.0207 (5)
H20.89780.83750.05690.025*
C30.7028 (3)0.8282 (2)0.25083 (15)0.0133 (4)
C40.6581 (3)0.8217 (2)0.34029 (15)0.0136 (4)
C50.7822 (3)0.7869 (2)0.39688 (16)0.0174 (5)
H5A0.75250.84540.43840.026*
H5B0.88530.80260.36440.026*
H5C0.79020.68990.42490.026*
C60.3038 (3)0.8948 (2)0.46333 (14)0.0136 (4)
C70.3157 (3)0.8592 (2)0.61768 (14)0.0137 (4)
C80.4782 (3)0.8135 (2)0.62054 (15)0.0175 (5)
H80.54900.79960.57150.021*
C90.5353 (3)0.7884 (2)0.69633 (16)0.0208 (5)
H90.64620.75810.69830.025*
C100.4341 (3)0.8066 (2)0.76886 (16)0.0201 (5)
H100.47510.79000.81990.024*
C110.2714 (3)0.8496 (2)0.76577 (15)0.0175 (5)
H110.20040.86100.81510.021*
C120.2133 (3)0.8755 (2)0.69095 (15)0.0154 (4)
H120.10220.90490.68930.018*
C130.7108 (3)0.4442 (2)0.49162 (15)0.0181 (5)
H130.62680.46180.53510.022*
C140.8628 (3)0.3890 (3)0.50580 (16)0.0200 (5)
H140.89690.36440.55900.024*
C150.8225 (3)0.4389 (2)0.36162 (15)0.0152 (5)
C160.8407 (3)0.4521 (2)0.27193 (15)0.0151 (4)
C171.0016 (3)0.4115 (3)0.22704 (16)0.0172 (5)
H17A0.99700.43180.16720.026*
H17B1.03840.31260.24560.026*
H17C1.07580.46330.23870.026*
C180.4532 (3)0.5759 (2)0.22228 (14)0.0135 (4)
C190.3685 (3)0.5824 (2)0.08851 (15)0.0163 (5)
C200.3172 (3)0.7197 (2)0.05317 (15)0.0180 (5)
H200.35140.79130.06960.022*
C210.2159 (3)0.7507 (3)0.00614 (15)0.0186 (5)
H210.18000.84410.03050.022*
C220.1664 (3)0.6454 (3)0.03024 (15)0.0186 (5)
H220.09670.66690.07100.022*
C230.2185 (3)0.5100 (3)0.00503 (16)0.0186 (5)
H230.18480.43830.01160.022*
C240.3201 (3)0.4775 (2)0.06488 (15)0.0166 (5)
H240.35590.38410.08920.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01077 (8)0.01618 (8)0.01024 (8)0.00112 (6)0.00187 (6)0.00305 (6)
I10.01858 (8)0.01534 (7)0.01276 (8)0.00038 (6)0.00397 (6)0.00170 (6)
S10.0111 (3)0.0200 (3)0.0233 (3)0.0016 (2)0.0015 (2)0.0041 (2)
S20.0130 (3)0.0212 (3)0.0106 (3)0.0018 (2)0.0028 (2)0.0042 (2)
S30.0147 (3)0.0227 (3)0.0211 (3)0.0013 (2)0.0068 (2)0.0030 (2)
S40.0135 (3)0.0173 (3)0.0147 (3)0.0032 (2)0.0017 (2)0.0042 (2)
N10.0121 (9)0.0148 (9)0.0151 (10)0.0030 (7)0.0001 (7)0.0022 (7)
N20.0131 (9)0.0128 (9)0.0126 (9)0.0025 (7)0.0012 (7)0.0030 (7)
N30.0142 (9)0.0157 (9)0.0125 (9)0.0031 (7)0.0036 (7)0.0015 (7)
N40.0121 (9)0.0188 (9)0.0099 (9)0.0030 (7)0.0021 (7)0.0039 (7)
N50.0152 (10)0.0151 (9)0.0185 (10)0.0040 (7)0.0035 (8)0.0038 (8)
N60.0140 (9)0.0147 (9)0.0182 (10)0.0036 (7)0.0006 (8)0.0067 (8)
N70.0130 (9)0.0180 (9)0.0136 (10)0.0012 (7)0.0025 (8)0.0048 (8)
N80.0161 (10)0.0201 (10)0.0163 (10)0.0027 (8)0.0053 (8)0.0072 (8)
C10.0194 (12)0.0217 (12)0.0143 (11)0.0045 (9)0.0015 (9)0.0051 (9)
C20.0192 (12)0.0238 (12)0.0169 (12)0.0030 (10)0.0041 (10)0.0053 (10)
C30.0104 (10)0.0115 (10)0.0182 (11)0.0035 (8)0.0006 (9)0.0043 (9)
C40.0138 (11)0.0101 (10)0.0165 (11)0.0032 (8)0.0031 (9)0.0004 (8)
C50.0148 (11)0.0185 (11)0.0193 (12)0.0016 (9)0.0073 (9)0.0020 (9)
C60.0162 (11)0.0143 (10)0.0116 (10)0.0038 (8)0.0033 (9)0.0032 (8)
C70.0197 (11)0.0106 (10)0.0125 (11)0.0054 (8)0.0055 (9)0.0007 (8)
C80.0193 (12)0.0186 (11)0.0152 (11)0.0031 (9)0.0050 (9)0.0029 (9)
C90.0219 (13)0.0197 (12)0.0220 (13)0.0048 (10)0.0090 (10)0.0013 (10)
C100.0302 (14)0.0158 (11)0.0173 (12)0.0049 (10)0.0125 (10)0.0017 (9)
C110.0283 (13)0.0129 (10)0.0114 (11)0.0042 (9)0.0051 (10)0.0004 (9)
C120.0187 (12)0.0130 (10)0.0152 (11)0.0038 (9)0.0041 (9)0.0021 (9)
C130.0195 (12)0.0203 (12)0.0151 (12)0.0052 (9)0.0039 (9)0.0018 (9)
C140.0218 (13)0.0222 (12)0.0169 (12)0.0057 (10)0.0073 (10)0.0006 (10)
C150.0174 (11)0.0111 (10)0.0189 (12)0.0035 (8)0.0071 (9)0.0025 (9)
C160.0171 (11)0.0125 (10)0.0171 (12)0.0033 (8)0.0044 (9)0.0036 (9)
C170.0115 (11)0.0228 (12)0.0192 (12)0.0024 (9)0.0010 (9)0.0094 (10)
C180.0131 (10)0.0132 (10)0.0139 (11)0.0034 (8)0.0017 (8)0.0015 (8)
C190.0132 (11)0.0214 (12)0.0140 (11)0.0000 (9)0.0042 (9)0.0039 (9)
C200.0197 (12)0.0182 (11)0.0174 (12)0.0034 (9)0.0033 (10)0.0055 (9)
C210.0207 (12)0.0183 (11)0.0144 (11)0.0007 (9)0.0015 (9)0.0014 (9)
C220.0146 (11)0.0285 (13)0.0128 (11)0.0033 (9)0.0038 (9)0.0035 (10)
C230.0200 (12)0.0213 (12)0.0170 (12)0.0070 (10)0.0010 (10)0.0070 (10)
C240.0176 (12)0.0137 (10)0.0175 (12)0.0028 (9)0.0022 (9)0.0012 (9)
Geometric parameters (Å, º) top
Cd1—N22.3524 (19)C5—H5A0.9800
Cd1—N12.3673 (19)C5—H5B0.9800
Cd1—S22.5510 (6)C5—H5C0.9800
Cd1—S42.6449 (6)C7—C81.393 (3)
Cd1—I12.7860 (2)C7—C121.397 (3)
S1—C21.709 (3)C8—C91.394 (3)
S1—C31.716 (2)C8—H80.9500
S2—C61.748 (2)C9—C101.386 (4)
S3—C141.706 (3)C9—H90.9500
S3—C151.731 (2)C10—C111.393 (4)
S4—C181.708 (2)C10—H100.9500
N1—C31.320 (3)C11—C121.382 (3)
N1—C11.363 (3)C11—H110.9500
N2—C41.291 (3)C12—H120.9500
N2—N31.367 (3)C13—C141.360 (3)
N3—C61.314 (3)C13—H130.9500
N4—C61.367 (3)C14—H140.9500
N4—C71.413 (3)C15—C161.457 (3)
N4—H4N0.842 (19)C16—C171.483 (3)
N5—C151.325 (3)C17—H17A0.9800
N5—C131.368 (3)C17—H17B0.9800
N6—C161.302 (3)C17—H17C0.9800
N6—N71.378 (3)C19—C241.379 (3)
N7—C181.342 (3)C19—C201.392 (3)
N7—H7N0.864 (19)C20—C211.382 (3)
N8—C181.325 (3)C20—H200.9500
N8—C191.432 (3)C21—C221.393 (3)
N8—H8N0.85 (2)C21—H210.9500
C1—C21.360 (3)C22—C231.377 (3)
C1—H10.9500C22—H220.9500
C2—H20.9500C23—C241.391 (3)
C3—C41.465 (3)C23—H230.9500
C4—C51.495 (3)C24—H240.9500
N2—Cd1—N169.91 (7)C12—C7—N4115.6 (2)
N2—Cd1—S274.23 (5)C7—C8—C9119.1 (2)
N1—Cd1—S2141.74 (5)C7—C8—H8120.5
N2—Cd1—S4102.87 (5)C9—C8—H8120.5
N1—Cd1—S496.47 (5)C10—C9—C8121.5 (2)
S2—Cd1—S4104.16 (2)C10—C9—H9119.2
N2—Cd1—I1146.34 (5)C8—C9—H9119.2
N1—Cd1—I194.99 (5)C9—C10—C11119.0 (2)
S2—Cd1—I1107.969 (15)C9—C10—H10120.5
S4—Cd1—I1108.767 (14)C11—C10—H10120.5
C2—S1—C390.02 (12)C12—C11—C10120.0 (2)
C6—S2—Cd197.99 (8)C12—C11—H11120.0
C14—S3—C1589.54 (12)C10—C11—H11120.0
C18—S4—Cd1100.32 (8)C11—C12—C7120.9 (2)
C3—N1—C1111.6 (2)C11—C12—H12119.6
C3—N1—Cd1113.40 (15)C7—C12—H12119.6
C1—N1—Cd1134.96 (16)C14—C13—N5115.1 (2)
C4—N2—N3116.89 (19)C14—C13—H13122.5
C4—N2—Cd1119.85 (16)N5—C13—H13122.5
N3—N2—Cd1123.19 (14)C13—C14—S3110.70 (19)
C6—N3—N2113.65 (19)C13—C14—H14124.7
C6—N4—C7132.1 (2)S3—C14—H14124.7
C6—N4—H4N113.3 (19)N5—C15—C16125.7 (2)
C7—N4—H4N114.6 (19)N5—C15—S3113.64 (18)
C15—N5—C13111.0 (2)C16—C15—S3120.61 (18)
C16—N6—N7117.6 (2)N6—C16—C15125.3 (2)
C18—N7—N6118.8 (2)N6—C16—C17116.1 (2)
C18—N7—H7N126.0 (19)C15—C16—C17118.5 (2)
N6—N7—H7N114.9 (19)C16—C17—H17A109.5
C18—N8—C19126.4 (2)C16—C17—H17B109.5
C18—N8—H8N117 (2)H17A—C17—H17B109.5
C19—N8—H8N117 (2)C16—C17—H17C109.5
C2—C1—N1114.9 (2)H17A—C17—H17C109.5
C2—C1—H1122.6H17B—C17—H17C109.5
N1—C1—H1122.6N8—C18—N7117.1 (2)
C1—C2—S1110.05 (19)N8—C18—S4124.02 (18)
C1—C2—H2125.0N7—C18—S4118.89 (18)
S1—C2—H2125.0C24—C19—C20120.9 (2)
N1—C3—C4122.9 (2)C24—C19—N8119.3 (2)
N1—C3—S1113.40 (18)C20—C19—N8119.7 (2)
C4—C3—S1123.67 (17)C21—C20—C19119.3 (2)
N2—C4—C3113.9 (2)C21—C20—H20120.4
N2—C4—C5125.2 (2)C19—C20—H20120.4
C3—C4—C5120.9 (2)C20—C21—C22120.2 (2)
C4—C5—H5A109.5C20—C21—H21119.9
C4—C5—H5B109.5C22—C21—H21119.9
H5A—C5—H5B109.5C23—C22—C21119.9 (2)
C4—C5—H5C109.5C23—C22—H22120.0
H5A—C5—H5C109.5C21—C22—H22120.0
H5B—C5—H5C109.5C22—C23—C24120.4 (2)
N3—C6—N4117.7 (2)C22—C23—H23119.8
N3—C6—S2128.92 (18)C24—C23—H23119.8
N4—C6—S2113.34 (17)C19—C24—C23119.3 (2)
C8—C7—C12119.4 (2)C19—C24—H24120.3
C8—C7—N4125.0 (2)C23—C24—H24120.3
N2—Cd1—S2—C69.65 (9)N2—N3—C6—N4179.49 (18)
N1—Cd1—S2—C630.51 (11)N2—N3—C6—S21.4 (3)
S4—Cd1—S2—C689.99 (8)C7—N4—C6—N35.1 (4)
I1—Cd1—S2—C6154.51 (7)C7—N4—C6—S2174.19 (19)
N2—Cd1—S4—C1869.76 (10)Cd1—S2—C6—N310.5 (2)
N1—Cd1—S4—C181.05 (10)Cd1—S2—C6—N4170.29 (15)
S2—Cd1—S4—C18146.47 (8)C6—N4—C7—C80.7 (4)
I1—Cd1—S4—C1898.58 (8)C6—N4—C7—C12178.1 (2)
N2—Cd1—N1—C32.61 (15)C12—C7—C8—C91.6 (3)
S2—Cd1—N1—C324.0 (2)N4—C7—C8—C9177.2 (2)
S4—Cd1—N1—C398.76 (15)C7—C8—C9—C100.7 (4)
I1—Cd1—N1—C3151.67 (15)C8—C9—C10—C110.7 (4)
N2—Cd1—N1—C1176.6 (2)C9—C10—C11—C121.0 (3)
S2—Cd1—N1—C1155.22 (18)C10—C11—C12—C70.0 (3)
S4—Cd1—N1—C182.0 (2)C8—C7—C12—C111.3 (3)
I1—Cd1—N1—C127.6 (2)N4—C7—C12—C11177.6 (2)
N1—Cd1—N2—C43.14 (16)C15—N5—C13—C140.1 (3)
S2—Cd1—N2—C4169.57 (17)N5—C13—C14—S30.3 (3)
S4—Cd1—N2—C489.12 (16)C15—S3—C14—C130.33 (19)
I1—Cd1—N2—C470.69 (19)C13—N5—C15—C16178.5 (2)
N1—Cd1—N2—N3179.88 (17)C13—N5—C15—S30.2 (2)
S2—Cd1—N2—N313.46 (14)C14—S3—C15—N50.31 (18)
S4—Cd1—N2—N387.86 (15)C14—S3—C15—C16178.66 (19)
I1—Cd1—N2—N3112.34 (15)N7—N6—C16—C154.1 (3)
C4—N2—N3—C6171.65 (19)N7—N6—C16—C17176.95 (18)
Cd1—N2—N3—C611.3 (2)N5—C15—C16—N62.1 (4)
C16—N6—N7—C18175.2 (2)S3—C15—C16—N6176.07 (18)
C3—N1—C1—C20.1 (3)N5—C15—C16—C17179.0 (2)
Cd1—N1—C1—C2179.13 (16)S3—C15—C16—C172.9 (3)
N1—C1—C2—S10.0 (3)C19—N8—C18—N7177.6 (2)
C3—S1—C2—C10.08 (19)C19—N8—C18—S43.7 (3)
C1—N1—C3—C4177.1 (2)N6—N7—C18—N88.5 (3)
Cd1—N1—C3—C42.3 (3)N6—N7—C18—S4172.77 (15)
C1—N1—C3—S10.2 (2)Cd1—S4—C18—N8108.70 (19)
Cd1—N1—C3—S1179.24 (9)Cd1—S4—C18—N772.63 (18)
C2—S1—C3—N10.15 (18)C18—N8—C19—C24115.4 (3)
C2—S1—C3—C4177.1 (2)C18—N8—C19—C2068.2 (3)
N3—N2—C4—C3179.80 (18)C24—C19—C20—C210.3 (4)
Cd1—N2—C4—C33.0 (2)N8—C19—C20—C21176.6 (2)
N3—N2—C4—C51.1 (3)C19—C20—C21—C220.2 (4)
Cd1—N2—C4—C5178.23 (16)C20—C21—C22—C230.1 (4)
N1—C3—C4—N20.4 (3)C21—C22—C23—C240.2 (4)
S1—C3—C4—N2176.24 (16)C20—C19—C24—C230.1 (4)
N1—C3—C4—C5179.2 (2)N8—C19—C24—C23176.4 (2)
S1—C3—C4—C52.6 (3)C22—C23—C24—C190.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···S2i0.84 (2)2.74 (2)3.559 (2)166 (2)
N7—H7N···N50.86 (2)1.90 (2)2.651 (3)144 (3)
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cd(C12H11N4S2)I(C12H12N4S2)]
Mr791.04
Crystal system, space groupTriclinic, P1
Temperature (K)90
a, b, c (Å)8.6685 (4), 10.1323 (5), 16.7220 (8)
α, β, γ (°)76.607 (2), 79.481 (2), 77.910 (2)
V3)1383.15 (11)
Z2
Radiation typeMo Kα
µ (mm1)2.24
Crystal size (mm)0.13 × 0.06 × 0.05
Data collection
DiffractometerBruker Kappa APEXII DUO CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.760, 0.896
No. of measured, independent and
observed [I > 2σ(I)] reflections
14913, 8142, 6715
Rint0.024
(sin θ/λ)max1)0.725
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.060, 1.02
No. of reflections8142
No. of parameters354
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.92, 0.60

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···S2i0.842 (19)2.74 (2)3.559 (2)166 (2)
N7—H7N···N50.864 (19)1.90 (2)2.651 (3)144 (3)
Symmetry code: (i) x, y+2, z+1.
 

Acknowledgements

The National Science Foundation is acknowledged for a CAREER award (CHE-1056927) to MAH. Purchase of the diffractometer was made possible by grant No. LEQSF (1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationArumugam, S. R., Dasary, S. S. R., Venkatraman, R., Yu, H. & Fronczek, F. R. (2011). Acta Cryst. E67, m1409–m1410.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasas, J. S., Garcia-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197–261.  Web of Science CrossRef CAS Google Scholar
First citationDasary, S. S. R., Arumugam, S. R., Yu, H., Venkatraman, R. & Fronczek, F. R. (2011). Acta Cryst. E67, m816–m817.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMilczarska, B., Foks, H., Trapkowski, Z., Milzynska-Kolaczek, A., Janowiec, M., Zwolska, Z. & Andrzejczyk, Z. (1998). Acta Pol. Pharm. Drug Res. 5, 289–295.  Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenkatraman, R., Ameera, H., Sitole, L., Ellis, E., Fronczek, F. R. & Valente, E. J. (2009). J. Chem. Crystallogr. 30, 711–718.  Web of Science CSD CrossRef Google Scholar
First citationViñuelas-Zahínos, E., Luna-Giles, F., Torres-García, P. & Fernández-Calderón, M. C. (2011). Eur. J. Med. Chem. 1, 150–159.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds