organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-5-(1-Methyl­eth­yl)-2-sulfanyl­idene­imidazolidin-4-one

aInstituto de Física – UFG, Caixa Postal 131, 74001-970 Goiânia, GO, Brazil, bDepartamento de Química – UEL, Caixa Postal 6001, 86051-990 Londrina, PR, Brazil, and cDepartamento de Química – UFMG, 31270-901 - Belo Horizonte, MG, Brazil
*Correspondence e-mail: rosanepc@posgrad.ufg.br

(Received 18 March 2013; accepted 26 March 2013; online 5 April 2013)

In the title compound, C6H10N2OS, the 2-sulfanylideneimidazolidin-4-one fragment is essentially planar (r.m.s. deviation = 0.0033 Å). In the crystal, one amino group is involved in N—H⋯O hydrogen bonding, which links pairs of mol­ecules into inversion dimers, while the other amino group generates weak N—H⋯S hydrogen bonds, which link these dimers into chains in [10-1]. The chains are further aggregated into layers parallel to the ac plane through weak C—H⋯O inter­actions.

Related literature

For the biological activity of 2-thio­hydantoin derivatives, see: Ghoneim et al. (1987[Ghoneim, K. M., El-Telbany, F. & Ismail, M. A. (1987). Egypt. J. Pharm. Sci. 28, 77-86.]); Marton et al. (1993[Marton, J., Enisz, J., Hosztafi, S. & Timar, T. (1993). J. Agric. Food Chem. 41, 148-152.]). For the crystal structures of related compounds, see: Kunimoto et al. (2009[Kunimoto, K.-K., Ichitani, M., Ogawa, T., Kitoh, S.-I., Kuwae, A. & Hanai, K. (2009). Spectrosc. Lett. 42, 73-80.]); Ogawa et al. (2007[Ogawa, T., Kitoh, S.-I., Ichitani, M., Kuwae, A., Hanai, K. & Kunimoto, K.-K. (2007). Anal. Sci. X-Ray Struct. Anal. Online, 42, x199-x200.]). For details of the synthesis, see: Wang et al. (2006[Wang, Z. D., Sheikh, S. O. & Zhang, Y. (2006). Molecules, 11, 739-750.]).

[Scheme 1]

Experimental

Crystal data
  • C6H10N2OS

  • Mr = 158.23

  • Monoclinic, P 21 /c

  • a = 5.7161 (1) Å

  • b = 17.4091 (4) Å

  • c = 8.2505 (2) Å

  • β = 103.513 (1)°

  • V = 798.30 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 308 K

  • 0.93 × 0.4 × 0.3 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.936, Tmax = 0.979

  • 18741 measured reflections

  • 3064 independent reflections

  • 2544 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.114

  • S = 1.02

  • 3064 reflections

  • 93 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.86 2.02 2.8573 (11) 164
N1—H1⋯S1ii 0.86 2.52 3.3806 (9) 176
C6—H6C⋯O1iii 0.96 2.52 3.4434 (14) 160
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

2-Thiohydantoin derivatives demonstrate biological activities when used as drugs, fungicides and herbicides (Ghoneim et al., 1987; Marton et al., 1993). Herewith we present the title compound, (I), which is a new 2-thiohydantoin derivative.

In (I) (Fig. 1), the thiohydantoin ring is essentially planar [r.m.s = 0.0033 Å and largest deviation of 0.008 (2) Å for O1]. The orientation of the isopropyl group, defined by the atoms C4, C5 and C6, relative to this plane is given by the torsion angles N1—C3—C4—C5 and N1—C3—C4—C6 of 169.42 (9) and 65.8 (1)°, respectively. The C1—S1 bond, 1.6621 (9), has double-bond character. The N2—C1 bond distance is longer than N1—C1 bond distance by 0.047 Å. The N1—C1—S1 bond angle is greater than N2—C1—S1 bond angle by 3.84°. These differences are also observed in two similar compounds: 5-phenyl-2-sulfanylidene-4-imidazolidinone [CSD refcode: YINGIM (Ogawa et al., 2007)] and rac-5-benzyl-2-thiohydantoin [CSD refcode: KUGDUM (Kunimoto et al., 2009)]. Besides, the molecular geometry of the title compound is comparable to these reference molecules within the standard uncertainties.

Intermolecular N—H···O hydrogen bonds (Table 1) lead to centrosymmetric dimers formation. Weak interactions of type N—H···S (Table 1) mediate the formation of the chains along [101], which are further linked into layers parallel to ac plane through the weak C—H···O interactions (Table 1).

Related literature top

For the biological activity of 2-thiohydantoin derivatives, see: Ghoneim et al. (1987); Marton et al. (1993). For the crystal structures of related compounds, see: Kunimoto et al. (2009); Ogawa et al. (2007). For details of the synthesis, see: Wang et al. (2006).

Experimental top

The procedure employed for synthesis of compound (I) was described by Wang et al. (2006). A mixture of D-valine (2.34 g, 0.2 mol) and thiourea (4.57 g, 0.6 mol) was added in a flask and heated under stirring. The reaction was remained in the oil bath at temperature of 190°C for 30 minutes, after this period, the flask was allowed to cool down and water (20 ml) was added while the flask was still warm. The solution was reheated to dissolve all the solids and allowed to cool to room temperature, then placed in a refrigerator for 3 h. The solid were removed by vacuum filtration and storage. Recrystallization from chloroform yielded single crystals suitable for X-ray analysis.

Refinement top

All H atoms were placed in calculated positions (N—H = 0.86 Å; C—H = 0.96–0.98 Å) and treated as riding atoms, with Uiso(H) = 1.2–1.5 Ueq of the parent atom.

Structure description top

2-Thiohydantoin derivatives demonstrate biological activities when used as drugs, fungicides and herbicides (Ghoneim et al., 1987; Marton et al., 1993). Herewith we present the title compound, (I), which is a new 2-thiohydantoin derivative.

In (I) (Fig. 1), the thiohydantoin ring is essentially planar [r.m.s = 0.0033 Å and largest deviation of 0.008 (2) Å for O1]. The orientation of the isopropyl group, defined by the atoms C4, C5 and C6, relative to this plane is given by the torsion angles N1—C3—C4—C5 and N1—C3—C4—C6 of 169.42 (9) and 65.8 (1)°, respectively. The C1—S1 bond, 1.6621 (9), has double-bond character. The N2—C1 bond distance is longer than N1—C1 bond distance by 0.047 Å. The N1—C1—S1 bond angle is greater than N2—C1—S1 bond angle by 3.84°. These differences are also observed in two similar compounds: 5-phenyl-2-sulfanylidene-4-imidazolidinone [CSD refcode: YINGIM (Ogawa et al., 2007)] and rac-5-benzyl-2-thiohydantoin [CSD refcode: KUGDUM (Kunimoto et al., 2009)]. Besides, the molecular geometry of the title compound is comparable to these reference molecules within the standard uncertainties.

Intermolecular N—H···O hydrogen bonds (Table 1) lead to centrosymmetric dimers formation. Weak interactions of type N—H···S (Table 1) mediate the formation of the chains along [101], which are further linked into layers parallel to ac plane through the weak C—H···O interactions (Table 1).

For the biological activity of 2-thiohydantoin derivatives, see: Ghoneim et al. (1987); Marton et al. (1993). For the crystal structures of related compounds, see: Kunimoto et al. (2009); Ogawa et al. (2007). For details of the synthesis, see: Wang et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The structure structure of (I) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level
[Figure 2] Fig. 2. A portion of the crystal packing, showing intermolecular hydrogen bonds as dashed lines [symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z].
rac-5-(1-Methylethyl)-2-sulfanylideneimidazolidin-4-one top
Crystal data top
C6H10N2OSF(000) = 336
Mr = 158.23Dx = 1.316 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 637 reflections
a = 5.7161 (1) Åθ = 7.0–60.8°
b = 17.4091 (4) ŵ = 0.34 mm1
c = 8.2505 (2) ÅT = 308 K
β = 103.513 (1)°Prism, colourless
V = 798.30 (3) Å30.93 × 0.4 × 0.3 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2544 reflections with I > 2σ(I)
Multilayer optics monochromatorRint = 0.020
φ and ω scansθmax = 34.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
h = 98
Tmin = 0.936, Tmax = 0.979k = 2627
18741 measured reflectionsl = 1213
3064 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0671P)2 + 0.0869P]
where P = (Fo2 + 2Fc2)/3
3064 reflections(Δ/σ)max = 0.002
93 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C6H10N2OSV = 798.30 (3) Å3
Mr = 158.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.7161 (1) ŵ = 0.34 mm1
b = 17.4091 (4) ÅT = 308 K
c = 8.2505 (2) Å0.93 × 0.4 × 0.3 mm
β = 103.513 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3064 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
2544 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.979Rint = 0.020
18741 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.02Δρmax = 0.33 e Å3
3064 reflectionsΔρmin = 0.20 e Å3
93 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.50440 (6)0.579973 (16)0.22144 (4)0.04944 (11)
C10.31293 (17)0.50804 (5)0.22060 (11)0.03529 (18)
N10.25674 (18)0.45108 (5)0.11098 (10)0.0431 (2)
H10.31880.4460.02620.052*
C30.07920 (18)0.39803 (6)0.14899 (11)0.03667 (18)
H30.06820.40050.06020.044*
C40.16814 (19)0.31474 (5)0.16973 (13)0.0415 (2)
H40.22760.30150.07110.05*
C50.0352 (2)0.25955 (7)0.17693 (18)0.0568 (3)
H5A0.09050.26890.27640.085*
H5B0.02190.20770.17780.085*
H5C0.16550.26720.08110.085*
C60.3773 (2)0.30522 (7)0.3219 (2)0.0595 (3)
H6C0.50110.34170.31630.089*
H6B0.44080.25410.32360.089*
H6A0.32150.31390.42140.089*
C20.03374 (17)0.43453 (5)0.30588 (12)0.03636 (18)
O10.10205 (16)0.41213 (5)0.38922 (12)0.0516 (2)
N20.17754 (15)0.49851 (5)0.33699 (11)0.03987 (18)
H20.18250.52910.41960.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0669 (2)0.04239 (16)0.04620 (17)0.02026 (11)0.02773 (13)0.00744 (10)
C10.0445 (4)0.0311 (4)0.0333 (4)0.0024 (3)0.0153 (3)0.0008 (3)
N10.0626 (5)0.0386 (4)0.0348 (4)0.0127 (4)0.0248 (4)0.0050 (3)
C30.0431 (4)0.0368 (4)0.0320 (4)0.0061 (3)0.0126 (3)0.0032 (3)
C40.0497 (5)0.0335 (4)0.0486 (5)0.0080 (4)0.0263 (4)0.0118 (4)
C50.0625 (7)0.0448 (6)0.0676 (7)0.0212 (5)0.0242 (6)0.0143 (5)
C60.0440 (5)0.0419 (5)0.0917 (10)0.0023 (4)0.0142 (6)0.0060 (6)
C20.0379 (4)0.0328 (4)0.0431 (4)0.0009 (3)0.0190 (3)0.0048 (3)
O10.0562 (5)0.0449 (4)0.0667 (5)0.0122 (3)0.0406 (4)0.0155 (4)
N20.0486 (4)0.0345 (4)0.0431 (4)0.0074 (3)0.0239 (3)0.0096 (3)
Geometric parameters (Å, º) top
S1—C11.6621 (9)C4—H40.98
C1—N11.3300 (12)C5—H5A0.96
C1—N21.3769 (12)C5—H5B0.96
N1—C31.4595 (12)C5—H5C0.96
N1—H10.86C6—H6C0.96
C3—C21.5179 (13)C6—H6B0.96
C3—C41.5328 (14)C6—H6A0.96
C3—H30.98C2—O11.2152 (12)
C4—C51.5200 (14)C2—N21.3724 (12)
C4—C61.5269 (18)N2—H20.86
N1—C1—N2107.37 (8)C4—C5—H5A109.5
N1—C1—S1128.23 (7)C4—C5—H5B109.5
N2—C1—S1124.39 (7)H5A—C5—H5B109.5
C1—N1—C3113.28 (8)C4—C5—H5C109.5
C1—N1—H1123.4H5A—C5—H5C109.5
C3—N1—H1123.4H5B—C5—H5C109.5
N1—C3—C2100.63 (7)C4—C6—H6C109.5
N1—C3—C4113.17 (8)C4—C6—H6B109.5
C2—C3—C4114.79 (8)H6C—C6—H6B109.5
N1—C3—H3109.3C4—C6—H6A109.5
C2—C3—H3109.3H6C—C6—H6A109.5
C4—C3—H3109.3H6B—C6—H6A109.5
C5—C4—C6111.00 (10)O1—C2—N2126.04 (9)
C5—C4—C3111.44 (9)O1—C2—C3127.40 (9)
C6—C4—C3111.72 (8)N2—C2—C3106.55 (8)
C5—C4—H4107.5C2—N2—C1112.15 (8)
C6—C4—H4107.5C2—N2—H2123.9
C3—C4—H4107.5C1—N2—H2123.9
N2—C1—N1—C30.87 (12)N1—C3—C2—O1179.83 (11)
S1—C1—N1—C3179.62 (7)C4—C3—C2—O157.99 (15)
C1—N1—C3—C20.55 (11)N1—C3—C2—N20.03 (10)
C1—N1—C3—C4122.43 (10)C4—C3—C2—N2121.82 (9)
N1—C3—C4—C5169.42 (9)O1—C2—N2—C1179.33 (11)
C2—C3—C4—C575.83 (11)C3—C2—N2—C10.49 (11)
N1—C3—C4—C665.78 (11)N1—C1—N2—C20.84 (12)
C2—C3—C4—C648.97 (12)S1—C1—N2—C2179.65 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.022.8573 (11)164
N1—H1···S1ii0.862.523.3806 (9)176
C6—H6C···O1iii0.962.523.4434 (14)160
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC6H10N2OS
Mr158.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)308
a, b, c (Å)5.7161 (1), 17.4091 (4), 8.2505 (2)
β (°) 103.513 (1)
V3)798.30 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.93 × 0.4 × 0.3
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2010)
Tmin, Tmax0.936, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
18741, 3064, 2544
Rint0.020
(sin θ/λ)max1)0.792
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.114, 1.02
No. of reflections3064
No. of parameters93
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.20

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.022.8573 (11)163.8
N1—H1···S1ii0.862.523.3806 (9)175.5
C6—H6C···O1iii0.962.523.4434 (14)160.3
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z.
 

Acknowledgements

This work includes part of the activities developed by the Network of Studies and the Development of Novel Inhibitors of Urease, financed by CNPq (562479/2010–4) and FAPEMIG (APQ-04781–10). The authors are also grateful to CNPq (TOB) and CAPES (RPC) for providing their respective fellowships.

References

First citationBruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhoneim, K. M., El-Telbany, F. & Ismail, M. A. (1987). Egypt. J. Pharm. Sci. 28, 77–86.  CAS Google Scholar
First citationKunimoto, K.-K., Ichitani, M., Ogawa, T., Kitoh, S.-I., Kuwae, A. & Hanai, K. (2009). Spectrosc. Lett. 42, 73–80.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarton, J., Enisz, J., Hosztafi, S. & Timar, T. (1993). J. Agric. Food Chem. 41, 148–152.  CrossRef CAS Web of Science Google Scholar
First citationOgawa, T., Kitoh, S.-I., Ichitani, M., Kuwae, A., Hanai, K. & Kunimoto, K.-K. (2007). Anal. Sci. X-Ray Struct. Anal. Online, 42, x199–x200.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z. D., Sheikh, S. O. & Zhang, Y. (2006). Molecules, 11, 739–750.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds