organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzyl­ammonium hepta­noate

aBP Institute and Department of Chemistry, University of Cambridge, Cambridge, England
*Correspondence e-mail: stuart@bpi.cam.ac.uk

(Received 20 February 2013; accepted 8 April 2013; online 20 April 2013)

The title 1:1 stoichiometric salt, C7H10N+·C7H13O2, is formed by proton transfer between hepta­noic acid and benzyl­amine. This combination contrasts to the recently published 2:1 acid–amine adduct of cation, anion and neutral acid molecule from the same components [Wood & Clarke (2013[Wood, M. H. & Clarke, S. M. (2013). Acta Cryst. E69, o346-o347.]). Acta Cryst. E69, o346–o347]. There are N—H⋯O hydrogen bonds of moderate strength in the structure [the most important graph-set motifs are R24(8) and R44(12)], as well as weak C—H⋯O inter­actions.

Related literature

For spectroscopic studies of acid–amine complexes, see: Kohler et al. (1981[Kohler, F., Atrops, H., Kalali, H., Liebermann, E., Wilhelm, E., Ratkovics, F. & Salamon, T. (1981). J. Phys. Chem. 85, 2520-2524.]); Karlsson et al. (2000[Karlsson, S., Backlund, S. & Friman, R. (2000). Colloid Polym. Sci. 278, 8-14.]); Paivarinta et al. (2000[Paivarinta, J., Karlsson, S., Hotokka, M. & Poso, A. (2000). Chem. Phys. Lett. 327, 420-424.]); Smith et al. (2001[Smith, G., Wermuth, U. D., Bott, R. C., White, J. M. & Willis, A. C. (2001). Aust. J. Chem. 54, 165-170.], 2002[Smith, G., Wermuth, U. D., Bott, R. C., Healy, P. C. & White, J. M. (2002). Aust. J. Chem. 55, 349-356.]). For recent diffraction studies of acid–amine complexes, see: Jefferson et al. (2011[Jefferson, A. E., Sun, C., Bond, A. D. & Clarke, S. M. (2011). Acta Cryst. E67, o655.]); Sun et al. (2011[Sun, S., Bojdys, M. J., Clarke, S. M., Harper, L. D., Castro, M. A. & Medina, S. (2011). Langmuir, 27, 3626-3637.]); Wood & Clarke (2012a[Wood, M. H. & Clarke, S. M. (2012a). Acta Cryst. E68, o3004.],b[Wood, M. H. & Clarke, S. M. (2012b). Acta Cryst. E68, o3335.], 2013[Wood, M. H. & Clarke, S. M. (2013). Acta Cryst. E69, o346-o347.]). For the categorization of hydrogen bonds, see Gilli & Gilli (2009[Gilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond. Outline of a Comprehensive Hydrogen Bond Theory. International Union of Crystallography. Oxford Science Publications. p. 61. New York, Oxford: Oxford University Press, Inc.]). For graph-set motifs, see Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C7H10N+·C7H13O2

  • Mr = 237.33

  • Triclinic, [P \overline 1]

  • a = 5.7379 (2) Å

  • b = 7.7338 (3) Å

  • c = 17.1670 (7) Å

  • α = 97.887 (2)°

  • β = 92.864 (2)°

  • γ = 107.340 (2)°

  • V = 716.96 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 180 K

  • 0.46 × 0.07 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.874, Tmax = 0.999

  • 8415 measured reflections

  • 3253 independent reflections

  • 2308 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.141

  • S = 1.03

  • 3253 reflections

  • 164 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.99 (2) 1.80 (2) 2.7802 (17) 168.7 (19)
N1—H1B⋯O1i 0.98 (2) 1.73 (2) 2.6993 (17) 169 (2)
N1—H1C⋯O2ii 1.00 (2) 1.87 (2) 2.8590 (18) 167 (2)
C1—H1E⋯O1iii 0.99 2.40 3.280 (2) 148
C7—H7⋯O2 0.95 2.52 3.3528 (19) 146
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z; (iii) -x+1, -y+1, -z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al. , 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

There exist in the literature a number of examples of complexes formed between alkyl amines and carboxylic acids. These have been identified by a number of experimental methods, such as NMR and IR spectroscopy (e. g. Karlsson et al., 2000; Paivarinta et al. (2000); Smith et al. (2001, 2002)). Unfortunately, the atomic details of the materials and hence the nature of the bonding that can be obtained from single-crystal diffraction has only been determined in a few cases. This is partly due to the challenges in growing crystals large enough to be suitable for single-crystal diffraction. Some crystals of sufficient size have been grown (e. g. Jefferson et al. (2011); Wood & Clarke, 2012a, 2012b). Of the stoichiometic combinations reported to date, the majority have been 1:1 complexes, though some 2:1 and even 3:1 examples have been reported by calorimetry and NMR spectroscopy, generally when the environment is acid-rich (e. g. Kohler et al., 1981; Sun et al., 2011), and very recently using single-crystal diffraction (Wood & Clarke, 2013).

Here we report growth of a suitable crystal for single-crystal X-ray diffraction of a 1:1 complex formed between heptanoic acid and benzylamine (Figs. 1 and 2). This work follows a previous publication (Wood & Clarke, 2013) in which an acid-rich 2:1 complex formed between these two species is described. In the previous work, one acid molecule donates its proton to the amine group and one acid group retains its proton. The hydrogen bonding extends across both the ions and the neutral acid molecule.

As described below, the sample of the present study was grown by vapour phase condensation. Each preparation resulted in a batch of several crystals. The crystal used in this present study was taken from a different region of the same batch of samples as for the 2:1 combination (Wood & Clarke, 2013). We attribute the combination of compositions to the concentration gradients across the vapour streams in the preparation.

In the crystal structure of the 1:1 complex (Figs. 1 and 2), each acid anion is involved in N-H···O hydrogen bonds of moderate strength (Gilli & Gilli, 2009) with three surrounding amine molecules (Table 1; Fig. 2), and vice versa each benzylammonium group donates its hydrogen to three different heptanoate molecules. The most important graph set motifs are R24(8) (Etter et al., 1990) - see Fig.3. (In this motif the donated atoms are H1a and H1c and the acceptors are the O2 atoms.) The other important motif is R44(12) with donated hydrogens H1b and H1c and accepting oxygens O1 and O2 (Fig. 3.). Moreover, there are also weak C-H···O interactions present in the structure (Table 1).

Related literature top

For spectroscopic studies of acid–amine complexes, see: Kohler et al. (1981); Karlsson et al. (2000); Paivarinta et al. (2000); Smith et al. (2001, 2002). For recent diffraction studies of acid–amine complexes, see: Jefferson et al. (2011); Sun et al. (2011); Wood & Clarke (2012a,b, 2013). For the categorization of hydrogen bonds, see Gilli & Gilli (2009). For graph-set motifs, see Etter et al. (1990).

Experimental top

Benzylamine and heptanoic acid (purities 99.7% and 99.8% respectively, determined by titration and gas chromatography) were purchased from Sigma Aldrich and used without further purification. A small volume of amine (approximately 1 ml) was placed into a small vial that was itself placed within a larger vial containing a similar volume of the acid, and left in an inert atmosphere. Extensive crystal growth was observed after a few weeks, particularly on a polypropylene surface included in the vial to encourage nucleation.

Refinement top

All the hydrogens were discernible in the difference electron density map. Nevertheless, the hydrogens attached to the C atoms were situated in the idealized positions and refined under these constraints: Caryl-Haryl=0.95, Cmethyl-Hmethyl=0.98, Cmethylene-Hmethylene=0.99 Å. Ueq(Haryl)=1.2Uiso(Caryl), Ueq(Hmethylene)=1.2Uiso(Cmethylene), Ueq(Hmethyl)=1.5Uiso(Cmethyl). The positional parameters of the hydrogens attached to N of the benzylammonium cation were freely refined while their Ueq(HN)=1.5Uiso(HN).

Structure description top

There exist in the literature a number of examples of complexes formed between alkyl amines and carboxylic acids. These have been identified by a number of experimental methods, such as NMR and IR spectroscopy (e. g. Karlsson et al., 2000; Paivarinta et al. (2000); Smith et al. (2001, 2002)). Unfortunately, the atomic details of the materials and hence the nature of the bonding that can be obtained from single-crystal diffraction has only been determined in a few cases. This is partly due to the challenges in growing crystals large enough to be suitable for single-crystal diffraction. Some crystals of sufficient size have been grown (e. g. Jefferson et al. (2011); Wood & Clarke, 2012a, 2012b). Of the stoichiometic combinations reported to date, the majority have been 1:1 complexes, though some 2:1 and even 3:1 examples have been reported by calorimetry and NMR spectroscopy, generally when the environment is acid-rich (e. g. Kohler et al., 1981; Sun et al., 2011), and very recently using single-crystal diffraction (Wood & Clarke, 2013).

Here we report growth of a suitable crystal for single-crystal X-ray diffraction of a 1:1 complex formed between heptanoic acid and benzylamine (Figs. 1 and 2). This work follows a previous publication (Wood & Clarke, 2013) in which an acid-rich 2:1 complex formed between these two species is described. In the previous work, one acid molecule donates its proton to the amine group and one acid group retains its proton. The hydrogen bonding extends across both the ions and the neutral acid molecule.

As described below, the sample of the present study was grown by vapour phase condensation. Each preparation resulted in a batch of several crystals. The crystal used in this present study was taken from a different region of the same batch of samples as for the 2:1 combination (Wood & Clarke, 2013). We attribute the combination of compositions to the concentration gradients across the vapour streams in the preparation.

In the crystal structure of the 1:1 complex (Figs. 1 and 2), each acid anion is involved in N-H···O hydrogen bonds of moderate strength (Gilli & Gilli, 2009) with three surrounding amine molecules (Table 1; Fig. 2), and vice versa each benzylammonium group donates its hydrogen to three different heptanoate molecules. The most important graph set motifs are R24(8) (Etter et al., 1990) - see Fig.3. (In this motif the donated atoms are H1a and H1c and the acceptors are the O2 atoms.) The other important motif is R44(12) with donated hydrogens H1b and H1c and accepting oxygens O1 and O2 (Fig. 3.). Moreover, there are also weak C-H···O interactions present in the structure (Table 1).

For spectroscopic studies of acid–amine complexes, see: Kohler et al. (1981); Karlsson et al. (2000); Paivarinta et al. (2000); Smith et al. (2001, 2002). For recent diffraction studies of acid–amine complexes, see: Jefferson et al. (2011); Sun et al. (2011); Wood & Clarke (2012a,b, 2013). For the categorization of hydrogen bonds, see Gilli & Gilli (2009). For graph-set motifs, see Etter et al. (1990).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al. , 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Title molecules with atom labels. The displacement ellipsoids are drawn at the 50% probability level for non-H atoms. H atoms are shown as spheres of arbitrary size.
[Figure 2] Fig. 2. Hydrogen bonding around the ammonium cation. The symmetry codes: i: 1+x, y, z; ii: 1-x, -y, -z.
[Figure 3] Fig. 3. A section from the hydrogen bond pattern in the title structure. The symmetry codes: i: 1+x, y, z; ii: 1-x, -y, -z; iii: -x, -y, -z; iv: 2-x, -y, -z; v: -1+x, y, z.
Benzylammonium heptanoate top
Crystal data top
C7H10N+·C7H13O2Z = 2
Mr = 237.33F(000) = 260
Triclinic, P1Dx = 1.099 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.7379 (2) ÅCell parameters from 9084 reflections
b = 7.7338 (3) Åθ = 1.0–27.5°
c = 17.1670 (7) ŵ = 0.07 mm1
α = 97.887 (2)°T = 180 K
β = 92.864 (2)°Needle, colourless
γ = 107.340 (2)°0.46 × 0.07 × 0.05 mm
V = 716.96 (5) Å3
Data collection top
Nonius KappaCCD
diffractometer
3253 independent reflections
Radiation source: fine-focus sealed tube2308 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω and φ scansθmax = 27.5°, θmin = 3.6°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 77
Tmin = 0.874, Tmax = 0.999k = 109
8415 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: difference Fourier map
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.2301P]
where P = (Fo2 + 2Fc2)/3
3253 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.19 e Å3
82 constraints
Crystal data top
C7H10N+·C7H13O2γ = 107.340 (2)°
Mr = 237.33V = 716.96 (5) Å3
Triclinic, P1Z = 2
a = 5.7379 (2) ÅMo Kα radiation
b = 7.7338 (3) ŵ = 0.07 mm1
c = 17.1670 (7) ÅT = 180 K
α = 97.887 (2)°0.46 × 0.07 × 0.05 mm
β = 92.864 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3253 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
2308 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 0.999Rint = 0.043
8415 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.32 e Å3
3253 reflectionsΔρmin = 0.19 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7763 (2)0.1651 (2)0.04200 (8)0.0352 (3)
H1A0.630 (4)0.195 (3)0.0239 (11)0.053*
H1B0.919 (4)0.247 (3)0.0072 (12)0.053*
H1C0.752 (4)0.033 (3)0.0380 (11)0.053*
C10.8129 (3)0.1865 (2)0.12452 (9)0.0363 (4)
H1D0.96290.15560.13810.044*
H1E0.84020.31680.12980.044*
C20.6010 (3)0.06878 (19)0.18296 (9)0.0300 (3)
C30.6366 (3)0.0514 (2)0.26288 (10)0.0407 (4)
H30.79270.11020.27900.049*
C40.4468 (4)0.0507 (3)0.31918 (10)0.0478 (5)
H40.47340.06080.37360.057*
C50.2196 (3)0.1378 (2)0.29682 (10)0.0448 (4)
H50.08980.20790.33560.054*
C60.1819 (3)0.1225 (2)0.21798 (10)0.0379 (4)
H60.02590.18300.20220.045*
C70.3712 (3)0.0191 (2)0.16130 (9)0.0327 (4)
H70.34300.00840.10700.039*
O10.1339 (2)0.37947 (17)0.06866 (7)0.0499 (4)
O20.35258 (19)0.20902 (14)0.01788 (6)0.0345 (3)
C80.3307 (3)0.34204 (19)0.06561 (8)0.0274 (3)
C90.5477 (3)0.4606 (2)0.12239 (8)0.0297 (3)
H9A0.59710.58680.10970.036*
H9B0.68780.41190.11540.036*
C100.4899 (3)0.4671 (2)0.20864 (8)0.0305 (3)
H10A0.34620.51170.21510.037*
H10B0.44580.34130.22170.037*
C110.7043 (3)0.5911 (2)0.26616 (9)0.0346 (4)
H11A0.84870.54760.25900.042*
H11B0.74670.71720.25350.042*
C120.6502 (4)0.5962 (2)0.35193 (10)0.0472 (5)
H12A0.60430.46970.36430.057*
H12B0.50810.64230.35940.057*
C130.8663 (5)0.7167 (3)0.40931 (11)0.0747 (7)
H13A1.00690.66860.40250.090*
H13B0.91470.84220.39580.090*
C140.8143 (8)0.7273 (5)0.49474 (15)0.1389 (17)
H14A0.95970.80850.52810.208*
H14B0.77320.60440.50940.208*
H14C0.67610.77580.50230.208*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0267 (7)0.0391 (8)0.0357 (7)0.0102 (6)0.0036 (6)0.0059 (6)
C10.0289 (8)0.0376 (8)0.0371 (8)0.0054 (7)0.0018 (7)0.0003 (7)
C20.0310 (8)0.0260 (7)0.0320 (8)0.0096 (6)0.0007 (6)0.0001 (6)
C30.0426 (9)0.0408 (9)0.0362 (9)0.0095 (8)0.0054 (7)0.0040 (7)
C40.0623 (12)0.0500 (10)0.0280 (8)0.0155 (9)0.0009 (8)0.0016 (7)
C50.0487 (10)0.0405 (9)0.0379 (9)0.0101 (8)0.0157 (8)0.0032 (7)
C60.0330 (8)0.0344 (8)0.0428 (9)0.0075 (7)0.0044 (7)0.0033 (7)
C70.0307 (8)0.0337 (8)0.0314 (8)0.0087 (6)0.0008 (6)0.0014 (6)
O10.0302 (6)0.0555 (8)0.0574 (8)0.0210 (6)0.0126 (5)0.0247 (6)
O20.0326 (6)0.0328 (6)0.0359 (6)0.0119 (5)0.0001 (5)0.0052 (5)
C80.0275 (7)0.0272 (7)0.0264 (7)0.0079 (6)0.0011 (6)0.0022 (6)
C90.0250 (7)0.0309 (8)0.0305 (8)0.0066 (6)0.0003 (6)0.0012 (6)
C100.0293 (7)0.0282 (7)0.0309 (8)0.0060 (6)0.0010 (6)0.0020 (6)
C110.0363 (8)0.0321 (8)0.0306 (8)0.0059 (7)0.0044 (7)0.0015 (6)
C120.0616 (11)0.0419 (10)0.0307 (9)0.0070 (9)0.0012 (8)0.0036 (7)
C130.0991 (19)0.0672 (14)0.0341 (10)0.0026 (13)0.0178 (11)0.0004 (10)
C140.196 (4)0.128 (3)0.0330 (13)0.031 (3)0.0145 (17)0.0003 (15)
Geometric parameters (Å, º) top
N1—C11.467 (2)C8—C91.5148 (19)
N1—H1A0.99 (2)C9—C101.531 (2)
N1—H1B0.98 (2)C9—H9A0.9900
N1—H1C1.00 (2)C9—H9B0.9900
C1—C21.510 (2)C10—C111.524 (2)
C1—H1D0.9900C10—H10A0.9900
C1—H1E0.9900C10—H10B0.9900
C2—C71.386 (2)C11—C121.518 (2)
C2—C31.391 (2)C11—H11A0.9900
C3—C41.384 (2)C11—H11B0.9900
C3—H30.9500C12—C131.521 (3)
C4—C51.378 (3)C12—H12A0.9900
C4—H40.9500C12—H12B0.9900
C5—C61.376 (2)C13—C141.507 (3)
C5—H50.9500C13—H13A0.9900
C6—C71.389 (2)C13—H13B0.9900
C6—H60.9500C14—H14A0.9800
C7—H70.9500C14—H14B0.9800
O1—C81.2486 (17)C14—H14C0.9800
O2—C81.2653 (17)
C1—N1—H1A113.5 (11)C10—C9—H9A109.1
C1—N1—H1B109.7 (11)C8—C9—H9B109.1
H1A—N1—H1B107.3 (15)C10—C9—H9B109.1
C1—N1—H1C107.3 (11)H9A—C9—H9B107.9
H1A—N1—H1C107.5 (16)C11—C10—C9112.75 (12)
H1B—N1—H1C111.6 (16)C11—C10—H10A109.0
N1—C1—C2114.05 (13)C9—C10—H10A109.0
N1—C1—H1D108.7C11—C10—H10B109.0
C2—C1—H1D108.7C9—C10—H10B109.0
N1—C1—H1E108.7H10A—C10—H10B107.8
C2—C1—H1E108.7C12—C11—C10113.17 (14)
H1D—C1—H1E107.6C12—C11—H11A108.9
C7—C2—C3118.30 (14)C10—C11—H11A108.9
C7—C2—C1123.43 (13)C12—C11—H11B108.9
C3—C2—C1118.25 (14)C10—C11—H11B108.9
C4—C3—C2120.71 (16)H11A—C11—H11B107.8
C4—C3—H3119.6C11—C12—C13113.06 (16)
C2—C3—H3119.6C11—C12—H12A109.0
C5—C4—C3120.39 (16)C13—C12—H12A109.0
C5—C4—H4119.8C11—C12—H12B109.0
C3—C4—H4119.8C13—C12—H12B109.0
C6—C5—C4119.57 (15)H12A—C12—H12B107.8
C6—C5—H5120.2C14—C13—C12113.9 (2)
C4—C5—H5120.2C14—C13—H13A108.8
C5—C6—C7120.24 (16)C12—C13—H13A108.8
C5—C6—H6119.9C14—C13—H13B108.8
C7—C6—H6119.9C12—C13—H13B108.8
C2—C7—C6120.78 (15)H13A—C13—H13B107.7
C2—C7—H7119.6C13—C14—H14A109.5
C6—C7—H7119.6C13—C14—H14B109.5
O1—C8—O2122.39 (13)H14A—C14—H14B109.5
O1—C8—C9117.80 (12)C13—C14—H14C109.5
O2—C8—C9119.80 (12)H14A—C14—H14C109.5
C8—C9—C10112.28 (12)H14B—C14—H14C109.5
C8—C9—H9A109.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.99 (2)1.80 (2)2.7802 (17)168.7 (19)
N1—H1B···O1i0.98 (2)1.73 (2)2.6993 (17)169 (2)
N1—H1C···O2ii1.00 (2)1.87 (2)2.8590 (18)167 (2)
C1—H1E···O1iii0.992.403.280 (2)148
C7—H7···O20.952.523.3528 (19)146
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC7H10N+·C7H13O2
Mr237.33
Crystal system, space groupTriclinic, P1
Temperature (K)180
a, b, c (Å)5.7379 (2), 7.7338 (3), 17.1670 (7)
α, β, γ (°)97.887 (2), 92.864 (2), 107.340 (2)
V3)716.96 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.46 × 0.07 × 0.05
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.874, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
8415, 3253, 2308
Rint0.043
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.141, 1.03
No. of reflections3253
No. of parameters164
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.19

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor 1997), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al. , 1993), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.99 (2)1.80 (2)2.7802 (17)168.7 (19)
N1—H1B···O1i0.98 (2)1.73 (2)2.6993 (17)169 (2)
N1—H1C···O2ii1.00 (2)1.87 (2)2.8590 (18)167 (2)
C1—H1E···O1iii0.992.403.280 (2)148
C7—H7···O20.952.523.3528 (19)146
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z.
 

Acknowledgements

We thank the Department of Chemistry, the BP Institute and the Oppenheimer Trust for financial and technical assistance, and Dr J. E. Davies and Dr A. D. Bond for assistance in collecting and analysing the X-ray data.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond. Outline of a Comprehensive Hydrogen Bond Theory. International Union of Crystallography. Oxford Science Publications. p. 61. New York, Oxford: Oxford University Press, Inc.  Google Scholar
First citationJefferson, A. E., Sun, C., Bond, A. D. & Clarke, S. M. (2011). Acta Cryst. E67, o655.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarlsson, S., Backlund, S. & Friman, R. (2000). Colloid Polym. Sci. 278, 8–14.  Web of Science CrossRef CAS Google Scholar
First citationKohler, F., Atrops, H., Kalali, H., Liebermann, E., Wilhelm, E., Ratkovics, F. & Salamon, T. (1981). J. Phys. Chem. 85, 2520–2524.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPaivarinta, J., Karlsson, S., Hotokka, M. & Poso, A. (2000). Chem. Phys. Lett. 327, 420–424.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D., Bott, R. C., Healy, P. C. & White, J. M. (2002). Aust. J. Chem. 55, 349–356.  Web of Science CSD CrossRef CAS Google Scholar
First citationSmith, G., Wermuth, U. D., Bott, R. C., White, J. M. & Willis, A. C. (2001). Aust. J. Chem. 54, 165–170.  Web of Science CSD CrossRef CAS Google Scholar
First citationSun, S., Bojdys, M. J., Clarke, S. M., Harper, L. D., Castro, M. A. & Medina, S. (2011). Langmuir, 27, 3626–3637.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWood, M. H. & Clarke, S. M. (2012a). Acta Cryst. E68, o3004.  CSD CrossRef IUCr Journals Google Scholar
First citationWood, M. H. & Clarke, S. M. (2012b). Acta Cryst. E68, o3335.  CSD CrossRef IUCr Journals Google Scholar
First citationWood, M. H. & Clarke, S. M. (2013). Acta Cryst. E69, o346–o347.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds