organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3-Chloro­phen­yl)[(E)-2-(1,3-di­thio­lan-2-yl­­idene)hydrazinyl­­idene]methyl 3-chloro­benzoate

aDepartment of Chemistry and Chemical Engineering, Jining University, Qufu 273155, People's Republic of China
*Correspondence e-mail: yinling_1109@163.com

(Received 2 April 2013; accepted 4 April 2013; online 13 April 2013)

In the title compound, C17H12Cl2N2O2S2, the di­thia­cyclo­pentane ring has an envelope conformation with one of the methyl­ene C atoms as the flap. The chloro­phenyl rings make a dihedral angle of 82.63 (7)°. In the crystal, ππ inter­actions between the benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.547 (2) Å] link the mol­ecules into inversion dimers. Weak non-classical C—H⋯X (X = O, N, Cl) inter­actions further consolidate the packing, forming a layer structure parallel to (110).

Related literature

For applications of heterocyclic di­thiol­ane compounds, see: Tanaka et al. (1976[Tanaka, H., Araki, F., Harada, T. & Kurono, H. (1976). Jpn Patent No. 51151326A.]); Wang et al. (1994[Wang, Y., Li, Z. H. & Gao, N. (1994). Yaoxue Xuebao, 29, 78-80.]). For the crystal structure of (E)-[2-(1,3-di­thio­lan-2-yl­idene)hydrazinyl­idene](3-fluoro­phen­yl)methyl 3-fluoro­benzoate, see: Yin (2013[Yin, L. (2013). Acta Cryst. E69, o571.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12Cl2N2O2S2

  • Mr = 411.31

  • Triclinic, [P \overline 1]

  • a = 8.960 (5) Å

  • b = 9.944 (6) Å

  • c = 11.128 (6) Å

  • α = 104.174 (8)°

  • β = 111.041 (7)°

  • γ = 99.410 (2)°

  • V = 861.9 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 113 K

  • 0.34 × 0.25 × 0.20 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku/MSC, 2009[Rigaku/MSC (2009). CrystalClear-SM Expert. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.884, Tmax = 0.884

  • 11088 measured reflections

  • 4080 independent reflections

  • 3115 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.074

  • S = 0.95

  • 4080 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯N1i 0.95 2.59 3.534 (2) 173
C14—H14A⋯Cl1ii 0.95 2.80 3.727 (2) 165
C16—H16B⋯O2iii 0.99 2.48 3.274 (3) 137
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y+1, z; (iii) x+1, y, z.

Data collection: CrystalClear-SM Expert (Rigaku/MSC, 2009[Rigaku/MSC (2009). CrystalClear-SM Expert. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Many dithiolan heterocyclic compounds have been widely used as potent and broad-spectrum fungicides (Tanaka et al., 1976; Wang et al., 1994). In order to search for new heterocylic compounds with higher biological activities, we synthesized the (E)-((1,3-dithiolan-2-yl)diazenyl)(3-chlorophenyl)methyl 3-chlorobenzoate (I) and described its structure here.

In (I) (Fig. 1), the dithiacyclopentane ring has an envelope conformation with C16 atom as a flap. Two chlorophenyl rings (C1—C6 and C9—C14) in the molecule form a dihedral angle of 82.63 (7)°. All bond lengths and angles are normal and in a good agreement with those reported previously for related compounds (Yin, 2013)

In the crystal, π-π interactions between the benzene rings from two neighbouring molecules [centroid-centroid distance of 3.547 (2) Å] link the latters into centrosymmetric dimer, and weak non-classical C—H···X (X=O, N, Cl) interactions (Table 1) consolidate further the packing.

Related literature top

For applications of heterocyclic dithiolane compounds, see: Tanaka et al. (1976); Wang et al. (1994). For the crystal structure of (E)-[2-(1,3-dithiolan-2-ylidene)hydrazinylidene](3-fluorophenyl)methyl 3-fluorobenzoate, see: Yin (2013).

Experimental top

1.34 g (10 mmol) of (1,3-dithiolan-2-ylidene)hydrazine and 20 mmol triethylamine was dissolved in 15 ml of dichloromethane and stirred at room temperature, 3.50 g (20 mmol) 3-chlorobenzoyl chloride was added dropwise to the mixture. The reaction mixture was stirred vigorously at 0 centigrade for 4 h. The reaction mixture was poured into 200 ml of water and extracted with three 50-ml portions of dichloromethane. The combined extracts were washed with saturated brine, dried over anhydrous sodium sulfate and evaporated on a rotary evaporator to afford the crude product, which was purified by column chromatography to yield the pure product as colorless crystals. Single crystals suitable for X-ray diffraction were obtained through slow evaporation of a solution of the pure title compound in ethanol.

Refinement top

All H atoms bonded on carbon were found on difference maps, with C–H = 0.93 or 0.97 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C).

Structure description top

Many dithiolan heterocyclic compounds have been widely used as potent and broad-spectrum fungicides (Tanaka et al., 1976; Wang et al., 1994). In order to search for new heterocylic compounds with higher biological activities, we synthesized the (E)-((1,3-dithiolan-2-yl)diazenyl)(3-chlorophenyl)methyl 3-chlorobenzoate (I) and described its structure here.

In (I) (Fig. 1), the dithiacyclopentane ring has an envelope conformation with C16 atom as a flap. Two chlorophenyl rings (C1—C6 and C9—C14) in the molecule form a dihedral angle of 82.63 (7)°. All bond lengths and angles are normal and in a good agreement with those reported previously for related compounds (Yin, 2013)

In the crystal, π-π interactions between the benzene rings from two neighbouring molecules [centroid-centroid distance of 3.547 (2) Å] link the latters into centrosymmetric dimer, and weak non-classical C—H···X (X=O, N, Cl) interactions (Table 1) consolidate further the packing.

For applications of heterocyclic dithiolane compounds, see: Tanaka et al. (1976); Wang et al. (1994). For the crystal structure of (E)-[2-(1,3-dithiolan-2-ylidene)hydrazinylidene](3-fluorophenyl)methyl 3-fluorobenzoate, see: Yin (2013).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku/MSC, 2009); cell refinement: CrystalClear-SM Expert (Rigaku/MSC, 2009); data reduction: CrystalClear-SM Expert (Rigaku/MSC, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atomic numbering and 50% probability displacement ellipsoids.
(3-Chlorophenyl)[(E)-2-(1,3-dithiolan-2-ylidene)hydrazinylidene]methyl 3-chlorobenzoate top
Crystal data top
C17H12Cl2N2O2S2Z = 2
Mr = 411.31F(000) = 420
Triclinic, P1Dx = 1.585 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.960 (5) ÅCell parameters from 3010 reflections
b = 9.944 (6) Åθ = 2.1–27.9°
c = 11.128 (6) ŵ = 0.63 mm1
α = 104.174 (8)°T = 113 K
β = 111.041 (7)°Block, colourless
γ = 99.410 (2)°0.34 × 0.25 × 0.20 mm
V = 861.9 (8) Å3
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4080 independent reflections
Radiation source: rotating anode3115 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.034
Detector resolution: 14.63 pixels mm-1θmax = 27.9°, θmin = 2.1°
ω and φ scansh = 1111
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku/MSC, 2009)
k = 1313
Tmin = 0.884, Tmax = 0.884l = 1414
11088 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0343P)2]
where P = (Fo2 + 2Fc2)/3
4080 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C17H12Cl2N2O2S2γ = 99.410 (2)°
Mr = 411.31V = 861.9 (8) Å3
Triclinic, P1Z = 2
a = 8.960 (5) ÅMo Kα radiation
b = 9.944 (6) ŵ = 0.63 mm1
c = 11.128 (6) ÅT = 113 K
α = 104.174 (8)°0.34 × 0.25 × 0.20 mm
β = 111.041 (7)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4080 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku/MSC, 2009)
3115 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.884Rint = 0.034
11088 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 0.95Δρmax = 0.46 e Å3
4080 reflectionsΔρmin = 0.22 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.30877 (5)0.64714 (4)0.23284 (4)0.02513 (11)
S20.09584 (5)0.34521 (4)0.09623 (4)0.02211 (11)
Cl10.52910 (5)0.06840 (4)0.12078 (4)0.03188 (12)
Cl20.10357 (5)1.00841 (4)0.89309 (4)0.02569 (11)
O10.11886 (13)0.59701 (10)0.42806 (10)0.0180 (2)
O20.27715 (13)0.66856 (11)0.26079 (10)0.0234 (3)
N10.07149 (15)0.43373 (13)0.26298 (12)0.0168 (3)
N20.05526 (15)0.55241 (13)0.28369 (13)0.0203 (3)
C10.3769 (2)0.38581 (18)0.40729 (17)0.0269 (4)
H1B0.34380.48070.46990.032*
C20.5067 (2)0.2817 (2)0.39886 (19)0.0356 (4)
H2B0.56290.30600.45550.043*
C30.5555 (2)0.1434 (2)0.30938 (18)0.0320 (4)
H3A0.64540.07250.30340.038*
C40.47179 (19)0.10906 (17)0.22822 (15)0.0222 (4)
C50.34232 (18)0.21123 (16)0.23301 (14)0.0180 (3)
H5A0.28720.18630.17560.022*
C60.29455 (18)0.35118 (16)0.32354 (15)0.0173 (3)
C70.15643 (18)0.46156 (15)0.33172 (14)0.0163 (3)
C80.19326 (17)0.69437 (16)0.37966 (15)0.0167 (3)
C90.15680 (17)0.82978 (15)0.49075 (14)0.0156 (3)
C100.05798 (17)0.84909 (15)0.62690 (15)0.0162 (3)
H10A0.01680.77340.65230.019*
C110.02184 (18)0.98142 (16)0.72356 (14)0.0172 (3)
C120.08166 (18)1.09324 (16)0.68971 (15)0.0193 (3)
H12A0.05401.18350.75800.023*
C130.18269 (19)1.07119 (16)0.55451 (16)0.0213 (3)
H13A0.22651.14620.53000.026*
C140.21989 (18)0.94018 (16)0.45513 (16)0.0195 (3)
H14A0.28850.92570.36260.023*
C150.13750 (18)0.51590 (16)0.21249 (15)0.0172 (3)
C160.31996 (19)0.54981 (17)0.07793 (15)0.0225 (4)
H16A0.23930.56640.00130.027*
H16B0.43310.58320.08300.027*
C170.27909 (19)0.39074 (17)0.06257 (16)0.0246 (4)
H17A0.37440.37030.12780.030*
H17B0.25680.33190.03100.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0235 (2)0.0184 (2)0.0313 (2)0.00078 (17)0.01585 (19)0.00201 (18)
S20.0228 (2)0.0166 (2)0.0255 (2)0.00214 (17)0.01373 (18)0.00125 (17)
Cl10.0338 (2)0.0226 (2)0.0255 (2)0.00746 (19)0.00331 (19)0.00860 (18)
Cl20.0353 (2)0.0202 (2)0.0180 (2)0.00879 (18)0.00931 (17)0.00234 (16)
O10.0231 (6)0.0137 (5)0.0157 (5)0.0080 (5)0.0067 (4)0.0024 (4)
O20.0237 (6)0.0210 (6)0.0187 (6)0.0067 (5)0.0025 (5)0.0042 (5)
N10.0171 (6)0.0139 (6)0.0194 (6)0.0033 (5)0.0083 (5)0.0053 (5)
N20.0192 (7)0.0143 (7)0.0258 (7)0.0013 (5)0.0111 (6)0.0037 (6)
C10.0310 (10)0.0262 (9)0.0335 (9)0.0128 (8)0.0210 (8)0.0116 (8)
C20.0345 (10)0.0436 (11)0.0494 (12)0.0182 (9)0.0324 (10)0.0225 (10)
C30.0201 (9)0.0381 (11)0.0453 (11)0.0056 (8)0.0169 (8)0.0231 (9)
C40.0191 (8)0.0230 (9)0.0210 (8)0.0025 (7)0.0033 (7)0.0111 (7)
C50.0162 (8)0.0217 (8)0.0170 (7)0.0044 (7)0.0066 (6)0.0087 (7)
C60.0166 (7)0.0220 (8)0.0177 (8)0.0089 (7)0.0080 (6)0.0100 (6)
C70.0192 (8)0.0147 (8)0.0138 (7)0.0068 (6)0.0050 (6)0.0042 (6)
C80.0135 (7)0.0167 (8)0.0221 (8)0.0047 (6)0.0093 (6)0.0071 (6)
C90.0130 (7)0.0135 (7)0.0205 (8)0.0028 (6)0.0086 (6)0.0039 (6)
C100.0160 (7)0.0138 (7)0.0218 (8)0.0050 (6)0.0106 (6)0.0061 (6)
C110.0170 (8)0.0174 (8)0.0190 (8)0.0036 (6)0.0105 (6)0.0051 (6)
C120.0208 (8)0.0132 (8)0.0260 (8)0.0044 (6)0.0143 (7)0.0030 (6)
C130.0214 (8)0.0162 (8)0.0305 (9)0.0086 (7)0.0126 (7)0.0098 (7)
C140.0172 (8)0.0205 (8)0.0208 (8)0.0060 (7)0.0072 (6)0.0074 (7)
C150.0177 (8)0.0140 (7)0.0192 (8)0.0045 (6)0.0067 (6)0.0060 (6)
C160.0186 (8)0.0263 (9)0.0236 (8)0.0035 (7)0.0109 (7)0.0084 (7)
C170.0228 (9)0.0259 (9)0.0257 (9)0.0050 (7)0.0139 (7)0.0047 (7)
Geometric parameters (Å, º) top
S1—C151.7493 (17)C5—C61.394 (2)
S1—C161.8048 (18)C5—H5A0.9500
S2—C151.7507 (17)C6—C71.473 (2)
S2—C171.8228 (18)C8—C91.483 (2)
Cl1—C41.7427 (18)C9—C141.392 (2)
Cl2—C111.7393 (17)C9—C101.398 (2)
O1—C81.3713 (17)C10—C111.382 (2)
O1—C71.4008 (17)C10—H10A0.9500
O2—C81.1989 (18)C11—C121.386 (2)
N1—C71.2744 (19)C12—C131.388 (2)
N1—N21.4058 (18)C12—H12A0.9500
N2—C151.2917 (19)C13—C141.385 (2)
C1—C21.383 (2)C13—H13A0.9500
C1—C61.397 (2)C14—H14A0.9500
C1—H1B0.9500C16—C171.516 (2)
C2—C31.376 (3)C16—H16A0.9900
C2—H2B0.9500C16—H16B0.9900
C3—C41.384 (2)C17—H17A0.9900
C3—H3A0.9500C17—H17B0.9900
C4—C51.387 (2)
C15—S1—C1694.86 (8)C10—C9—C8121.62 (13)
C15—S2—C1795.15 (7)C11—C10—C9118.14 (13)
C8—O1—C7115.97 (11)C11—C10—H10A120.9
C7—N1—N2114.80 (13)C9—C10—H10A120.9
C15—N2—N1111.40 (13)C10—C11—C12122.18 (14)
C2—C1—C6119.91 (16)C10—C11—Cl2118.80 (11)
C2—C1—H1B120.0C12—C11—Cl2119.01 (12)
C6—C1—H1B120.0C11—C12—C13118.94 (14)
C3—C2—C1120.83 (16)C11—C12—H12A120.5
C3—C2—H2B119.6C13—C12—H12A120.5
C1—C2—H2B119.6C14—C13—C12120.22 (14)
C2—C3—C4119.02 (16)C14—C13—H13A119.9
C2—C3—H3A120.5C12—C13—H13A119.9
C4—C3—H3A120.5C13—C14—C9120.04 (14)
C3—C4—C5121.63 (16)C13—C14—H14A120.0
C3—C4—Cl1118.48 (13)C9—C14—H14A120.0
C5—C4—Cl1119.87 (13)N2—C15—S1118.01 (12)
C4—C5—C6118.83 (15)N2—C15—S2126.35 (12)
C4—C5—H5A120.6S1—C15—S2115.64 (9)
C6—C5—H5A120.6C17—C16—S1107.62 (11)
C5—C6—C1119.77 (14)C17—C16—H16A110.2
C5—C6—C7120.01 (13)S1—C16—H16A110.2
C1—C6—C7120.21 (14)C17—C16—H16B110.2
N1—C7—O1122.71 (13)S1—C16—H16B110.2
N1—C7—C6122.70 (14)H16A—C16—H16B108.5
O1—C7—C6114.45 (13)C16—C17—S2108.49 (11)
O2—C8—O1122.10 (14)C16—C17—H17A110.0
O2—C8—C9125.99 (14)S2—C17—H17A110.0
O1—C8—C9111.91 (12)C16—C17—H17B110.0
C14—C9—C10120.46 (13)S2—C17—H17B110.0
C14—C9—C8117.88 (13)H17A—C17—H17B108.4
C7—N1—N2—C15179.07 (13)O1—C8—C9—C14177.72 (12)
C6—C1—C2—C30.5 (3)O2—C8—C9—C10179.57 (14)
C1—C2—C3—C40.5 (3)O1—C8—C9—C100.29 (19)
C2—C3—C4—C51.3 (2)C14—C9—C10—C111.6 (2)
C2—C3—C4—Cl1177.27 (12)C8—C9—C10—C11176.34 (13)
C3—C4—C5—C60.9 (2)C9—C10—C11—C120.7 (2)
Cl1—C4—C5—C6177.58 (10)C9—C10—C11—Cl2179.01 (11)
C4—C5—C6—C10.1 (2)C10—C11—C12—C130.7 (2)
C4—C5—C6—C7179.44 (13)Cl2—C11—C12—C13179.55 (11)
C2—C1—C6—C50.8 (2)C11—C12—C13—C141.3 (2)
C2—C1—C6—C7179.86 (14)C12—C13—C14—C90.4 (2)
N2—N1—C7—O14.57 (19)C10—C9—C14—C131.1 (2)
N2—N1—C7—C6179.94 (12)C8—C9—C14—C13176.96 (13)
C8—O1—C7—N189.63 (17)N1—N2—C15—S1176.17 (9)
C8—O1—C7—C694.53 (15)N1—N2—C15—S23.35 (19)
C5—C6—C7—N13.2 (2)C16—S1—C15—N2163.32 (12)
C1—C6—C7—N1176.16 (14)C16—S1—C15—S217.11 (9)
C5—C6—C7—O1179.00 (11)C17—S2—C15—N2174.68 (14)
C1—C6—C7—O10.33 (19)C17—S2—C15—S14.84 (9)
C7—O1—C8—O24.5 (2)C15—S1—C16—C1737.74 (12)
C7—O1—C8—C9175.41 (12)S1—C16—C17—S245.83 (13)
O2—C8—C9—C142.4 (2)C15—S2—C17—C1630.73 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···N1i0.952.593.534 (2)173
C14—H14A···Cl1ii0.952.803.727 (2)165
C16—H16B···O2iii0.992.483.274 (3)137
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC17H12Cl2N2O2S2
Mr411.31
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)8.960 (5), 9.944 (6), 11.128 (6)
α, β, γ (°)104.174 (8), 111.041 (7), 99.410 (2)
V3)861.9 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.34 × 0.25 × 0.20
Data collection
DiffractometerRigaku Saturn CCD area-detector
Absorption correctionMulti-scan
(CrystalClear-SM Expert; Rigaku/MSC, 2009)
Tmin, Tmax0.884, 0.884
No. of measured, independent and
observed [I > 2σ(I)] reflections
11088, 4080, 3115
Rint0.034
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.074, 0.95
No. of reflections4080
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.22

Computer programs: CrystalClear-SM Expert (Rigaku/MSC, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···N1i0.952.593.534 (2)172.9
C14—H14A···Cl1ii0.952.803.727 (2)165.1
C16—H16B···O2iii0.992.483.274 (3)137.1
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y, z.
 

Acknowledgements

The author thank the Jining University Foundation (No. 2012YYJJ07) for financial support of this work.

References

First citationRigaku/MSC (2009). CrystalClear-SM Expert. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, H., Araki, F., Harada, T. & Kurono, H. (1976). Jpn Patent No. 51151326A.  Google Scholar
First citationWang, Y., Li, Z. H. & Gao, N. (1994). Yaoxue Xuebao, 29, 78–80.  Google Scholar
First citationYin, L. (2013). Acta Cryst. E69, o571.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds