organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N-(3,3-Di­phenyl­allyl­­idene)-2-(tri­fluoro­meth­yl)aniline

aAdvanced Analysis Center, Korea Institute of Science & Technology, Hwarangro 14-gil, Seongbuk-gu, Seoul 136-791, Republic of Korea, and bCenter for Neuro-Medicine, Brain Science Institute, Korea Institute of Science & Technology, Hwarangro 14-gil, Seongbuk-gu, Seoul 136-791, Republic of Korea
*Correspondence e-mail: j9601@kist.re.kr

(Received 27 March 2013; accepted 15 April 2013; online 20 April 2013)

In the title compound, C22H16F3N, the C=N bond of the central imine group adopts an E conformation. The dihedral angles between the 2-(tri­fluoro­meth­yl)phenyl ring and the benzene rings are 9.34 (1) and 68.8 (1)°. The imine group displays a C—C—N=C torsion angle of 41.6 (3)°. In the crystal, weak C—H⋯F hydrogen bonds link the mol­ecules into chains parallel to the b-axis direction.

Related literature

For the crystal structures of 2-phenyl­cinnamaldehyde derivatives studied recently our group, see: Cha et al. (2012[Cha, J. H., Kang, Y. K., Cho, Y. S., Lee, J. K. & Woo, J. C. (2012). Acta Cryst. E68, o3030.]); Kang et al. (2012[Kang, Y. K., Cho, Y. S., Lee, J. K., Yu, B.-Y. & Cha, J. H. (2012). Acta Cryst. E68, o3031.]).

[Scheme 1]

Experimental

Crystal data
  • C22H16F3N

  • Mr = 351.37

  • Monoclinic, P 21 /n

  • a = 8.6733 (8) Å

  • b = 11.8116 (9) Å

  • c = 17.6227 (15) Å

  • β = 95.661 (3)°

  • V = 1796.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.725, Tmax = 0.990

  • 16660 measured reflections

  • 4059 independent reflections

  • 1842 reflections with F2 > 2σ(F2)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.158

  • S = 1.02

  • 4059 reflections

  • 243 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯F1i 0.93 2.52 3.392 (3) 157
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: Il Milione (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

As part of our ongoing study of the substituent effect on the solid state structures of 2-phenylcinnamaldehyde derivatives Cha et al., (2012); Kang et al., (2012).

In the title compound(Fig. 1), C22H16N1F3, the C=N bond of the central imine group adopts an E conformation. The dihedral angles between the mean planes of the central 2-trifluoromethylphenyl ring on the one hand and phenyl rings are (C4/C5/C6/C7/C8/C9) 9.344 (1)° and (C11/C11/C12/C13/C14/C15) 68.8 (1)°, respectively. The imine group displays a torsion angle [C21—C16—N1=C1 = 41.6 (3)°]. In the crystal, weak intermolecular C—H···F hydrogen bonds (Table 1) link molecules into chains parallel to the b axis (Fig. 2).

Related literature top

For the crystal structures of 2-phenylcinnamaldehyde derivatives studied recently our group, see: Cha et al. (2012); Kang et al. (2012).

Experimental top

To a solution of 2-trifluoromethyl aniline (4.0 mmol) in ethanol (20 ml) was treated with equimolar quantities of substituted 2-phenylcinnamaldehydes. The mixture was refluxed for 24 h, and the progress of reaction was monitored by TLC. Upen completion,the solvent was removed under reduced pressure. The residue was purified by flash column chromatography to afford the title compound in 73% yield. Recrystallization from ethanol gave crystals suitable for X-ray analysis.

Refinement top

All hydrogen atoms were positioned geometrically (C—H = 0.93 Å), and refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Structure description top

As part of our ongoing study of the substituent effect on the solid state structures of 2-phenylcinnamaldehyde derivatives Cha et al., (2012); Kang et al., (2012).

In the title compound(Fig. 1), C22H16N1F3, the C=N bond of the central imine group adopts an E conformation. The dihedral angles between the mean planes of the central 2-trifluoromethylphenyl ring on the one hand and phenyl rings are (C4/C5/C6/C7/C8/C9) 9.344 (1)° and (C11/C11/C12/C13/C14/C15) 68.8 (1)°, respectively. The imine group displays a torsion angle [C21—C16—N1=C1 = 41.6 (3)°]. In the crystal, weak intermolecular C—H···F hydrogen bonds (Table 1) link molecules into chains parallel to the b axis (Fig. 2).

For the crystal structures of 2-phenylcinnamaldehyde derivatives studied recently our group, see: Cha et al. (2012); Kang et al. (2012).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 1995); data reduction: RAPID-AUTO (Rigaku, 1995); program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering and 50% probability displacement ellipsoid.
[Figure 2] Fig. 2. The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dotted lines) have been omitted for clarity.
(E)-N-(3,3-Diphenylallylidene)-2-(trifluoromethyl)aniline top
Crystal data top
C22H16F3NF(000) = 728.00
Mr = 351.37Dx = 1.299 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 8333 reflections
a = 8.6733 (8) Åθ = 3.1–27.5°
b = 11.8116 (9) ŵ = 0.10 mm1
c = 17.6227 (15) ÅT = 296 K
β = 95.661 (3)°Chunk, yellow
V = 1796.6 (3) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1842 reflections with F2 > 2σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.046
ω scansθmax = 27.5°
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
h = 1111
Tmin = 0.725, Tmax = 0.990k = 1414
16660 measured reflectionsl = 2221
4059 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0699P)2 + 0.1152P]
where P = (Fo2 + 2Fc2)/3
4059 reflections(Δ/σ)max < 0.001
243 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.23 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C22H16F3NV = 1796.6 (3) Å3
Mr = 351.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.6733 (8) ŵ = 0.10 mm1
b = 11.8116 (9) ÅT = 296 K
c = 17.6227 (15) Å0.30 × 0.20 × 0.10 mm
β = 95.661 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4059 independent reflections
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
1842 reflections with F2 > 2σ(F2)
Tmin = 0.725, Tmax = 0.990Rint = 0.046
16660 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.20 e Å3
4059 reflectionsΔρmin = 0.23 e Å3
243 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.Y

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.6398 (3)0.25532 (14)0.58228 (9)0.1171 (7)
F20.8032 (2)0.32028 (13)0.51242 (10)0.1025 (6)
F30.5690 (2)0.36508 (13)0.49031 (10)0.1144 (7)
N10.8301 (2)0.07184 (14)0.53713 (10)0.0613 (5)
C10.8428 (3)0.01876 (18)0.57689 (12)0.0574 (6)
C20.9652 (3)0.03036 (19)0.63772 (13)0.0592 (6)
C30.9969 (3)0.12242 (16)0.68171 (11)0.0539 (6)
C41.1215 (3)0.11851 (16)0.74583 (12)0.0564 (6)
C51.2131 (3)0.21263 (19)0.76457 (14)0.0721 (7)
C61.3343 (4)0.2068 (3)0.82101 (16)0.0859 (8)
C71.3664 (4)0.1084 (3)0.86058 (16)0.0892 (9)
C81.2762 (4)0.0149 (3)0.84402 (15)0.0873 (8)
C91.1545 (3)0.0196 (2)0.78744 (13)0.0721 (7)
C100.9134 (3)0.23139 (16)0.66760 (12)0.0549 (6)
C110.9006 (3)0.28326 (18)0.59672 (13)0.0660 (7)
C120.8215 (4)0.3845 (2)0.58486 (16)0.0815 (8)
C130.7547 (4)0.4348 (2)0.6434 (2)0.0874 (9)
C140.7667 (3)0.3857 (3)0.71360 (17)0.0812 (8)
C150.8459 (3)0.28419 (19)0.72649 (13)0.0664 (6)
C160.7127 (3)0.07673 (18)0.47539 (12)0.0571 (6)
C170.6337 (3)0.17848 (17)0.45946 (12)0.0569 (6)
C180.5267 (3)0.1866 (2)0.39554 (13)0.0695 (7)
C190.4984 (3)0.0951 (3)0.34748 (14)0.0772 (7)
C200.5743 (3)0.0049 (3)0.36362 (14)0.0773 (7)
C210.6804 (3)0.01425 (19)0.42670 (13)0.0680 (7)
C220.6603 (4)0.2777 (2)0.51082 (14)0.0707 (7)
H51.19240.28040.73870.0865*
H61.39530.27040.83250.1031*
H71.44890.10510.89850.1070*
H81.29690.05200.87100.1048*
H91.09350.04430.77690.0866*
H110.94580.24960.55660.0791*
H120.81380.41840.53700.0978*
H130.70110.50250.63520.1049*
H140.72150.42040.75330.0975*
H150.85370.25150.77470.0797*
H180.47380.25410.38510.0834*
H190.42800.10140.30430.0927*
H200.55410.06690.33170.0928*
H210.73120.08270.43690.0816*
H10.765 (3)0.0828 (19)0.5653 (12)0.072 (7)*
H21.023 (3)0.035 (2)0.6462 (12)0.075 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.193 (2)0.0927 (11)0.0683 (11)0.0047 (12)0.0267 (11)0.0112 (8)
F20.0944 (13)0.0818 (10)0.1279 (14)0.0183 (9)0.0063 (10)0.0169 (9)
F30.1240 (15)0.0775 (10)0.1332 (15)0.0340 (10)0.0301 (12)0.0114 (9)
N10.0636 (13)0.0547 (10)0.0633 (12)0.0003 (9)0.0048 (9)0.0074 (9)
C10.0548 (14)0.0545 (13)0.0620 (14)0.0007 (11)0.0018 (11)0.0049 (10)
C20.0575 (15)0.0519 (13)0.0669 (15)0.0027 (11)0.0005 (11)0.0056 (11)
C30.0507 (13)0.0534 (12)0.0573 (13)0.0021 (10)0.0043 (10)0.0015 (10)
C40.0534 (13)0.0561 (12)0.0591 (13)0.0033 (10)0.0022 (10)0.0052 (10)
C50.0688 (16)0.0559 (13)0.0880 (18)0.0007 (12)0.0110 (14)0.0096 (12)
C60.0771 (19)0.0716 (16)0.103 (3)0.0068 (14)0.0211 (16)0.0190 (15)
C70.081 (2)0.099 (2)0.0819 (19)0.0070 (17)0.0241 (15)0.0146 (16)
C80.092 (3)0.0839 (18)0.0800 (19)0.0046 (16)0.0203 (16)0.0108 (14)
C90.0728 (17)0.0673 (15)0.0730 (16)0.0046 (12)0.0094 (13)0.0058 (12)
C100.0524 (13)0.0519 (12)0.0591 (14)0.0013 (10)0.0006 (10)0.0062 (10)
C110.0695 (16)0.0606 (14)0.0674 (16)0.0030 (12)0.0049 (12)0.0013 (11)
C120.0862 (19)0.0659 (16)0.089 (2)0.0006 (14)0.0073 (15)0.0148 (14)
C130.079 (2)0.0574 (15)0.121 (3)0.0092 (14)0.0190 (17)0.0074 (16)
C140.0677 (17)0.0790 (17)0.094 (2)0.0135 (14)0.0072 (14)0.0337 (15)
C150.0635 (15)0.0712 (15)0.0626 (15)0.0081 (12)0.0036 (12)0.0143 (11)
C160.0555 (14)0.0605 (13)0.0544 (13)0.0055 (11)0.0009 (11)0.0040 (10)
C170.0582 (14)0.0591 (13)0.0528 (13)0.0015 (11)0.0027 (11)0.0055 (10)
C180.0652 (16)0.0785 (16)0.0636 (15)0.0063 (13)0.0003 (12)0.0088 (12)
C190.0666 (17)0.100 (2)0.0626 (16)0.0043 (15)0.0056 (12)0.0031 (14)
C200.0722 (18)0.0903 (18)0.0687 (16)0.0106 (15)0.0025 (14)0.0171 (13)
C210.0690 (16)0.0639 (14)0.0702 (16)0.0019 (12)0.0027 (13)0.0042 (12)
C220.0763 (18)0.0647 (15)0.0688 (17)0.0060 (14)0.0043 (13)0.0077 (12)
Geometric parameters (Å, º) top
F1—C221.316 (3)C16—C211.386 (3)
F2—C221.335 (4)C17—C181.390 (3)
F3—C221.330 (3)C17—C221.484 (4)
N1—C11.278 (3)C18—C191.380 (4)
N1—C161.416 (3)C19—C201.368 (4)
C1—C21.439 (3)C20—C211.376 (4)
C2—C31.348 (3)C1—H11.02 (3)
C3—C41.485 (3)C2—H20.92 (3)
C3—C101.486 (3)C5—H50.930
C4—C51.387 (3)C6—H60.930
C4—C91.394 (3)C7—H70.930
C5—C61.376 (4)C8—H80.930
C6—C71.370 (4)C9—H90.930
C7—C81.368 (4)C11—H110.930
C8—C91.379 (4)C12—H120.930
C10—C111.386 (3)C13—H130.930
C10—C151.389 (4)C14—H140.930
C11—C121.384 (4)C15—H150.930
C12—C131.368 (5)C18—H180.930
C13—C141.361 (5)C19—H190.930
C14—C151.389 (4)C20—H200.930
C16—C171.398 (3)C21—H210.930
F1···N12.883 (3)C11···H8vi3.2704
F1···C162.938 (3)C11···H18v3.3122
F1···C183.437 (3)C12···H7vi3.2754
F2···N12.972 (3)C12···H7xi3.5695
F2···C163.036 (3)C12···H8vi3.4076
F2···C183.393 (3)C12···H18v3.0784
F3···C182.692 (3)C13···H7vi3.4022
N1···C222.856 (3)C13···H9vii3.4634
C1···C103.008 (3)C13···H18v2.9214
C1···C113.178 (3)C14···H9vii3.2524
C1···C173.501 (3)C14···H18v3.0123
C1···C212.873 (3)C14···H19x3.2502
C2···C92.970 (4)C14···H20x3.1361
C2···C113.111 (3)C15···H18v3.2565
C2···C153.581 (4)C15···H19v3.2166
C4···C72.787 (4)C15···H20x3.0218
C4···C153.082 (3)C16···H2iii3.54 (3)
C5···C82.751 (4)C18···H1v2.95 (3)
C5···C102.975 (4)C19···H14xi3.4634
C5···C153.300 (4)C19···H1v2.88 (3)
C6···C92.736 (4)C20···H5xi3.5740
C10···C132.781 (4)C20···H14xi3.5708
C11···C142.744 (4)C20···H1v3.47 (3)
C12···C152.752 (4)C20···H2iii3.53 (3)
C16···C192.785 (4)C21···H2iii3.00 (3)
C17···C202.763 (4)C22···H8ix3.4788
C18···C212.750 (4)C22···H13viii3.3938
F1···C15i3.392 (3)H5···C8vi3.1537
F2···C7ii3.559 (4)H5···C9vi3.1744
F2···C11iii3.386 (3)H5···C20x3.5740
F3···F3iv3.433 (3)H5···H8vi2.7740
F3···C12v3.521 (4)H5···H9vi2.8126
F3···C13v3.579 (4)H5···H20x2.7867
C1···C19v3.482 (4)H6···C2vi3.3227
C2···C21iii3.421 (4)H6···H9vi2.9235
C7···F2vi3.559 (4)H6···H19iii3.5879
C11···F2iii3.386 (3)H6···H20x3.5274
C12···F3v3.521 (4)H6···H21x2.9893
C13···F3v3.579 (4)H6···H2vi2.4273
C15···F1vii3.392 (3)H7···F2vi2.6835
C19···C1v3.482 (4)H7···C12ii3.2754
C21···C2iii3.421 (4)H7···C12x3.5695
F2···H183.5415H7···C13ii3.4022
F3···H182.3524H7···H11x3.2752
N1···H212.6255H7···H12ii3.1520
N1···H22.46 (2)H7···H12x2.8240
C1···H112.9026H7···H13ii3.3753
C1···H212.6696H8···F2xii2.9097
C2···H92.7372H8···F3xii3.1798
C2···H112.9549H8···C11ii3.2704
C3···H52.6514H8···C12ii3.4076
C3···H92.6674H8···C22xii3.4788
C3···H112.6685H8···H5ii2.7740
C3···H152.6371H8···H11ii3.3964
C3···H12.77 (2)H8···H12x3.3155
C4···H63.2368H9···C5ii3.4397
C4···H83.2516H9···C6ii3.4967
C4···H152.8899H9···C13i3.4634
C4···H22.60 (3)H9···C14i3.2524
C5···H73.2263H9···H5ii2.8126
C5···H93.2213H9···H6ii2.9235
C5···H153.1731H9···H13i3.1647
C6···H83.2062H9···H14i2.7633
C7···H53.2218H9···H18xii3.2826
C7···H93.2154H11···F2iii2.7276
C8···H63.2039H11···N1iii3.3985
C9···H53.2236H11···H7xi3.2752
C9···H73.2220H11···H8vi3.3964
C9···H22.71 (2)H12···F2xiii3.1174
C10···H52.6762H12···F3xiii3.3739
C10···H123.2448H12···F3v3.3667
C10···H143.2449H12···C7xi3.2020
C10···H12.75 (3)H12···C8xi3.4750
C10···H23.32 (3)H12···H7vi3.1520
C11···H53.3787H12···H7xi2.8240
C11···H133.2243H12···H8xi3.3155
C11···H153.2246H12···H18v3.5413
C11···H12.68 (3)H13···F1xiii3.0388
C12···H143.2015H13···F2xiii3.1975
C13···H113.2197H13···F3xiii3.1146
C13···H153.2232H13···F3v3.4632
C14···H123.2018H13···C9vii3.4987
C15···H52.9921H13···C22xiii3.3938
C15···H113.2234H13···H7vi3.3753
C15···H133.2278H13···H9vii3.1647
C16···H183.2510H13···H15vii3.3971
C16···H203.2397H13···H18v3.3058
C16···H12.47 (3)H14···C1vii3.3088
C17···H193.2440H14···C2vii2.9347
C17···H213.2342H14···C3vii3.3205
C18···H203.2155H14···C9vii3.4734
C19···H213.2162H14···C19x3.4634
C20···H183.2138H14···C20x3.5708
C21···H193.2214H14···H9vii2.7633
C21···H12.61 (2)H14···H18v3.4433
C22···H182.6261H14···H19x2.8757
H5···H62.2951H14···H20x3.0769
H5···H153.0848H14···H2vii2.9439
H6···H72.2967H15···F1vii2.5164
H7···H82.3005H15···H13i3.3971
H8···H92.3004H15···H19v3.2222
H9···H22.3263H15···H20x2.8785
H11···H122.3075H18···C10v3.4054
H11···H213.3212H18···C11v3.3122
H11···H12.5338H18···C12v3.0784
H12···H132.2964H18···C13v2.9214
H13···H142.2869H18···C14v3.0123
H14···H152.3135H18···C15v3.2565
H18···H192.3084H18···H9ix3.2826
H19···H202.2971H18···H12v3.5413
H20···H212.2948H18···H13v3.3058
H21···H12.2529H18···H14v3.4433
H1···H22.89 (3)H18···H1v3.0812
F1···H13viii3.0388H19···C1v3.4381
F1···H15i2.5164H19···C6iii3.4020
F1···H20v3.2530H19···C7iii3.5573
F2···H7ii2.6835H19···C10v3.4148
F2···H8ix2.9097H19···C14xi3.2502
F2···H11iii2.7276H19···C15v3.2166
F2···H12viii3.1174H19···H6iii3.5879
F2···H13viii3.1975H19···H14xi2.8757
F3···H8ix3.1798H19···H15v3.2222
F3···H12viii3.3739H19···H1v2.9802
F3···H12v3.3667H20···F1v3.2530
F3···H13viii3.1146H20···C5xi3.2257
F3···H13v3.4632H20···C9iii3.5897
N1···H11iii3.3985H20···C14xi3.1361
C1···H14i3.3088H20···C15xi3.0218
C1···H19v3.4381H20···H5xi2.7867
C2···H6ii3.3227H20···H6xi3.5274
C2···H14i2.9347H20···H14xi3.0769
C2···H21iii3.3361H20···H15xi2.8785
C3···H14i3.3205H21···C2iii3.3361
C5···H9vi3.4397H21···C6xi3.3927
C5···H20x3.2257H21···H6xi2.9893
C6···H9vi3.4967H21···H2iii2.7602
C6···H19iii3.4020H1···C18v2.95 (3)
C6···H21x3.3927H1···C19v2.88 (3)
C6···H2vi3.32 (3)H1···C20v3.47 (3)
C7···H12x3.2020H1···H18v3.0812
C7···H19iii3.5573H1···H19v2.9802
C8···H5ii3.1537H2···C6ii3.32 (3)
C8···H12x3.4750H2···C16iii3.54 (3)
C9···H5ii3.1744H2···C20iii3.53 (3)
C9···H13i3.4987H2···C21iii3.00 (3)
C9···H14i3.4734H2···H6ii2.4273
C9···H20iii3.5897H2···H14i2.9439
C10···H18v3.4054H2···H21iii2.7602
C10···H19v3.4148
C1—N1—C16118.15 (18)F2—C22—F3103.9 (2)
N1—C1—C2120.4 (2)F2—C22—C17113.5 (3)
C1—C2—C3126.8 (2)F3—C22—C17113.2 (2)
C2—C3—C4120.31 (19)N1—C1—H1119.4 (12)
C2—C3—C10122.27 (19)C2—C1—H1120.3 (12)
C4—C3—C10117.41 (17)C1—C2—H2113.1 (14)
C3—C4—C5120.86 (19)C3—C2—H2120.1 (14)
C3—C4—C9121.52 (19)C4—C5—H5119.643
C5—C4—C9117.6 (2)C6—C5—H5119.648
C4—C5—C6120.7 (3)C5—C6—H6119.575
C5—C6—C7120.9 (3)C7—C6—H6119.568
C6—C7—C8119.6 (3)C6—C7—H7120.214
C7—C8—C9120.1 (3)C8—C7—H7120.218
C4—C9—C8121.1 (3)C7—C8—H8119.943
C3—C10—C11121.9 (2)C9—C8—H8119.939
C3—C10—C15119.90 (19)C4—C9—H9119.432
C11—C10—C15118.2 (2)C8—C9—H9119.422
C10—C11—C12120.8 (3)C10—C11—H11119.587
C11—C12—C13120.1 (3)C12—C11—H11119.590
C12—C13—C14120.0 (3)C11—C12—H12119.939
C13—C14—C15120.6 (3)C13—C12—H12119.934
C10—C15—C14120.2 (3)C12—C13—H13119.980
N1—C16—C17119.37 (19)C14—C13—H13119.993
N1—C16—C21122.02 (19)C13—C14—H14119.706
C17—C16—C21118.46 (19)C15—C14—H14119.723
C16—C17—C18119.8 (2)C10—C15—H15119.882
C16—C17—C22120.79 (19)C14—C15—H15119.890
C18—C17—C22119.4 (2)C17—C18—H18119.747
C17—C18—C19120.5 (3)C19—C18—H18119.754
C18—C19—C20119.7 (3)C18—C19—H19120.153
C19—C20—C21120.5 (3)C20—C19—H19120.159
C16—C21—C20121.1 (3)C19—C20—H20119.752
F1—C22—F2105.6 (2)C21—C20—H20119.751
F1—C22—F3106.4 (3)C16—C21—H21119.469
F1—C22—C17113.4 (2)C20—C21—H21119.473
C1—N1—C16—C17142.8 (2)C11—C10—C15—C140.6 (3)
C1—N1—C16—C2141.6 (3)C15—C10—C11—C120.5 (3)
C16—N1—C1—C2176.75 (17)C10—C11—C12—C130.0 (4)
N1—C1—C2—C3176.6 (2)C11—C12—C13—C140.4 (4)
C1—C2—C3—C4175.9 (2)C12—C13—C14—C150.3 (4)
C1—C2—C3—C105.5 (4)C13—C14—C15—C100.2 (4)
C2—C3—C4—C5144.6 (2)N1—C16—C17—C18175.09 (18)
C2—C3—C4—C933.0 (3)N1—C16—C17—C226.1 (3)
C2—C3—C10—C1152.5 (3)N1—C16—C21—C20174.87 (19)
C2—C3—C10—C15127.7 (3)C17—C16—C21—C200.7 (4)
C4—C3—C10—C11126.1 (2)C21—C16—C17—C180.6 (4)
C4—C3—C10—C1553.7 (3)C21—C16—C17—C22178.24 (19)
C10—C3—C4—C534.0 (3)C16—C17—C18—C190.3 (4)
C10—C3—C4—C9148.46 (18)C16—C17—C22—F154.5 (3)
C3—C4—C5—C6176.09 (19)C16—C17—C22—F266.0 (3)
C3—C4—C9—C8176.22 (19)C16—C17—C22—F3175.9 (2)
C5—C4—C9—C81.4 (4)C18—C17—C22—F1124.4 (3)
C9—C4—C5—C61.6 (4)C18—C17—C22—F2115.1 (3)
C4—C5—C6—C70.7 (4)C18—C17—C22—F33.0 (4)
C5—C6—C7—C80.3 (5)C22—C17—C18—C19179.2 (2)
C6—C7—C8—C90.5 (5)C17—C18—C19—C201.1 (4)
C7—C8—C9—C40.4 (4)C18—C19—C20—C211.0 (4)
C3—C10—C11—C12179.65 (17)C19—C20—C21—C160.1 (4)
C3—C10—C15—C14179.55 (17)
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+5/2, y1/2, z+3/2; (iii) x+2, y, z+1; (iv) x+1, y1, z+1; (v) x+1, y, z+1; (vi) x+5/2, y+1/2, z+3/2; (vii) x+3/2, y+1/2, z+3/2; (viii) x, y1, z; (ix) x1/2, y1/2, z1/2; (x) x+1/2, y+1/2, z+1/2; (xi) x1/2, y+1/2, z1/2; (xii) x+1/2, y1/2, z+1/2; (xiii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···F1vii0.932.523.392 (3)157
Symmetry code: (vii) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC22H16F3N
Mr351.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.6733 (8), 11.8116 (9), 17.6227 (15)
β (°) 95.661 (3)
V3)1796.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Rigaku, 1995)
Tmin, Tmax0.725, 0.990
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
16660, 4059, 1842
Rint0.046
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.158, 1.02
No. of reflections4059
No. of parameters243
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.23

Computer programs: RAPID-AUTO (Rigaku, 2006), RAPID-AUTO (Rigaku, 1995), Il Milione (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···F1i0.9302.5163.392 (3)157.0
Symmetry code: (i) x+3/2, y+1/2, z+3/2.
 

Acknowledgements

Fiancial support from the Korea Institute of Science and Technology (KIST) is gratefully acknowledged.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCha, J. H., Kang, Y. K., Cho, Y. S., Lee, J. K. & Woo, J. C. (2012). Acta Cryst. E68, o3030.  CSD CrossRef IUCr Journals Google Scholar
First citationKang, Y. K., Cho, Y. S., Lee, J. K., Yu, B.-Y. & Cha, J. H. (2012). Acta Cryst. E68, o3031.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds