organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-({4-[(4,5-Di­cyano-1H-imidazol-2-yl)diazen­yl]phen­yl}imino)­dipropionic acid

aDipartimento di Scienze Chimiche, Università degli Studi di Napoli 'Federico II', Complesso di Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy
*Correspondence e-mail: roberto.centore@unina.it

(Received 19 April 2013; accepted 24 April 2013; online 27 April 2013)

The title compound, C17H15N7O4, is a push–pull non-linear optical chromophore containing a di­alkyl­amino donor group and the di­cyano­imidazolyl acceptor separated by a π-conjugated path. The benzene and imidazole rings are not coplanar, making a dihedral angle of 10.0 (2)°. In the crystal, mol­ecules are linked by an extended set of hydrogen bonds and several motifs are recognized. Pairs of mol­ecules are held together by hydrogen bonding between carb­oxy O—H donor groups and diazenyl N-atom acceptors, forming R22(24) ring patterns across inversion centres. Four-mol­ecule R44(28) ring motifs are formed, again across inversion centres, through hydrogen bonding involving carb­oxy O—H donor groups and diazenyl and imidazole N-atom acceptors. Four-mol­ecule R44(42) patterns are formed among mol­ecules related by translation and involve carb­oxy O—H and imidazole N—H donor groups with carbonyl O-atom and imidazole N-atom acceptors.

Related literature

For a general survey of advanced materials based on heterocycles, see: Dalton (2002[Dalton, L. (2002). Adv. Polym. Sci. 158, 1-86.]); Heeger (2010[Heeger, A. J. (2010). Chem. Soc. Rev. 39, 2354-2371.]). For semiconductor, optoelectronic and piezoelectric materials containing heterocycles, see: Centore, Ricciotti et al. (2012[Centore, R., Ricciotti, L., Carella, A., Roviello, A., Causà, M., Barra, M., Ciccullo, F. & Cassinese, A. (2012). Org. Electron. 13, 2083-2093.]); Centore, Concilio et al. (2012[Centore, R., Concilio, A., Borbone, F., Fusco, S., Carella, A., Roviello, A., Stracci, G. & Gianvito, A. (2012). J. Polym. Sci. Part B Polym. Phys. 50, 650-655.]). For structural analysis of conjugation in heterocycle-based organic mol­ecules, see: Carella, Centore, Fort et al. (2004[Carella, A., Centore, R., Fort, A., Peluso, A., Sirigu, A. & Tuzi, A. (2004). Eur. J. Org. Chem. pp. 2620-2626.]); Gainsford et al. (2008[Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2008). Acta Cryst. C64, o616-o619.]). For structural and theoretical analysis of conjugation in metallorganic compounds containing heterocycles, see: Takjoo et al. (2011[Takjoo, R., Centore, R., Hakimi, M., Beyramabadi, A. S. & Morsali, A. (2011). Inorg. Chim. Acta, 371, 36-41.]); Takjoo & Centore (2013[Takjoo, R. & Centore, R. (2013). J. Mol. Struct. 1031, 180-185.]). For theoretical computations on π-conjugated compounds, see: Capobianco et al. (2012[Capobianco, A., Esposito, A., Caruso, T., Borbone, F., Carella, A., Centore, R. & Peluso, A. (2012). Eur. J. Org. Chem. pp. 2980-2989.], 2013[Capobianco, A., Centore, R., Noce, C. & Peluso, A. (2013). Chem. Phys. 411, 11-16.]). For the synthesis of related heterocyclic compounds, see: Carella, Centore, Sirigu et al. (2004[Carella, A., Centore, R., Sirigu, A., Tuzi, A., Quatela, A., Schutzmann, S. & Casalboni, M. (2004). Macromol. Chem. Phys. 205, 1948-1954.]); Piccialli et al. (2013[Piccialli, V., D'Errico, S., Borbone, N., Oliviero, G., Centore, R. & Zaccaria, S. (2013). Eur. J. Org. Chem. pp. 1781-1789.]); Centore, Fusco, Capobianco et al. (2013[Centore, R., Fusco, S., Capobianco, A., Piccialli, V., Zaccaria, S. & Peluso, A. (2013). Eur. J. Org. Chem. doi:10.1002/ejoc.201201653.]). For the local packing modes of non-linear optical chromophores see: Thallapally et al. (2002[Thallapally, P. K., Desiraju, G. R., Bagieu-Beucher, M., Masse, R., Bourgogne, C. & Nicoud, J.-F. (2002). Chem. Commun. pp. 1052-1053.]); Centore & Piccialli (2012[Centore, R. & Piccialli, V. (2012). Acta Cryst. E68, o3079-o3080.]); Centore, Piccialli & Tuzi (2013[Centore, R., Piccialli, V. & Tuzi, A. (2013). Acta Cryst. E69, o667-o668.]). For hydrogen bonding in crystal structures, see: Allen et al. (1999[Allen, F. H., Motherwell, W. D. S., Raithby, P. R., Shields, G. P. & Taylor, R. (1999). New J. Chem. pp. 25-34.]); Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]); Centore, Jazbinsek et al. (2012[Centore, R., Jazbinsek, M., Tuzi, A., Roviello, A., Capobianco, A. & Peluso, A. (2012). CrystEngComm, 14, 2645-2653.]); Centore, Fusco, Jazbinsek et al. (2013[Centore, R., Fusco, S., Jazbinsek, M., Capobianco, A. & Peluso, A. (2013). CrystEngComm, 15, 3318-3325.]). For the synthesis of similar diazo-chromophores, see: Centore et al. (2007[Centore, R., Riccio, P., Fusco, S., Carella, A., Quatela, A., Schutzmann, S., Stella, F. & De Matteis, F. (2007). J. Polym. Sci. Part A Polym. Chem. 45, 2719-2725.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15N7O4

  • Mr = 381.36

  • Triclinic, [P \overline 1]

  • a = 6.895 (5) Å

  • b = 10.443 (3) Å

  • c = 13.373 (3) Å

  • α = 105.40 (2)°

  • β = 103.96 (4)°

  • γ = 104.84 (4)°

  • V = 846.5 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.26 × 0.13 × 0.07 mm

Data collection
  • Enraf–Nonius MACH3 diffractometer

  • 4256 measured reflections

  • 4082 independent reflections

  • 1220 reflections with I > 2σ(I)

  • Rint = 0.074

  • 1 standard reflections every 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.216

  • S = 0.91

  • 4082 reflections

  • 262 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N5i 0.80 (6) 2.12 (6) 2.896 (6) 162 (6)
O3—H3⋯N3ii 0.88 (5) 1.89 (6) 2.750 (6) 165 (5)
N4—H4⋯O4iii 0.81 (5) 1.98 (5) 2.740 (6) 156 (5)
Symmetry codes: (i) x+1, y, z+1; (ii) -x-1, -y, -z; (iii) x+1, y+1, z.

Data collection: MACH3/PC Software (Nonius, 1996[Nonius (1996). MACH3/PC and CAD-4-PC. Nonius BV, Delft, The Nehterlands.]); cell refinement: CELLFITW (Centore, 2004[Centore, R. (2004). CELLFITW. Università degli Studi di Napoli "Federico II", Naples, Italy.]); data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Aromatic heterocycles are playing a fundamental role in modern material chemistry as building blocks of conjugated active molecules in many fields of organic electronics and optoelectronics: conjugated conducting polymers and organic solar cells (Heeger, 2010), organic field-effect transistors (Centore, Ricciotti et al., 2012), nonlinear optically active and piezoelectric compounds (Dalton, 2002; Centore, Concilio et al., 2012). In those fields, the chemical investigation is devoted to the synthesis of new molecules or conjugated polymers containing heterocyclic moieties and to the measurement of their spectroscopic and electronic properties relevant for device performances. However, also the structural investigation of the molecules is a relevant point for the evaluation of the structural parameters related to the conjugation (Carella, Centore, Fort et al., 2004; Gainsford et al., 2008; Capobianco et al., 2012; Capobianco et al., 2013). The rationalization of the local packing modes of chromophore units (Thallapally et al., 2002; Centore & Piccialli, 2012; Centore, Piccialli & Tuzi, 2013) is another crucial point, because many properties required for optimum device performances (e. g. electron mobility) critically depend on the packing not less than on strictly molecular properties. In our research group we are interested in the synthesis of new heterocyclic compounds, including metal containing heterocyclic compounds (Takjoo et al., 2011; Takjoo & Centore, 2013), for applications as advanced materials and bioactive compounds (Piccialli et al., 2013), and in the analysis of crystal structures controlled by the formation of H bonds (Centore, Jazbinsek et al., 2012; Centore, Fusco, Jazbinsek et al., 2013). Following these issues, we report, in the present paper, the structural investigation of the title compound, shown in the Scheme. The title compound is a typical push-pull azo-dye, containing the dialkylamino as donor group and two cyano acceptor groups. Moreover, the cyano groups are attached to an electron poor imidazole ring. The chromophore unit has been used in the synthesis of polymers showing quadratic NLO behaviour (Carella, Centore, Sirigu et al., 2004).

The molecular structure is shown in Fig. 1. The geometry around the donor N1 atom is substantially planar indicating sp2 hybridization (the sum of valence angles at N1 is 360°) and the pattern of bond lenghts within the adjacent phenyl ring shows a certain degree of quinoidal character. All these structural features are in accordance with the expected π conjugation and push-pull character of the chromophore group.

The two aromatic rings are not coplanar, the dihedral angle between the mean planes being 10.0 (2)°; the π-conjugated part of the molecule has a slighlty curved shape, as the result of small torsions around the bonds C10—N2, N2–N3 and N3–C13.

The molecules of the title compound have several H bonding donor and acceptor groups, and the crystal packing is dominated by the formation of H bonds, Table 1. Several H bonding motifs are recognized in the crystal packing (Allen et al., 1999; Steiner, 2002) and some of them are shown in Fig. 2. Couples of molecules are held by H bonding between carboxy O–H donors and azo N acceptors, forming R22(24) ring patterns across inversion centres. Four-molecule ring motifs R44(28) are formed, again across inversion centres, through H bonding involving carboxy O–H donors and azo and imidazole N acceptors. Four-molecule ring motifs R44(42) are formed, among molecules related by translation, through H bonding involving carboxy O–H and imidazole N–H donors and carbonyl and imidazole N acceptors.

Related literature top

For a general survey of advanced materials based on heterocycles, see: Dalton (2002); Heeger (2010). For semiconductor, optoelectronic and piezoelectric materials containing heterocycles, see: Centore, Ricciotti et al. (2012); Centore, Concilio et al. (2012). For structural analysis of conjugation in heterocycle-based organic molecules, see: Carella, Centore, Fort et al. (2004); Gainsford et al. (2008). For structural and theoretical analysis of conjugation in metallorganic compounds containing heterocycles, see: Takjoo et al. (2011); Takjoo & Centore (2013). For theoretical computations on π-conjugated compounds, see: Capobianco et al. (2012, 2013). For the synthesis of related heterocyclic compounds, see: Carella, Centore, Sirigu et al. (2004); Piccialli et al. (2013); Centore, Fusco, Capobianco et al. (2013). For the local packing modes of nonlinear optical chromophores see: Thallapally et al. (2002); Centore & Piccialli (2012); Centore, Piccialli & Tuzi (2013). For hydrogen bonding in crystal structures, see: Allen et al. (1999); Steiner (2002); Centore, Jazbinsek et al. (2012); Centore, Fusco, Jazbinsek et al. (2013). For the synthesis of similar diazo-chromophores, see: Centore et al. (2007).

Experimental top

The title compound was prepared by diazotization of 2-amino-4,5-dicyanoimidazole followed by coupling with N,N-(bis2-carboxyethylamino)aniline. The procedure of diazo-coupling is analogous to that we have already described for the synthesis of similar diazo-chromophores (Centore et al., 2007). Purification was obtained by recrystallization from hot acetic acid. The final yield for the diazotization/coupling step was 91%. Mp. 230 °C (dec). Single crystals were obtained by slow evaporation from acetic acid solutions. 1H-NMR (DMSO-d6) δ 2.45 (tr, 4H), 3.61 (tr, 4H), 6.79 (d, 2H, J = 9 Hz), 7.69 (d, 2H, J = 9 Hz). λmax(DMF) = 452 nm, εmax(DMF)= 2.5 × 10 4 L mol-1cm-1.

Refinement top

The H atoms of the carboxy groups and of the imidazole ring were located in difmaps and their coordinates were refined. All other H atoms were generated stereochemically and were refined by the riding model. For all H atoms Uiso=1.2×Ueq of the carrier atom was assumed.

Structure description top

Aromatic heterocycles are playing a fundamental role in modern material chemistry as building blocks of conjugated active molecules in many fields of organic electronics and optoelectronics: conjugated conducting polymers and organic solar cells (Heeger, 2010), organic field-effect transistors (Centore, Ricciotti et al., 2012), nonlinear optically active and piezoelectric compounds (Dalton, 2002; Centore, Concilio et al., 2012). In those fields, the chemical investigation is devoted to the synthesis of new molecules or conjugated polymers containing heterocyclic moieties and to the measurement of their spectroscopic and electronic properties relevant for device performances. However, also the structural investigation of the molecules is a relevant point for the evaluation of the structural parameters related to the conjugation (Carella, Centore, Fort et al., 2004; Gainsford et al., 2008; Capobianco et al., 2012; Capobianco et al., 2013). The rationalization of the local packing modes of chromophore units (Thallapally et al., 2002; Centore & Piccialli, 2012; Centore, Piccialli & Tuzi, 2013) is another crucial point, because many properties required for optimum device performances (e. g. electron mobility) critically depend on the packing not less than on strictly molecular properties. In our research group we are interested in the synthesis of new heterocyclic compounds, including metal containing heterocyclic compounds (Takjoo et al., 2011; Takjoo & Centore, 2013), for applications as advanced materials and bioactive compounds (Piccialli et al., 2013), and in the analysis of crystal structures controlled by the formation of H bonds (Centore, Jazbinsek et al., 2012; Centore, Fusco, Jazbinsek et al., 2013). Following these issues, we report, in the present paper, the structural investigation of the title compound, shown in the Scheme. The title compound is a typical push-pull azo-dye, containing the dialkylamino as donor group and two cyano acceptor groups. Moreover, the cyano groups are attached to an electron poor imidazole ring. The chromophore unit has been used in the synthesis of polymers showing quadratic NLO behaviour (Carella, Centore, Sirigu et al., 2004).

The molecular structure is shown in Fig. 1. The geometry around the donor N1 atom is substantially planar indicating sp2 hybridization (the sum of valence angles at N1 is 360°) and the pattern of bond lenghts within the adjacent phenyl ring shows a certain degree of quinoidal character. All these structural features are in accordance with the expected π conjugation and push-pull character of the chromophore group.

The two aromatic rings are not coplanar, the dihedral angle between the mean planes being 10.0 (2)°; the π-conjugated part of the molecule has a slighlty curved shape, as the result of small torsions around the bonds C10—N2, N2–N3 and N3–C13.

The molecules of the title compound have several H bonding donor and acceptor groups, and the crystal packing is dominated by the formation of H bonds, Table 1. Several H bonding motifs are recognized in the crystal packing (Allen et al., 1999; Steiner, 2002) and some of them are shown in Fig. 2. Couples of molecules are held by H bonding between carboxy O–H donors and azo N acceptors, forming R22(24) ring patterns across inversion centres. Four-molecule ring motifs R44(28) are formed, again across inversion centres, through H bonding involving carboxy O–H donors and azo and imidazole N acceptors. Four-molecule ring motifs R44(42) are formed, among molecules related by translation, through H bonding involving carboxy O–H and imidazole N–H donors and carbonyl and imidazole N acceptors.

For a general survey of advanced materials based on heterocycles, see: Dalton (2002); Heeger (2010). For semiconductor, optoelectronic and piezoelectric materials containing heterocycles, see: Centore, Ricciotti et al. (2012); Centore, Concilio et al. (2012). For structural analysis of conjugation in heterocycle-based organic molecules, see: Carella, Centore, Fort et al. (2004); Gainsford et al. (2008). For structural and theoretical analysis of conjugation in metallorganic compounds containing heterocycles, see: Takjoo et al. (2011); Takjoo & Centore (2013). For theoretical computations on π-conjugated compounds, see: Capobianco et al. (2012, 2013). For the synthesis of related heterocyclic compounds, see: Carella, Centore, Sirigu et al. (2004); Piccialli et al. (2013); Centore, Fusco, Capobianco et al. (2013). For the local packing modes of nonlinear optical chromophores see: Thallapally et al. (2002); Centore & Piccialli (2012); Centore, Piccialli & Tuzi (2013). For hydrogen bonding in crystal structures, see: Allen et al. (1999); Steiner (2002); Centore, Jazbinsek et al. (2012); Centore, Fusco, Jazbinsek et al. (2013). For the synthesis of similar diazo-chromophores, see: Centore et al. (2007).

Computing details top

Data collection: MACH3/PC Software (Nonius, 1996); cell refinement: CELLFITW (Centore, 2004); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. ORTEP view of the molecular structure of the title compound. Thermal ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. Packing of the title compound viewed along b + c. H bonds are represented by dashed lines.
3,3'-({4-[(4,5-Dicyano-1H-imidazol-2-yl)diazenyl]phenyl}imino)dipropionic acid top
Crystal data top
C17H15N7O4Z = 2
Mr = 381.36F(000) = 396
Triclinic, P1Dx = 1.496 Mg m3
a = 6.895 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.443 (3) ÅCell parameters from 25 reflections
c = 13.373 (3) Åθ = 7.2–9.8°
α = 105.40 (2)°µ = 0.11 mm1
β = 103.96 (4)°T = 293 K
γ = 104.84 (4)°Plate, red
V = 846.5 (7) Å30.26 × 0.13 × 0.07 mm
Data collection top
Enraf–Nonius MACH3
diffractometer
Rint = 0.074
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 1.7°
Graphite monochromatorh = 98
Nonprofiled ω scansk = 1313
4256 measured reflectionsl = 017
4082 independent reflections1 standard reflections every 120 min
1220 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.216H atoms treated by a mixture of independent and constrained refinement
S = 0.91 w = 1/[σ2(Fo2) + (0.072P)2]
where P = (Fo2 + 2Fc2)/3
4082 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C17H15N7O4γ = 104.84 (4)°
Mr = 381.36V = 846.5 (7) Å3
Triclinic, P1Z = 2
a = 6.895 (5) ÅMo Kα radiation
b = 10.443 (3) ŵ = 0.11 mm1
c = 13.373 (3) ÅT = 293 K
α = 105.40 (2)°0.26 × 0.13 × 0.07 mm
β = 103.96 (4)°
Data collection top
Enraf–Nonius MACH3
diffractometer
Rint = 0.074
4256 measured reflections1 standard reflections every 120 min
4082 independent reflections intensity decay: none
1220 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.216H atoms treated by a mixture of independent and constrained refinement
S = 0.91Δρmax = 0.30 e Å3
4082 reflectionsΔρmin = 0.33 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Several crystal specimens were tested but their quality was, in general, rather poor, as witnessed by the relatively high fraction of low intensity reflections. The poorly diffracting nature of the crystals is the reason for the relatively high R factors.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5087 (7)0.2972 (5)0.6271 (4)0.0695 (14)
O20.7415 (7)0.2144 (5)0.5641 (3)0.0546 (13)
H20.828 (10)0.252 (7)0.625 (5)0.065*
O30.6820 (6)0.1393 (4)0.2211 (3)0.0449 (11)
H30.791 (9)0.207 (6)0.168 (4)0.054*
O40.4973 (6)0.2424 (4)0.1314 (3)0.0579 (13)
N10.0479 (6)0.1074 (4)0.3096 (3)0.0347 (11)
N20.1576 (6)0.3969 (4)0.0245 (3)0.0330 (11)
N30.0616 (7)0.3422 (4)0.0794 (4)0.0351 (11)
N40.2872 (7)0.5635 (5)0.0763 (4)0.0321 (12)
H40.327 (8)0.603 (6)0.010 (4)0.039*
N50.0928 (6)0.3985 (4)0.2380 (3)0.0350 (11)
N60.2377 (9)0.5392 (6)0.4342 (5)0.0736 (18)
N70.5606 (7)0.8734 (5)0.1101 (4)0.0530 (15)
C10.5542 (10)0.2307 (6)0.5524 (5)0.0443 (16)
C20.4013 (8)0.1581 (6)0.4388 (4)0.0410 (15)
H2A0.38510.05860.41650.049*
H2B0.46040.19650.38980.049*
C30.1838 (8)0.1715 (6)0.4252 (4)0.0390 (14)
H3A0.11750.12540.46850.047*
H3B0.19900.27070.45220.047*
C40.5053 (8)0.1506 (6)0.2034 (4)0.0360 (14)
C50.3145 (8)0.0271 (6)0.2831 (4)0.0443 (15)
H5A0.31440.01900.35700.053*
H5B0.32940.05820.27140.053*
C60.1030 (8)0.0340 (6)0.2757 (4)0.0379 (14)
H6A0.05010.08280.32260.045*
H6B0.11970.08670.20070.045*
C70.0604 (7)0.1772 (6)0.2383 (4)0.0327 (13)
C80.0607 (8)0.1135 (5)0.1257 (4)0.0327 (13)
H80.16070.02320.10050.039*
C90.0354 (7)0.1804 (5)0.0534 (4)0.0318 (13)
H90.11380.13310.02080.038*
C100.1061 (7)0.3192 (5)0.0874 (4)0.0319 (13)
C110.2172 (8)0.3865 (5)0.2009 (4)0.0354 (14)
H110.30790.47970.22620.042*
C120.1978 (8)0.3213 (5)0.2750 (4)0.0350 (13)
H120.27320.37000.34940.042*
C130.1445 (7)0.4320 (5)0.1300 (4)0.0303 (13)
C140.3292 (8)0.6199 (5)0.1517 (4)0.0342 (14)
C150.2101 (8)0.5140 (6)0.2531 (4)0.0371 (14)
C160.4603 (8)0.7600 (6)0.1284 (4)0.0382 (14)
C170.2170 (9)0.5250 (6)0.3564 (5)0.0457 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.074 (3)0.066 (3)0.041 (3)0.025 (3)0.002 (2)0.005 (2)
O20.041 (3)0.058 (3)0.042 (3)0.008 (2)0.007 (2)0.010 (2)
O30.031 (2)0.048 (3)0.039 (2)0.0005 (19)0.0067 (19)0.007 (2)
O40.051 (3)0.051 (3)0.040 (2)0.001 (2)0.010 (2)0.013 (2)
N10.031 (2)0.030 (3)0.029 (3)0.002 (2)0.001 (2)0.008 (2)
N20.030 (2)0.030 (3)0.030 (3)0.005 (2)0.007 (2)0.005 (2)
N30.037 (3)0.030 (3)0.034 (3)0.007 (2)0.012 (2)0.009 (2)
N40.029 (2)0.025 (3)0.030 (2)0.001 (2)0.006 (2)0.003 (2)
N50.027 (2)0.030 (3)0.035 (3)0.003 (2)0.001 (2)0.010 (2)
N60.074 (4)0.083 (5)0.053 (4)0.009 (3)0.015 (3)0.029 (3)
N70.044 (3)0.040 (3)0.067 (4)0.005 (3)0.020 (3)0.015 (3)
C10.052 (4)0.030 (4)0.037 (4)0.005 (3)0.002 (3)0.010 (3)
C20.041 (3)0.040 (4)0.033 (3)0.007 (3)0.003 (3)0.012 (3)
C30.033 (3)0.041 (4)0.033 (3)0.001 (3)0.007 (3)0.011 (3)
C40.034 (3)0.038 (4)0.031 (3)0.004 (3)0.007 (3)0.015 (3)
C50.039 (3)0.040 (4)0.039 (3)0.000 (3)0.011 (3)0.005 (3)
C60.034 (3)0.035 (3)0.034 (3)0.002 (3)0.005 (3)0.010 (3)
C70.021 (3)0.029 (3)0.035 (3)0.005 (2)0.005 (2)0.000 (3)
C80.027 (3)0.026 (3)0.036 (3)0.002 (2)0.006 (2)0.007 (3)
C90.029 (3)0.024 (3)0.030 (3)0.002 (2)0.002 (2)0.007 (2)
C100.022 (3)0.032 (3)0.032 (3)0.009 (2)0.002 (2)0.002 (3)
C110.033 (3)0.025 (3)0.040 (3)0.002 (2)0.012 (3)0.006 (3)
C120.035 (3)0.033 (3)0.024 (3)0.006 (3)0.005 (2)0.000 (2)
C130.024 (3)0.033 (3)0.028 (3)0.008 (2)0.006 (2)0.006 (2)
C140.029 (3)0.031 (3)0.036 (3)0.005 (3)0.008 (2)0.008 (3)
C150.028 (3)0.042 (4)0.031 (3)0.007 (3)0.003 (2)0.008 (3)
C160.031 (3)0.038 (4)0.045 (4)0.011 (3)0.013 (3)0.014 (3)
C170.040 (3)0.049 (4)0.037 (4)0.004 (3)0.006 (3)0.014 (3)
Geometric parameters (Å, º) top
O1—C11.213 (7)C2—H2B0.9700
O2—C11.323 (7)C3—H3A0.9700
O2—H20.80 (6)C3—H3B0.9700
O3—C41.324 (7)C4—C51.502 (7)
O3—H30.88 (5)C5—C61.504 (7)
O4—C41.187 (6)C5—H5A0.9700
N1—C71.350 (7)C5—H5B0.9700
N1—C61.449 (6)C6—H6A0.9700
N1—C31.465 (6)C6—H6B0.9700
N2—N31.278 (5)C7—C81.408 (7)
N2—C101.361 (6)C7—C121.434 (7)
N3—C131.384 (6)C8—C91.353 (7)
N4—C131.346 (6)C8—H80.9300
N4—C141.347 (7)C9—C101.404 (7)
N4—H40.81 (5)C9—H90.9300
N5—C131.325 (6)C10—C111.408 (7)
N5—C151.363 (6)C11—C121.356 (7)
N6—C171.127 (7)C11—H110.9300
N7—C161.133 (6)C12—H120.9300
C1—C21.483 (7)C14—C151.392 (7)
C2—C31.514 (7)C14—C161.415 (8)
C2—H2A0.9700C15—C171.427 (8)
C1—O2—H2116 (5)N1—C6—C5110.1 (4)
C4—O3—H3108 (4)N1—C6—H6A109.6
C7—N1—C6121.5 (4)C5—C6—H6A109.6
C7—N1—C3121.7 (4)N1—C6—H6B109.6
C6—N1—C3116.7 (4)C5—C6—H6B109.6
N3—N2—C10118.0 (4)H6A—C6—H6B108.2
N2—N3—C13109.7 (4)N1—C7—C8122.1 (5)
C13—N4—C14108.1 (4)N1—C7—C12120.9 (5)
C13—N4—H4124 (4)C8—C7—C12117.0 (5)
C14—N4—H4127 (4)C9—C8—C7121.7 (5)
C13—N5—C15105.1 (4)C9—C8—H8119.1
O1—C1—O2123.8 (6)C7—C8—H8119.1
O1—C1—C2122.5 (6)C8—C9—C10121.7 (5)
O2—C1—C2113.7 (6)C8—C9—H9119.1
C1—C2—C3114.2 (5)C10—C9—H9119.1
C1—C2—H2A108.7N2—C10—C9128.5 (5)
C3—C2—H2A108.7N2—C10—C11114.8 (4)
C1—C2—H2B108.7C9—C10—C11116.6 (5)
C3—C2—H2B108.7C12—C11—C10122.9 (5)
H2A—C2—H2B107.6C12—C11—H11118.6
N1—C3—C2111.0 (4)C10—C11—H11118.6
N1—C3—H3A109.4C11—C12—C7119.8 (5)
C2—C3—H3A109.4C11—C12—H12120.1
N1—C3—H3B109.4C7—C12—H12120.1
C2—C3—H3B109.4N5—C13—N4111.6 (5)
H3A—C3—H3B108.0N5—C13—N3123.9 (4)
O4—C4—O3125.1 (5)N4—C13—N3124.5 (4)
O4—C4—C5123.8 (5)N4—C14—C15105.3 (5)
O3—C4—C5111.0 (5)N4—C14—C16125.5 (5)
C4—C5—C6115.5 (5)C15—C14—C16129.1 (5)
C4—C5—H5A108.4N5—C15—C14109.8 (5)
C6—C5—H5A108.4N5—C15—C17125.8 (5)
C4—C5—H5B108.4C14—C15—C17124.4 (5)
C6—C5—H5B108.4N7—C16—C14178.1 (6)
H5A—C5—H5B107.5N6—C17—C15175.0 (6)
C10—N2—N3—C13175.9 (4)C9—C10—C11—C122.4 (8)
O1—C1—C2—C31.3 (8)C10—C11—C12—C70.5 (8)
O2—C1—C2—C3177.9 (5)N1—C7—C12—C11176.1 (5)
C7—N1—C3—C281.8 (6)C8—C7—C12—C114.6 (7)
C6—N1—C3—C299.1 (5)C15—N5—C13—N40.6 (6)
C1—C2—C3—N1175.3 (5)C15—N5—C13—N3179.4 (5)
O4—C4—C5—C67.2 (8)C14—N4—C13—N50.9 (6)
O3—C4—C5—C6175.8 (5)C14—N4—C13—N3179.2 (5)
C7—N1—C6—C585.4 (6)N2—N3—C13—N5172.9 (5)
C3—N1—C6—C593.7 (6)N2—N3—C13—N47.0 (7)
C4—C5—C6—N1150.8 (5)C13—N4—C14—C152.0 (6)
C6—N1—C7—C84.7 (8)C13—N4—C14—C16175.5 (5)
C3—N1—C7—C8176.2 (5)C13—N5—C15—C141.8 (6)
C6—N1—C7—C12174.7 (5)C13—N5—C15—C17176.3 (6)
C3—N1—C7—C124.4 (7)N4—C14—C15—N52.4 (6)
N1—C7—C8—C9174.8 (5)C16—C14—C15—N5175.0 (5)
C12—C7—C8—C95.8 (8)N4—C14—C15—C17175.8 (5)
C7—C8—C9—C102.9 (8)C16—C14—C15—C176.9 (10)
N3—N2—C10—C93.2 (8)N4—C14—C16—N792 (19)
N3—N2—C10—C11179.6 (5)C15—C14—C16—N785 (19)
C8—C9—C10—N2175.9 (5)N5—C15—C17—N6143 (8)
C8—C9—C10—C111.3 (7)C14—C15—C17—N635 (9)
N2—C10—C11—C12175.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N5i0.80 (6)2.12 (6)2.896 (6)162 (6)
O3—H3···N3ii0.88 (5)1.89 (6)2.750 (6)165 (5)
N4—H4···O4iii0.81 (5)1.98 (5)2.740 (6)156 (5)
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H15N7O4
Mr381.36
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.895 (5), 10.443 (3), 13.373 (3)
α, β, γ (°)105.40 (2), 103.96 (4), 104.84 (4)
V3)846.5 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.26 × 0.13 × 0.07
Data collection
DiffractometerEnraf–Nonius MACH3
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4256, 4082, 1220
Rint0.074
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.216, 0.91
No. of reflections4082
No. of parameters262
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.33

Computer programs: MACH3/PC Software (Nonius, 1996), CELLFITW (Centore, 2004), XCAD4 (Harms & Wocadlo, 1995), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N5i0.80 (6)2.12 (6)2.896 (6)162 (6)
O3—H3···N3ii0.88 (5)1.89 (6)2.750 (6)165 (5)
N4—H4···O4iii0.81 (5)1.98 (5)2.740 (6)156 (5)
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z; (iii) x+1, y+1, z.
 

Acknowledgements

The authors thank the Centro Inter­dipartimentale di Metodologie Chimico–Fisiche, Università degli Studi di Napoli "Federico II".

References

First citationAllen, F. H., Motherwell, W. D. S., Raithby, P. R., Shields, G. P. & Taylor, R. (1999). New J. Chem. pp. 25–34.  Web of Science CrossRef Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCapobianco, A., Centore, R., Noce, C. & Peluso, A. (2013). Chem. Phys. 411, 11–16.  Web of Science CrossRef CAS Google Scholar
First citationCapobianco, A., Esposito, A., Caruso, T., Borbone, F., Carella, A., Centore, R. & Peluso, A. (2012). Eur. J. Org. Chem. pp. 2980–2989.  Web of Science CSD CrossRef Google Scholar
First citationCarella, A., Centore, R., Fort, A., Peluso, A., Sirigu, A. & Tuzi, A. (2004). Eur. J. Org. Chem. pp. 2620–2626.  CSD CrossRef Google Scholar
First citationCarella, A., Centore, R., Sirigu, A., Tuzi, A., Quatela, A., Schutzmann, S. & Casalboni, M. (2004). Macromol. Chem. Phys. 205, 1948–1954.  Web of Science CSD CrossRef CAS Google Scholar
First citationCentore, R. (2004). CELLFITW. Università degli Studi di Napoli "Federico II", Naples, Italy.  Google Scholar
First citationCentore, R., Concilio, A., Borbone, F., Fusco, S., Carella, A., Roviello, A., Stracci, G. & Gianvito, A. (2012). J. Polym. Sci. Part B Polym. Phys. 50, 650–655.  Web of Science CrossRef CAS Google Scholar
First citationCentore, R., Fusco, S., Capobianco, A., Piccialli, V., Zaccaria, S. & Peluso, A. (2013). Eur. J. Org. Chem. doi:10.1002/ejoc.201201653.  Google Scholar
First citationCentore, R., Fusco, S., Jazbinsek, M., Capobianco, A. & Peluso, A. (2013). CrystEngComm, 15, 3318–3325.  Web of Science CSD CrossRef CAS Google Scholar
First citationCentore, R., Jazbinsek, M., Tuzi, A., Roviello, A., Capobianco, A. & Peluso, A. (2012). CrystEngComm, 14, 2645–2653.  Web of Science CSD CrossRef CAS Google Scholar
First citationCentore, R. & Piccialli, V. (2012). Acta Cryst. E68, o3079–o3080.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationCentore, R., Piccialli, V. & Tuzi, A. (2013). Acta Cryst. E69, o667–o668.  CSD CrossRef IUCr Journals Google Scholar
First citationCentore, R., Riccio, P., Fusco, S., Carella, A., Quatela, A., Schutzmann, S., Stella, F. & De Matteis, F. (2007). J. Polym. Sci. Part A Polym. Chem. 45, 2719–2725.  Web of Science CrossRef CAS Google Scholar
First citationCentore, R., Ricciotti, L., Carella, A., Roviello, A., Causà, M., Barra, M., Ciccullo, F. & Cassinese, A. (2012). Org. Electron. 13, 2083–2093.  Web of Science CrossRef CAS Google Scholar
First citationDalton, L. (2002). Adv. Polym. Sci. 158, 1–86.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2008). Acta Cryst. C64, o616–o619.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHeeger, A. J. (2010). Chem. Soc. Rev. 39, 2354–2371.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1996). MACH3/PC and CAD-4-PC. Nonius BV, Delft, The Nehterlands.  Google Scholar
First citationPiccialli, V., D'Errico, S., Borbone, N., Oliviero, G., Centore, R. & Zaccaria, S. (2013). Eur. J. Org. Chem. pp. 1781–1789.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationTakjoo, R. & Centore, R. (2013). J. Mol. Struct. 1031, 180–185.  Web of Science CSD CrossRef CAS Google Scholar
First citationTakjoo, R., Centore, R., Hakimi, M., Beyramabadi, A. S. & Morsali, A. (2011). Inorg. Chim. Acta, 371, 36–41.  Web of Science CSD CrossRef CAS Google Scholar
First citationThallapally, P. K., Desiraju, G. R., Bagieu-Beucher, M., Masse, R., Bourgogne, C. & Nicoud, J.-F. (2002). Chem. Commun. pp. 1052–1053.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds