metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tetra­aqua­cadmium]-μ-5,5′-(1,4-phenyl­ene)di(tetra­zol-2-ido)-κ2N2:N2′]

aSchool of Chemistry & Material Science, Shanxi Normal University, Linfen 041004, People's Republic of China
*Correspondence e-mail: dangqq820116@yahoo.cn

(Received 9 April 2013; accepted 17 April 2013; online 20 April 2013)

In the title compound, [Cd(C8H4N8)(H2O)4]n, 5,5′-(1,4-phenyl­ene)di(tetra­zol-2-ide) (L) ligands bridge CdII atoms into polymeric chains along [201]. The CdII atom is situated on an inversion centre and is coordinated by two N atoms from two L ligands and by four water O atoms in a distorted octa­hedral geometry. In the L ligand, the benzene ring resides on an inversion centre and the tetra­zole rings are twisted from its plane by 22.3 (1)°. An extensive hydrogen-bonding network formed by classical O—H⋯N and O—H⋯O inter­actions consolidates the crystal packing, linking the poymeric chains into a three-dimensional structure.

Related literature

For background to coordination frameworks, see: Yaghi et al. (2003[Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature, 423, 705-714.]); Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. I. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]); Ockwig et al. (2005[Ockwig, N. W., Delgado-Friedrichs, O., O'Keeffe, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176-182.]). For details of the synthesis of 1,4-bis­(tetra­zole-5-yl)benzene, see: Tao et al. (2004[Tao, J., Ma, Z. J., Huang, R. B. & Zheng, L. S. (2004). Inorg. Chem. 43, 6133-6135.]). For the crystal structures of coordination polymers containing the 1,4-bis­(tetra­zole-5-yl)benzene ligand, see: Dinca et al. (2006[Dinca, M., Yu, A. F. & Long, J. R. (2006). J. Am. Chem. Soc. 128, 8904-8913.]); Ouellette et al. (2009[Ouellette, W., Prosvirin, A. V., Whitenack, K., Dunbar, K. R. & Zubieta, J. (2009). Angew. Chem. Int. Ed. 48, 2140-2143.]); Liu et al. (2012[Liu, W. T., Li, J. Y., Ni, Z. P., Bao, X., Ou, Y. C., Leng, J. D., Liu, J. L. & Tong, M. L. (2012). Cryst. Growth Des. 12, 1482-1488.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C8H4N8)(H2O)4]

  • Mr = 396.66

  • Monoclinic, P 21 /n

  • a = 5.3188 (4) Å

  • b = 11.1525 (14) Å

  • c = 12.0279 (8) Å

  • β = 101.256 (7)°

  • V = 699.75 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.59 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.692, Tmax = 0.796

  • 2351 measured reflections

  • 1237 independent reflections

  • 895 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.085

  • S = 1.05

  • 1237 reflections

  • 99 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯N1i 0.86 1.93 2.779 (5) 167
O1—H1A⋯N4ii 0.86 1.99 2.836 (6) 166
O2—H2A⋯N3iii 0.85 2.49 3.121 (6) 131
O2—H2B⋯O1iv 0.85 2.39 3.035 (6) 133
Symmetry codes: (i) x+1, y, z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) x-1, y, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Over the last decade coordination frameworks with channels or pores have captivated great attention of chemists because of their potential applications in gas storage, separation, ion exchange and catalysis(Yaghi et al., 2003; Kitagawa et al., 2004; Ockwig et al., 2005). 1,4-Bis(tetrazol-5-yl)benzene, firstly synthesized and characterized by Tao et al. (2004), is now widely used for constructing coordination frameworks with channels or pores (Dinca et al., 2006; Ouellette et al., 2009; Liu et al., 2012). This paper concerns the reaction of cadmium(II) and 1,4-bis(tetrazol-5-yl)benzene, and the crystal structure of the product.

In the title compound (Fig. 1), the CdII ion is located at an inversion centre. It has a slightly distorted octahedral coordination geometry formed by four water molecules and two nitrogen atoms from ligands L, where H2L = 1,4-bis(tetrazol-5-yl)benzene. Four oxygen atoms form a planar parallelogram arrangement around the Cd centre, and the other two nitrogen atoms occupy the apical position. Each ligand L coordinates two cadmium atoms in a µ2-bridging mode, thus generating a one-dimension coordination polymer. As far as we known, this coordination mode is currently unknown for L ligand.

In the crystal, polymeric one-dimensional chains are linked via O—H···N hydrogen bonds (Table 1) into a three-dimensional structure. The results show that there are no channels in the crystal structure.

Related literature top

For background to coordination frameworks, see: Yaghi et al. (2003); Kitagawa et al. (2004); Ockwig et al. (2005). For details of the synthesis of 1,4-bis(tetrazole-5-yl)benzene, see: Tao et al. (2004). For the crystal structures of coordination polymers containing the 1,4-bis(tetrazole-5-yl)benzene ligand, see: Dinca et al. (2006); Ouellette et al. (2009); Liu et al. (2012).

Experimental top

Cadmium nitrate tetrahydrate (0.123 g, 0.40 mmol), 1,4-bis(tetrazole-5-yl)benzene (0.042 g, 0.20 mmol) and sodium hydroxide (0.016, 0.40 mmol) were added to 8 ml of water:ammonium hydroxide (v:v=1:1) mixture. The solution was transferred into a Teflon-lined stainless steel autoclave and the autoclave was heated to 393 K and maintained at that temperature for 72 h. After cooling to room temperature, crystals suitable for X-ray diffraction were collected.

Refinement top

Water hydrogen atoms were placed in calculated positions [O—H = 0.85–0.87 Å], and refined as riding, with Uiso(H) = 1.5 Ueq(O). The aromatic H atoms were positioned geometrically [C—H = 0.93 Å], and refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Structure description top

Over the last decade coordination frameworks with channels or pores have captivated great attention of chemists because of their potential applications in gas storage, separation, ion exchange and catalysis(Yaghi et al., 2003; Kitagawa et al., 2004; Ockwig et al., 2005). 1,4-Bis(tetrazol-5-yl)benzene, firstly synthesized and characterized by Tao et al. (2004), is now widely used for constructing coordination frameworks with channels or pores (Dinca et al., 2006; Ouellette et al., 2009; Liu et al., 2012). This paper concerns the reaction of cadmium(II) and 1,4-bis(tetrazol-5-yl)benzene, and the crystal structure of the product.

In the title compound (Fig. 1), the CdII ion is located at an inversion centre. It has a slightly distorted octahedral coordination geometry formed by four water molecules and two nitrogen atoms from ligands L, where H2L = 1,4-bis(tetrazol-5-yl)benzene. Four oxygen atoms form a planar parallelogram arrangement around the Cd centre, and the other two nitrogen atoms occupy the apical position. Each ligand L coordinates two cadmium atoms in a µ2-bridging mode, thus generating a one-dimension coordination polymer. As far as we known, this coordination mode is currently unknown for L ligand.

In the crystal, polymeric one-dimensional chains are linked via O—H···N hydrogen bonds (Table 1) into a three-dimensional structure. The results show that there are no channels in the crystal structure.

For background to coordination frameworks, see: Yaghi et al. (2003); Kitagawa et al. (2004); Ockwig et al. (2005). For details of the synthesis of 1,4-bis(tetrazole-5-yl)benzene, see: Tao et al. (2004). For the crystal structures of coordination polymers containing the 1,4-bis(tetrazole-5-yl)benzene ligand, see: Dinca et al. (2006); Ouellette et al. (2009); Liu et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A portion of the polymeric chain in the title compound showing the atomic numbering [symmetry codes: (a) 1-x , 1-y, 1-z; (b) -1-x, 1-y, -z]. Displacement ellipsoids are drawn at the 50% probability level.
catena-Poly[[tetraaquacadmium]-µ-5,5'-(1,4-phenylene)di(tetrazol-2-ido)-κ2N2:N2'] top
Crystal data top
[Cd(C8H4N8)(H2O)4]F(000) = 392
Mr = 396.662013-04-07 # Formatted by publCIF
Monoclinic, P21/nDx = 1.883 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 5.3188 (4) ÅCell parameters from 739 reflections
b = 11.1525 (14) Åθ = 3.5–29.1°
c = 12.0279 (8) ŵ = 1.59 mm1
β = 101.256 (7)°T = 293 K
V = 699.75 (11) Å3Prism, yellow
Z = 20.25 × 0.20 × 0.15 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
1237 independent reflections
Radiation source: fine-focus sealed tube895 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 16.0710 pixels mm-1θmax = 25.0°, θmin = 3.5°
ω scansh = 56
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 513
Tmin = 0.692, Tmax = 0.796l = 1314
2351 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0301P)2]
where P = (Fo2 + 2Fc2)/3
1237 reflections(Δ/σ)max < 0.001
99 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Cd(C8H4N8)(H2O)4]V = 699.75 (11) Å3
Mr = 396.66Z = 2
Monoclinic, P21/nMo Kα radiation
a = 5.3188 (4) ŵ = 1.59 mm1
b = 11.1525 (14) ÅT = 293 K
c = 12.0279 (8) Å0.25 × 0.20 × 0.15 mm
β = 101.256 (7)°
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
1237 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
895 reflections with I > 2σ(I)
Tmin = 0.692, Tmax = 0.796Rint = 0.033
2351 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.05Δρmax = 0.62 e Å3
1237 reflectionsΔρmin = 0.53 e Å3
99 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.50000.50000.0273 (2)
O10.7271 (6)0.6312 (4)0.4040 (3)0.0365 (10)
H1A0.62610.68590.36960.055*
H1B0.79180.59210.35440.055*
N10.0067 (7)0.5049 (4)0.2701 (3)0.0266 (10)
N40.0598 (8)0.3375 (4)0.1802 (4)0.0369 (12)
C20.2949 (9)0.4694 (5)0.0882 (4)0.0279 (13)
C40.3166 (9)0.4199 (5)0.0197 (4)0.0333 (13)
H40.19330.36580.03350.040*
N20.2066 (7)0.4426 (4)0.3287 (4)0.0327 (11)
C10.0782 (9)0.4371 (5)0.1798 (4)0.0286 (12)
N30.2401 (8)0.3426 (4)0.2768 (4)0.0403 (12)
O20.2732 (8)0.6693 (4)0.5307 (4)0.0659 (14)
H2A0.34840.70380.59140.099*
H2B0.12250.64880.53760.099*
C30.4828 (10)0.5505 (5)0.1061 (4)0.0342 (13)
H30.47240.58490.17730.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0262 (3)0.0279 (3)0.0244 (3)0.0008 (3)0.0036 (2)0.0009 (3)
O10.034 (2)0.041 (3)0.034 (2)0.0078 (17)0.0051 (18)0.0042 (19)
N10.021 (2)0.036 (3)0.019 (2)0.005 (2)0.0059 (17)0.001 (2)
N40.039 (3)0.033 (3)0.031 (3)0.008 (2)0.013 (2)0.005 (2)
C20.023 (3)0.034 (4)0.024 (3)0.003 (2)0.002 (2)0.001 (2)
C40.030 (3)0.036 (4)0.030 (3)0.008 (3)0.004 (2)0.002 (3)
N20.031 (2)0.039 (3)0.025 (2)0.001 (2)0.004 (2)0.001 (2)
C10.027 (3)0.035 (3)0.020 (3)0.000 (3)0.002 (2)0.002 (3)
N30.042 (3)0.036 (3)0.034 (3)0.005 (2)0.014 (2)0.003 (2)
O20.047 (2)0.062 (3)0.084 (4)0.001 (2)0.001 (2)0.019 (3)
C30.039 (3)0.041 (4)0.018 (3)0.006 (3)0.006 (2)0.006 (3)
Geometric parameters (Å, º) top
Cd1—O2i2.309 (4)N4—N31.355 (5)
Cd1—O22.309 (4)C2—C41.394 (7)
Cd1—O12.340 (3)C2—C31.396 (7)
Cd1—O1i2.340 (3)C2—C11.475 (7)
Cd1—N22.416 (4)C4—C3ii1.377 (7)
Cd1—N2i2.416 (4)C4—H40.9300
O1—H1A0.8631N2—N31.307 (6)
O1—H1B0.8625O2—H2A0.8527
N1—C11.328 (6)O2—H2B0.8526
N1—N21.348 (6)C3—C4ii1.377 (7)
N4—C11.331 (6)C3—H30.9300
O2i—Cd1—O2179.999 (1)C4—C2—C3117.9 (5)
O2i—Cd1—O195.51 (15)C4—C2—C1120.6 (4)
O2—Cd1—O184.49 (15)C3—C2—C1121.4 (5)
O2i—Cd1—O1i84.49 (15)C3ii—C4—C2121.3 (5)
O2—Cd1—O1i95.51 (15)C3ii—C4—H4119.4
O1—Cd1—O1i180.0C2—C4—H4119.4
O2i—Cd1—N285.26 (16)N3—N2—N1110.9 (4)
O2—Cd1—N294.74 (16)N3—N2—Cd1120.5 (3)
O1—Cd1—N293.12 (13)N1—N2—Cd1128.4 (3)
O1i—Cd1—N286.88 (13)N1—C1—N4111.9 (4)
O2i—Cd1—N2i94.74 (16)N1—C1—C2124.3 (5)
O2—Cd1—N2i85.26 (16)N4—C1—C2123.8 (5)
O1—Cd1—N2i86.88 (13)N2—N3—N4107.8 (4)
O1i—Cd1—N2i93.12 (13)Cd1—O2—H2A109.5
N2—Cd1—N2i180.0 (3)Cd1—O2—H2B109.1
Cd1—O1—H1A110.2H2A—O2—H2B109.3
Cd1—O1—H1B109.8C4ii—C3—C2120.8 (5)
H1A—O1—H1B108.7C4ii—C3—H3119.6
C1—N1—N2104.0 (4)C2—C3—H3119.6
C1—N4—N3105.4 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N1iii0.861.932.779 (5)167
O1—H1A···N4iv0.861.992.836 (6)166
O2—H2A···N3i0.852.493.121 (6)131
O2—H2B···O1v0.852.393.035 (6)133
Symmetry codes: (i) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x+1/2, y+1/2, z+1/2; (v) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cd(C8H4N8)(H2O)4]
Mr396.66
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)5.3188 (4), 11.1525 (14), 12.0279 (8)
β (°) 101.256 (7)
V3)699.75 (11)
Z2
Radiation typeMo Kα
µ (mm1)1.59
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerAgilent Xcalibur (Eos, Gemini)
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.692, 0.796
No. of measured, independent and
observed [I > 2σ(I)] reflections
2351, 1237, 895
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.085, 1.05
No. of reflections1237
No. of parameters99
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.53

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N1i0.861.932.779 (5)167
O1—H1A···N4ii0.861.992.836 (6)166
O2—H2A···N3iii0.852.493.121 (6)131
O2—H2B···O1iv0.852.393.035 (6)133
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x1, y, z.
 

Acknowledgements

The author thank the Shanxi Province Science Foundation for Youths (grant No. 2012021008–2), the National Natural Science Foundation of China (grant No. 21101102) and the National Science Fund for Distinguished Young Scholars (grant No. 20925101).

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationDinca, M., Yu, A. F. & Long, J. R. (2006). J. Am. Chem. Soc. 128, 8904–8913.  Web of Science PubMed CAS Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. I. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationLiu, W. T., Li, J. Y., Ni, Z. P., Bao, X., Ou, Y. C., Leng, J. D., Liu, J. L. & Tong, M. L. (2012). Cryst. Growth Des. 12, 1482–1488.  Web of Science CSD CrossRef Google Scholar
First citationOckwig, N. W., Delgado-Friedrichs, O., O'Keeffe, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176–182.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOuellette, W., Prosvirin, A. V., Whitenack, K., Dunbar, K. R. & Zubieta, J. (2009). Angew. Chem. Int. Ed. 48, 2140–2143.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTao, J., Ma, Z. J., Huang, R. B. & Zheng, L. S. (2004). Inorg. Chem. 43, 6133–6135.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature, 423, 705–714.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds