organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Fluoro­phen­yl)-3-methyl­sulfanyl-5-phenyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 1 April 2013; accepted 9 April 2013; online 13 April 2013)

In the title compound, C21H15FOS, the dihedral angles between the mean plane [r.m.s. deviation = 0.041 (1) Å] of the benzo­furan fragment and the pendant 2-fluoro­phenyl and phenyl rings are 46.09 (3) and 24.34 (5)°, respectively. In the crystal, mol­ecules are linked by weak C—H⋯π inter­actions, forming a three-dimensional network.

Related literature

For background information and the crystal structures of related compounds, see: Choi et al. (2006[Choi, H. D., Seo, P. J., Kang, B. W., Son, B. W. & Lee, U. (2006). Acta Cryst. E62, o4796-o4797.]); Seo et al. (2011[Seo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o3006.]).

[Scheme 1]

Experimental

Crystal data
  • C21H15FOS

  • Mr = 334.39

  • Monoclinic, P 21 /n

  • a = 11.1257 (2) Å

  • b = 7.4232 (1) Å

  • c = 19.4212 (3) Å

  • β = 97.319 (1)°

  • V = 1590.90 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 173 K

  • 0.27 × 0.19 × 0.14 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.689, Tmax = 0.746

  • 28795 measured reflections

  • 3967 independent reflections

  • 3190 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.101

  • S = 1.05

  • 3967 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the C9–C14 phenyl and 2-fluoro­phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Cg1i 0.95 2.82 3.682 (2) 131
C14—H14⋯Cg2ii 0.95 2.71 3.528 (2) 145
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our continuing study of 3-methylsulfanyl-5-phenyl-1-benzofuran derivatives containing phenyl (Choi et al., 2006) and 3-fluorophenyl (Seo et al., 2011) substituents in 2-position, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.041 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angles between the mean plane of the benzofuran fragment and the pendant 2-fluorophenyl and phenyl rings are 46.09 (3) and 24.34 (5), respectively. In the crystal structure (Fig. 2), molecules are connected by weak intermolecular C–H···π interactions (Table 1, Cg1 and Cg2 are the centroids of the C9–C14 phenyl ring and the C15-C20 2-fluorophenyl ring, respectively).

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2006); Seo, et al. (2011).

Experimental top

Zinc chloride (218 mg, 1.6 mmol) was added to a stirred solution of 4-phenylphenol (272 mg, 1.6 mmol) and 2-chloro-2-methylsulfanyl-2'-fluoroacetophenone (350 mg, 1.6 mmol) in dichloromethene (20 mL) at room temperature, and stirring was continued at the same temperature for 40 min. The reaction was quenched by the addition of water and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-benzene, 5:2 v/v) to afford the title compound as a colorless solid [yield 51%, m.p. 368-369 K; Rf = 0.63 (hexane-benzene, 5:2 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms. The positions of methyl hydrogens were optimized rotationally.

Structure description top

As a part of our continuing study of 3-methylsulfanyl-5-phenyl-1-benzofuran derivatives containing phenyl (Choi et al., 2006) and 3-fluorophenyl (Seo et al., 2011) substituents in 2-position, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.041 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angles between the mean plane of the benzofuran fragment and the pendant 2-fluorophenyl and phenyl rings are 46.09 (3) and 24.34 (5), respectively. In the crystal structure (Fig. 2), molecules are connected by weak intermolecular C–H···π interactions (Table 1, Cg1 and Cg2 are the centroids of the C9–C14 phenyl ring and the C15-C20 2-fluorophenyl ring, respectively).

For background information and the crystal structures of related compounds, see: Choi et al. (2006); Seo, et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C–H..π interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) - x + 1/2, y + 1/2, - z + 1/2; (ii) - x + 1, - y + 1, - z + 1; (iii) - x + 1/2, y - 1/2, - z + 1/2.]
2-(2-Fluorophenyl)-3-methylsulfanyl-5-phenyl-1-benzofuran top
Crystal data top
C21H15FOSF(000) = 696
Mr = 334.39Dx = 1.396 Mg m3
Monoclinic, P21/nMelting point = 368–369 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.1257 (2) ÅCell parameters from 7139 reflections
b = 7.4232 (1) Åθ = 2.2–27.4°
c = 19.4212 (3) ŵ = 0.22 mm1
β = 97.319 (1)°T = 173 K
V = 1590.90 (4) Å3Block, colourless
Z = 40.27 × 0.19 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
3967 independent reflections
Radiation source: rotating anode3190 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.040
Detector resolution: 10.0 pixels mm-1θmax = 28.4°, θmin = 2.0°
φ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 99
Tmin = 0.689, Tmax = 0.746l = 2525
28795 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.101H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.4925P]
where P = (Fo2 + 2Fc2)/3
3967 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C21H15FOSV = 1590.90 (4) Å3
Mr = 334.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.1257 (2) ŵ = 0.22 mm1
b = 7.4232 (1) ÅT = 173 K
c = 19.4212 (3) Å0.27 × 0.19 × 0.14 mm
β = 97.319 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3967 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3190 reflections with I > 2σ(I)
Tmin = 0.689, Tmax = 0.746Rint = 0.040
28795 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
3967 reflectionsΔρmin = 0.26 e Å3
218 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.16737 (3)0.90172 (5)0.526490 (19)0.03354 (12)
F10.19589 (8)0.59691 (12)0.63666 (4)0.0364 (2)
O10.50485 (9)0.72718 (13)0.56484 (5)0.0267 (2)
C10.31237 (13)0.81153 (18)0.52659 (7)0.0251 (3)
C20.37725 (12)0.79253 (18)0.46729 (7)0.0233 (3)
C30.34570 (12)0.80710 (18)0.39580 (7)0.0242 (3)
H30.26620.84290.37720.029*
C40.43212 (12)0.76849 (17)0.35187 (7)0.0221 (3)
C50.55052 (12)0.72200 (19)0.38149 (7)0.0258 (3)
H50.60990.69980.35150.031*
C60.58376 (13)0.7074 (2)0.45239 (7)0.0282 (3)
H60.66380.67570.47160.034*
C70.49417 (13)0.74160 (18)0.49375 (7)0.0244 (3)
C80.39147 (13)0.76675 (18)0.58301 (7)0.0244 (3)
C90.39863 (12)0.76923 (17)0.27537 (7)0.0218 (3)
C100.29923 (12)0.86819 (19)0.24410 (7)0.0266 (3)
H100.25410.94010.27210.032*
C110.26579 (13)0.8628 (2)0.17297 (7)0.0298 (3)
H110.19760.93000.15270.036*
C120.33101 (14)0.7602 (2)0.13126 (7)0.0327 (3)
H120.30760.75610.08250.039*
C130.43046 (14)0.6637 (2)0.16105 (7)0.0325 (3)
H130.47640.59460.13260.039*
C140.46343 (13)0.66746 (19)0.23219 (7)0.0265 (3)
H140.53150.59940.25200.032*
C150.38210 (13)0.75223 (17)0.65736 (7)0.0241 (3)
C160.47502 (13)0.81460 (18)0.70674 (7)0.0263 (3)
H160.54520.86680.69180.032*
C170.46672 (14)0.80178 (19)0.77690 (7)0.0299 (3)
H170.53020.84710.80970.036*
C180.36603 (14)0.7229 (2)0.79949 (7)0.0303 (3)
H180.36020.71530.84780.036*
C190.27373 (13)0.65489 (19)0.75195 (7)0.0284 (3)
H190.20500.59850.76710.034*
C200.28393 (13)0.67099 (18)0.68235 (7)0.0262 (3)
C210.07375 (16)0.7190 (3)0.48970 (9)0.0480 (4)
H21A0.10000.68260.44550.072*
H21B0.01100.75850.48180.072*
H21C0.08120.61670.52180.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0334 (2)0.0392 (2)0.0296 (2)0.01220 (16)0.01019 (15)0.00356 (15)
F10.0344 (5)0.0430 (5)0.0304 (5)0.0135 (4)0.0006 (4)0.0033 (4)
O10.0262 (5)0.0344 (5)0.0195 (5)0.0012 (4)0.0030 (4)0.0012 (4)
C10.0285 (7)0.0251 (7)0.0223 (6)0.0019 (5)0.0058 (5)0.0005 (5)
C20.0254 (7)0.0215 (6)0.0234 (6)0.0003 (5)0.0041 (5)0.0007 (5)
C30.0247 (7)0.0249 (6)0.0231 (6)0.0027 (5)0.0036 (5)0.0005 (5)
C40.0249 (7)0.0194 (6)0.0222 (6)0.0018 (5)0.0038 (5)0.0001 (5)
C50.0234 (7)0.0299 (7)0.0250 (7)0.0019 (5)0.0059 (5)0.0004 (5)
C60.0222 (7)0.0361 (8)0.0259 (7)0.0013 (6)0.0017 (5)0.0016 (6)
C70.0271 (7)0.0249 (7)0.0210 (6)0.0033 (5)0.0026 (5)0.0003 (5)
C80.0272 (7)0.0227 (6)0.0241 (7)0.0016 (5)0.0060 (5)0.0004 (5)
C90.0232 (6)0.0210 (6)0.0216 (6)0.0036 (5)0.0040 (5)0.0008 (5)
C100.0264 (7)0.0268 (7)0.0267 (7)0.0008 (5)0.0040 (5)0.0009 (5)
C110.0290 (7)0.0319 (7)0.0274 (7)0.0024 (6)0.0008 (6)0.0020 (6)
C120.0381 (8)0.0391 (8)0.0203 (7)0.0000 (7)0.0017 (6)0.0001 (6)
C130.0350 (8)0.0389 (8)0.0248 (7)0.0032 (6)0.0083 (6)0.0048 (6)
C140.0255 (7)0.0301 (7)0.0242 (7)0.0021 (6)0.0043 (5)0.0014 (5)
C150.0294 (7)0.0217 (6)0.0214 (6)0.0016 (5)0.0037 (5)0.0004 (5)
C160.0289 (7)0.0245 (7)0.0258 (7)0.0012 (5)0.0042 (5)0.0001 (5)
C170.0349 (8)0.0290 (7)0.0247 (7)0.0006 (6)0.0008 (6)0.0027 (5)
C180.0409 (8)0.0300 (7)0.0208 (7)0.0061 (6)0.0072 (6)0.0014 (5)
C190.0321 (8)0.0268 (7)0.0279 (7)0.0030 (6)0.0105 (6)0.0038 (5)
C200.0284 (7)0.0237 (6)0.0258 (7)0.0002 (5)0.0011 (5)0.0000 (5)
C210.0322 (9)0.0693 (13)0.0410 (10)0.0020 (8)0.0013 (7)0.0052 (9)
Geometric parameters (Å, º) top
S1—C11.7464 (14)C10—H100.9500
S1—C211.8013 (19)C11—C121.383 (2)
F1—C201.3521 (16)C11—H110.9500
O1—C71.3748 (16)C12—C131.382 (2)
O1—C81.3840 (16)C12—H120.9500
C1—C81.3565 (19)C13—C141.3839 (19)
C1—C21.4420 (18)C13—H130.9500
C2—C71.3887 (19)C14—H140.9500
C2—C31.3922 (18)C15—C201.3882 (19)
C3—C41.3941 (18)C15—C161.3964 (19)
C3—H30.9500C16—C171.381 (2)
C4—C51.4114 (19)C16—H160.9500
C4—C91.4851 (18)C17—C181.384 (2)
C5—C61.3837 (19)C17—H170.9500
C5—H50.9500C18—C191.386 (2)
C6—C71.381 (2)C18—H180.9500
C6—H60.9500C19—C201.3760 (19)
C8—C151.4649 (18)C19—H190.9500
C9—C141.3956 (18)C21—H21A0.9800
C9—C101.4002 (19)C21—H21B0.9800
C10—C111.3847 (19)C21—H21C0.9800
C1—S1—C21101.49 (8)C10—C11—H11119.8
C7—O1—C8105.94 (10)C13—C12—C11119.49 (13)
C8—C1—C2106.37 (12)C13—C12—H12120.3
C8—C1—S1126.80 (11)C11—C12—H12120.3
C2—C1—S1126.37 (10)C12—C13—C14120.26 (13)
C7—C2—C3119.70 (13)C12—C13—H13119.9
C7—C2—C1105.77 (12)C14—C13—H13119.9
C3—C2—C1134.47 (13)C13—C14—C9121.28 (13)
C2—C3—C4119.23 (13)C13—C14—H14119.4
C2—C3—H3120.4C9—C14—H14119.4
C4—C3—H3120.4C20—C15—C16116.78 (12)
C3—C4—C5118.78 (12)C20—C15—C8122.31 (12)
C3—C4—C9120.45 (12)C16—C15—C8120.87 (13)
C5—C4—C9120.72 (12)C17—C16—C15121.21 (13)
C6—C5—C4122.81 (13)C17—C16—H16119.4
C6—C5—H5118.6C15—C16—H16119.4
C4—C5—H5118.6C16—C17—C18120.04 (14)
C7—C6—C5116.31 (13)C16—C17—H17120.0
C7—C6—H6121.8C18—C17—H17120.0
C5—C6—H6121.8C17—C18—C19120.26 (13)
O1—C7—C6126.40 (13)C17—C18—H18119.9
O1—C7—C2110.48 (12)C19—C18—H18119.9
C6—C7—C2123.11 (13)C20—C19—C18118.43 (13)
C1—C8—O1111.39 (11)C20—C19—H19120.8
C1—C8—C15133.94 (13)C18—C19—H19120.8
O1—C8—C15114.67 (12)F1—C20—C19117.78 (12)
C14—C9—C10117.60 (12)F1—C20—C15118.92 (12)
C14—C9—C4121.08 (12)C19—C20—C15123.24 (13)
C10—C9—C4121.30 (12)S1—C21—H21A109.5
C11—C10—C9120.98 (13)S1—C21—H21B109.5
C11—C10—H10119.5H21A—C21—H21B109.5
C9—C10—H10119.5S1—C21—H21C109.5
C12—C11—C10120.38 (13)H21A—C21—H21C109.5
C12—C11—H11119.8H21B—C21—H21C109.5
C21—S1—C1—C8112.43 (14)C3—C4—C9—C14154.56 (13)
C21—S1—C1—C276.40 (14)C5—C4—C9—C1422.97 (19)
C8—C1—C2—C71.73 (15)C3—C4—C9—C1023.80 (19)
S1—C1—C2—C7170.91 (11)C5—C4—C9—C10158.67 (13)
C8—C1—C2—C3175.29 (15)C14—C9—C10—C110.9 (2)
S1—C1—C2—C312.1 (2)C4—C9—C10—C11177.53 (13)
C7—C2—C3—C40.60 (19)C9—C10—C11—C120.6 (2)
C1—C2—C3—C4176.10 (14)C10—C11—C12—C130.4 (2)
C2—C3—C4—C52.27 (19)C11—C12—C13—C141.0 (2)
C2—C3—C4—C9175.31 (12)C12—C13—C14—C90.7 (2)
C3—C4—C5—C62.1 (2)C10—C9—C14—C130.3 (2)
C9—C4—C5—C6175.46 (13)C4—C9—C14—C13178.15 (13)
C4—C5—C6—C70.2 (2)C1—C8—C15—C2043.6 (2)
C8—O1—C7—C6177.46 (13)O1—C8—C15—C20136.50 (13)
C8—O1—C7—C21.10 (14)C1—C8—C15—C16138.77 (17)
C5—C6—C7—O1176.77 (13)O1—C8—C15—C1641.10 (17)
C5—C6—C7—C21.6 (2)C20—C15—C16—C172.4 (2)
C3—C2—C7—O1177.18 (11)C8—C15—C16—C17179.85 (13)
C1—C2—C7—O10.37 (15)C15—C16—C17—C181.3 (2)
C3—C2—C7—C61.4 (2)C16—C17—C18—C190.6 (2)
C1—C2—C7—C6178.99 (13)C17—C18—C19—C201.2 (2)
C2—C1—C8—O12.52 (15)C18—C19—C20—F1177.08 (12)
S1—C1—C8—O1170.08 (10)C18—C19—C20—C150.1 (2)
C2—C1—C8—C15177.61 (14)C16—C15—C20—F1175.28 (12)
S1—C1—C8—C159.8 (2)C8—C15—C20—F12.4 (2)
C7—O1—C8—C12.29 (15)C16—C15—C20—C191.9 (2)
C7—O1—C8—C15177.81 (11)C8—C15—C20—C19179.55 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the C9–C14 phenyl and 2-fluorophenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
C10—H10···Cg1i0.952.823.682 (2)131
C14—H14···Cg2ii0.952.713.528 (2)145
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC21H15FOS
Mr334.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)11.1257 (2), 7.4232 (1), 19.4212 (3)
β (°) 97.319 (1)
V3)1590.90 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.27 × 0.19 × 0.14
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.689, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
28795, 3967, 3190
Rint0.040
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.101, 1.05
No. of reflections3967
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the C9–C14 phenyl and 2-fluorophenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
C10—H10···Cg1i0.952.823.682 (2)130.7
C14—H14···Cg2ii0.952.713.528 (2)144.9
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Blue-Bio Industry Regional Innovation Center (RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan city.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Kang, B. W., Son, B. W. & Lee, U. (2006). Acta Cryst. E62, o4796–o4797.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSeo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o3006.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds