organic compounds
(2E)-1-(4-Chlorophenyl)-3-(4-nitrophenyl)prop-2-en-1-one
aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and dDepartment of Chemistry, P.A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: jjasinski@keene.edu
In the title compound, C15H10ClNO3, a substituted chalcone, the dihedral angle between the benzene rings is 5.1 (7)°. The nitro group makes a dihedral angle of 12.5 (3)° with the benzene ring to which it is attached. In the crystal, weak C—H⋯O interactions link the molecules into a one-dimensional array along [010]. The crystal studied was an with a refined ratio for the twin components of 0.6060 (9):0.3939 (1).
Related literature
For the biochemical activity of et al. (1999). For different chalcone derivatives, see: Samshuddin et al. (2010); Fun et al. (2010a,b); Jasinski et al. (2010a,b); Baktır et al. (2011a,b). For related structures, see: Jing (2009); Jasinski et al. (2008, 2010a,b); Fun et al. (2011); Sarojini et al. (2007); Ma (2007).
see: DimmockExperimental
Crystal data
|
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
https://doi.org/10.1107/S1600536813010854/fj2627sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813010854/fj2627Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536813010854/fj2627Isup3.cml
To a mixture of 4-nitrobenzaldehyde (1.51 g, 0.01 mol) and 4-chloroacetophenone (1.54 g, 0.01 mol) in ethanol (50 ml), 10 ml of 10% sodium hydroxide solution was added and stirred at 278-283 K for 3 hours (Fig. 3). The precipitate formed was collected by filtration and purified by recrystallization from ethanol. Single crystals were grown from acetone by the slow evaporation method (m.p.: 413–418 K).
All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH). Isotropic displacement parameters for these atoms were set to 1.2 (CH) times Ueq of the parent atom.
Chalcones can be easily obtained from the Claisen-Schmidt reaction of aromatic α,β-unsaturated carbonyl group is useful synthone for the synthesis of various biodynamic cyclic derivatives such as pyrazoline, benzodiazepine and cyclohexenone derivatives (Samshuddin et al., 2010; Fun et al., 2010a,b; Jasinski et al., 2010a; Baktır et al., 2011a,b). The crystal structures of some of containing nitro group, viz., (E)-1-(4-nitrophenyl)-3-phenylprop-2-en-1-one (Jing, 2009), (2E)-3-(4-methylphenyl)-1-(3-nitrophenyl)prop-2-en-1-one (Jasinski et al., 2008), (2E)-3-(2-chlorophenyl)-1-(3-nitrophenyl)prop-2-en-1-one (Sarojini et al., 2007); (2E)-1-(2,5-dimethoxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one (Fun et al., 2011) and (E)-3-(4-methoxyphenyl)-1-(3-nitrophenyl)prop-2-en-1-one (Ma, 2007) have been reported. In continuation of our work on synthesis of (Jasinski et al., 2010b) we report here in the of the title compound C15H10ClNO3, (I).
and aromatic have been reported to possess many useful properties including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumour and anticancer activities (Dimmock et al. 1999). The basic skeleton of which possessIn (I), the dihedral angle between the mean planes of the 4-chlorophenyl and 4-nitrophenyl rings is 5.1 (7)° (Fig. 1). The nitro group makes a dihedral angle of 12.5 (3)° with the plane of the benzene to which it is bonded. In the crystal, weak C—H···N intermolecular interactions are observed and contribute to packing stability (Fig. 2). The crystal studied was an
the refined ratio of the twin components being 0.6060 (9):0.3939 (1).For the biochemical activity of
see: Dimmock et al. (1999). For different chalcone derivatives, see: Samshuddin et al. (2010); Fun et al. (2010a,b); Jasinski et al. (2010a,b); Baktır et al. (2011a,b). For related structures, see: Jing (2009); Jasinski et al. (2008, 2010a,b); Fun et al. (2011); Sarojini et al. (2007); Ma (2007).Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C15H10ClNO3 | Dx = 1.470 Mg m−3 |
Mr = 287.69 | Cu Kα radiation, λ = 1.5418 Å |
Orthorhombic, Pna21 | Cell parameters from 5168 reflections |
a = 42.9266 (17) Å | θ = 3.3–32.2° |
b = 5.9741 (3) Å | µ = 2.67 mm−1 |
c = 5.0680 (2) Å | T = 173 K |
V = 1299.68 (10) Å3 | Rod, colorless |
Z = 4 | 0.42 × 0.08 × 0.04 mm |
F(000) = 592 |
Agilent Xcalibur (Eos, Gemini) diffractometer | 2481 reflections with I > 2σ(I) |
Detector resolution: 16.1500 pixels mm-1 | Rint = 0.037 |
ω scans | θmax = 89.4°, θmin = 7.5° |
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) | h = −55→55 |
Tmin = 0.803, Tmax = 1.000 | k = −7→7 |
12814 measured reflections | l = −4→6 |
2538 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.048 | w = 1/[σ2(Fo2) + (0.0202P)2 + 1.4764P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.100 | (Δ/σ)max < 0.001 |
S = 1.14 | Δρmax = 0.22 e Å−3 |
2538 reflections | Δρmin = −0.39 e Å−3 |
182 parameters | Absolute structure: Refined as an inversion twin. |
1 restraint | Absolute structure parameter: 0.39 (3) |
C15H10ClNO3 | V = 1299.68 (10) Å3 |
Mr = 287.69 | Z = 4 |
Orthorhombic, Pna21 | Cu Kα radiation |
a = 42.9266 (17) Å | µ = 2.67 mm−1 |
b = 5.9741 (3) Å | T = 173 K |
c = 5.0680 (2) Å | 0.42 × 0.08 × 0.04 mm |
Agilent Xcalibur (Eos, Gemini) diffractometer | 2538 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) | 2481 reflections with I > 2σ(I) |
Tmin = 0.803, Tmax = 1.000 | Rint = 0.037 |
12814 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.100 | Δρmax = 0.22 e Å−3 |
S = 1.14 | Δρmin = −0.39 e Å−3 |
2538 reflections | Absolute structure: Refined as an inversion twin. |
182 parameters | Absolute structure parameter: 0.39 (3) |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.25813 (2) | −0.1905 (2) | 1.5999 (3) | 0.0500 (3) | |
O1 | 0.36902 (7) | −0.7676 (5) | 0.9840 (8) | 0.0475 (9) | |
O2 | 0.49287 (6) | −0.1656 (4) | −0.2914 (6) | 0.0318 (6) | |
O3 | 0.46280 (6) | 0.1223 (4) | −0.2523 (6) | 0.0325 (6) | |
N1 | 0.47115 (6) | −0.0656 (5) | −0.1880 (6) | 0.0233 (6) | |
C1 | 0.36318 (8) | −0.5698 (6) | 0.9597 (9) | 0.0275 (8) | |
C2 | 0.33781 (7) | −0.4654 (6) | 1.1220 (9) | 0.0263 (7) | |
C3 | 0.32630 (8) | −0.2524 (6) | 1.0729 (9) | 0.0326 (9) | |
H3 | 0.3351 | −0.1653 | 0.9406 | 0.039* | |
C4 | 0.30164 (9) | −0.1685 (7) | 1.2203 (9) | 0.0359 (9) | |
H4 | 0.2936 | −0.0270 | 1.1850 | 0.043* | |
C5 | 0.28918 (8) | −0.2975 (7) | 1.4195 (9) | 0.0317 (9) | |
C6 | 0.30051 (9) | −0.5094 (7) | 1.4746 (9) | 0.0340 (9) | |
H6 | 0.2918 | −0.5950 | 1.6091 | 0.041* | |
C7 | 0.32480 (8) | −0.5907 (7) | 1.3268 (9) | 0.0311 (9) | |
H7 | 0.3328 | −0.7320 | 1.3639 | 0.037* | |
C8 | 0.38006 (8) | −0.4296 (6) | 0.7654 (8) | 0.0263 (8) | |
H8 | 0.3743 | −0.2807 | 0.7436 | 0.032* | |
C9 | 0.40321 (7) | −0.5122 (6) | 0.6217 (9) | 0.0258 (7) | |
H9 | 0.4088 | −0.6602 | 0.6527 | 0.031* | |
C10 | 0.42078 (7) | −0.3904 (5) | 0.4177 (7) | 0.0204 (7) | |
C11 | 0.44691 (8) | −0.4917 (5) | 0.3052 (8) | 0.0238 (7) | |
H11 | 0.4531 | −0.6323 | 0.3636 | 0.029* | |
C12 | 0.46373 (7) | −0.3858 (5) | 0.1074 (8) | 0.0220 (7) | |
H12 | 0.4811 | −0.4538 | 0.0320 | 0.026* | |
C13 | 0.45406 (7) | −0.1771 (5) | 0.0260 (7) | 0.0188 (7) | |
C14 | 0.42835 (7) | −0.0721 (5) | 0.1327 (8) | 0.0242 (7) | |
H14 | 0.4223 | 0.0688 | 0.0737 | 0.029* | |
C15 | 0.41184 (8) | −0.1789 (6) | 0.3268 (8) | 0.0261 (8) | |
H15 | 0.3944 | −0.1097 | 0.3993 | 0.031* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0414 (5) | 0.0599 (7) | 0.0487 (6) | 0.0036 (5) | 0.0136 (5) | −0.0095 (7) |
O1 | 0.0412 (15) | 0.0303 (14) | 0.071 (2) | 0.0065 (12) | 0.0231 (16) | 0.0156 (16) |
O2 | 0.0357 (14) | 0.0297 (13) | 0.0301 (15) | 0.0025 (10) | 0.0093 (12) | 0.0015 (12) |
O3 | 0.0381 (14) | 0.0251 (13) | 0.0343 (16) | 0.0044 (10) | 0.0002 (12) | 0.0136 (13) |
N1 | 0.0264 (14) | 0.0223 (13) | 0.0213 (16) | −0.0014 (11) | −0.0021 (12) | 0.0037 (12) |
C1 | 0.0201 (16) | 0.0260 (17) | 0.036 (2) | −0.0017 (13) | −0.0007 (15) | 0.0055 (17) |
C2 | 0.0204 (14) | 0.0298 (18) | 0.0286 (19) | −0.0037 (12) | −0.0013 (16) | 0.0020 (18) |
C3 | 0.0343 (18) | 0.032 (2) | 0.031 (2) | −0.0026 (15) | 0.0078 (18) | 0.0044 (19) |
C4 | 0.0338 (19) | 0.0298 (18) | 0.044 (3) | 0.0037 (15) | 0.0088 (19) | −0.0001 (19) |
C5 | 0.0233 (16) | 0.039 (2) | 0.033 (2) | −0.0030 (15) | −0.0001 (16) | −0.0133 (18) |
C6 | 0.0293 (18) | 0.043 (2) | 0.029 (2) | −0.0116 (17) | 0.0002 (17) | 0.005 (2) |
C7 | 0.0252 (17) | 0.0332 (19) | 0.035 (2) | −0.0038 (14) | −0.0031 (16) | 0.0070 (18) |
C8 | 0.0228 (16) | 0.0266 (17) | 0.029 (2) | −0.0004 (13) | 0.0001 (15) | 0.0043 (17) |
C9 | 0.0240 (15) | 0.0263 (16) | 0.0271 (19) | −0.0012 (13) | −0.0001 (16) | 0.0059 (18) |
C10 | 0.0188 (14) | 0.0201 (15) | 0.0223 (18) | −0.0006 (12) | −0.0033 (13) | 0.0003 (14) |
C11 | 0.0261 (16) | 0.0184 (15) | 0.027 (2) | 0.0011 (12) | −0.0018 (14) | 0.0059 (16) |
C12 | 0.0220 (14) | 0.0189 (14) | 0.0252 (18) | 0.0030 (12) | −0.0021 (15) | −0.0006 (16) |
C13 | 0.0206 (14) | 0.0187 (14) | 0.0172 (17) | −0.0016 (12) | −0.0021 (12) | 0.0017 (13) |
C14 | 0.0256 (15) | 0.0188 (15) | 0.028 (2) | 0.0034 (12) | −0.0015 (15) | 0.0053 (16) |
C15 | 0.0228 (16) | 0.0236 (16) | 0.032 (2) | 0.0053 (13) | 0.0019 (15) | −0.0025 (17) |
Cl1—C5 | 1.738 (4) | C7—H7 | 0.9300 |
O1—C1 | 1.214 (4) | C8—C9 | 1.327 (5) |
O2—N1 | 1.225 (4) | C8—H8 | 0.9300 |
O3—N1 | 1.222 (4) | C9—C10 | 1.472 (5) |
N1—C13 | 1.469 (4) | C9—H9 | 0.9300 |
C1—C8 | 1.482 (5) | C10—C11 | 1.397 (5) |
C1—C2 | 1.501 (5) | C10—C15 | 1.398 (5) |
C2—C3 | 1.388 (5) | C11—C12 | 1.388 (5) |
C2—C7 | 1.396 (5) | C11—H11 | 0.9300 |
C3—C4 | 1.389 (5) | C12—C13 | 1.377 (4) |
C3—H3 | 0.9300 | C12—H12 | 0.9300 |
C4—C5 | 1.378 (6) | C13—C14 | 1.380 (4) |
C4—H4 | 0.9300 | C14—C15 | 1.370 (5) |
C5—C6 | 1.384 (6) | C14—H14 | 0.9300 |
C6—C7 | 1.372 (6) | C15—H15 | 0.9300 |
C6—H6 | 0.9300 | ||
O3—N1—O2 | 123.8 (3) | C9—C8—C1 | 121.4 (3) |
O3—N1—C13 | 117.8 (3) | C9—C8—H8 | 119.3 |
O2—N1—C13 | 118.3 (3) | C1—C8—H8 | 119.3 |
O1—C1—C8 | 121.1 (4) | C8—C9—C10 | 125.8 (3) |
O1—C1—C2 | 119.9 (3) | C8—C9—H9 | 117.1 |
C8—C1—C2 | 119.0 (3) | C10—C9—H9 | 117.1 |
C3—C2—C7 | 118.9 (4) | C11—C10—C15 | 118.5 (3) |
C3—C2—C1 | 122.7 (4) | C11—C10—C9 | 119.0 (3) |
C7—C2—C1 | 118.4 (3) | C15—C10—C9 | 122.5 (3) |
C2—C3—C4 | 120.4 (4) | C12—C11—C10 | 121.0 (3) |
C2—C3—H3 | 119.8 | C12—C11—H11 | 119.5 |
C4—C3—H3 | 119.8 | C10—C11—H11 | 119.5 |
C5—C4—C3 | 119.2 (4) | C13—C12—C11 | 118.2 (3) |
C5—C4—H4 | 120.4 | C13—C12—H12 | 120.9 |
C3—C4—H4 | 120.4 | C11—C12—H12 | 120.9 |
C4—C5—C6 | 121.5 (4) | C12—C13—C14 | 122.4 (3) |
C4—C5—Cl1 | 118.5 (3) | C12—C13—N1 | 118.8 (3) |
C6—C5—Cl1 | 120.0 (3) | C14—C13—N1 | 118.9 (3) |
C7—C6—C5 | 118.7 (4) | C15—C14—C13 | 118.9 (3) |
C7—C6—H6 | 120.6 | C15—C14—H14 | 120.5 |
C5—C6—H6 | 120.6 | C13—C14—H14 | 120.5 |
C6—C7—C2 | 121.3 (4) | C14—C15—C10 | 121.0 (3) |
C6—C7—H7 | 119.3 | C14—C15—H15 | 119.5 |
C2—C7—H7 | 119.3 | C10—C15—H15 | 119.5 |
O1—C1—C2—C3 | −168.6 (4) | C8—C9—C10—C11 | 172.5 (4) |
C8—C1—C2—C3 | 9.6 (6) | C8—C9—C10—C15 | −9.2 (6) |
O1—C1—C2—C7 | 9.9 (6) | C15—C10—C11—C12 | 0.0 (5) |
C8—C1—C2—C7 | −172.0 (3) | C9—C10—C11—C12 | 178.3 (3) |
C7—C2—C3—C4 | −1.9 (6) | C10—C11—C12—C13 | 0.4 (5) |
C1—C2—C3—C4 | 176.5 (4) | C11—C12—C13—C14 | −0.4 (5) |
C2—C3—C4—C5 | 1.4 (7) | C11—C12—C13—N1 | −178.4 (3) |
C3—C4—C5—C6 | −0.5 (6) | O3—N1—C13—C12 | −177.9 (3) |
C3—C4—C5—Cl1 | −179.5 (3) | O2—N1—C13—C12 | 2.1 (5) |
C4—C5—C6—C7 | 0.3 (6) | O3—N1—C13—C14 | 4.1 (5) |
Cl1—C5—C6—C7 | 179.2 (3) | O2—N1—C13—C14 | −176.0 (3) |
C5—C6—C7—C2 | −0.9 (6) | C12—C13—C14—C15 | 0.1 (5) |
C3—C2—C7—C6 | 1.7 (6) | N1—C13—C14—C15 | 178.1 (3) |
C1—C2—C7—C6 | −176.8 (4) | C13—C14—C15—C10 | 0.3 (6) |
O1—C1—C8—C9 | −3.7 (6) | C11—C10—C15—C14 | −0.3 (5) |
C2—C1—C8—C9 | 178.3 (4) | C9—C10—C15—C14 | −178.6 (4) |
C1—C8—C9—C10 | 177.8 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···O2i | 0.93 | 2.69 | 3.304 (4) | 125 |
C14—H14···O1ii | 0.93 | 2.53 | 3.219 (4) | 131 |
Symmetry codes: (i) −x+1, −y−1, z+1/2; (ii) x, y+1, z−1. |
Experimental details
Crystal data | |
Chemical formula | C15H10ClNO3 |
Mr | 287.69 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 173 |
a, b, c (Å) | 42.9266 (17), 5.9741 (3), 5.0680 (2) |
V (Å3) | 1299.68 (10) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 2.67 |
Crystal size (mm) | 0.42 × 0.08 × 0.04 |
Data collection | |
Diffractometer | Agilent Xcalibur (Eos, Gemini) |
Absorption correction | Multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) |
Tmin, Tmax | 0.803, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12814, 2538, 2481 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.100, 1.14 |
No. of reflections | 2538 |
No. of parameters | 182 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.22, −0.39 |
Absolute structure | Refined as an inversion twin. |
Absolute structure parameter | 0.39 (3) |
Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2012 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···O2i | 0.93 | 2.69 | 3.304 (4) | 125 |
C14—H14···O1ii | 0.93 | 2.53 | 3.219 (4) | 131 |
Symmetry codes: (i) −x+1, −y−1, z+1/2; (ii) x, y+1, z−1. |
Acknowledgements
TSY thanks the University of Mysore for research facilities. BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.
References
Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England. Google Scholar
Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o1262–o1263. Web of Science CSD CrossRef IUCr Journals Google Scholar
Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o1292–o1293. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149. Web of Science PubMed CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fun, H.-K., Chia, T. S., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011). Acta Cryst. E67, o3058–o3059. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o582–o583. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o864–o865. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Jasinski, J. P., Butcher, R. J., Narayana, B., Lakshmana, K. & Yathirajan, H. S. (2008). Acta Cryst. E64, o1–o2. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Jasinski, J. P., Guild, C. J., Narayana, B., Nayak, P. S. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o1996. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o1948–o1949. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Jing, L.-H. (2009). Acta Cryst. E65, o2510. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ma, J.-L. (2007). Acta Cryst. E63, o808–o809. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Samshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279–o1280. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sarojini, B. K., Yathirajan, H. S., Lakshmana, K., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o3211. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Chalcones can be easily obtained from the Claisen-Schmidt reaction of aromatic aldehydes and aromatic ketones. Chalcones have been reported to possess many useful properties including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumour and anticancer activities (Dimmock et al. 1999). The basic skeleton of chalcones which possess α,β-unsaturated carbonyl group is useful synthone for the synthesis of various biodynamic cyclic derivatives such as pyrazoline, benzodiazepine and cyclohexenone derivatives (Samshuddin et al., 2010; Fun et al., 2010a,b; Jasinski et al., 2010a; Baktır et al., 2011a,b). The crystal structures of some of chalcones containing nitro group, viz., (E)-1-(4-nitrophenyl)-3-phenylprop-2-en-1-one (Jing, 2009), (2E)-3-(4-methylphenyl)-1-(3-nitrophenyl)prop-2-en-1-one (Jasinski et al., 2008), (2E)-3-(2-chlorophenyl)-1-(3-nitrophenyl)prop-2-en-1-one (Sarojini et al., 2007); (2E)-1-(2,5-dimethoxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one (Fun et al., 2011) and (E)-3-(4-methoxyphenyl)-1-(3-nitrophenyl)prop-2-en-1-one (Ma, 2007) have been reported. In continuation of our work on synthesis of chalcones (Jasinski et al., 2010b) we report here in the crystal structure of the title compound C15H10ClNO3, (I).
In (I), the dihedral angle between the mean planes of the 4-chlorophenyl and 4-nitrophenyl rings is 5.1 (7)° (Fig. 1). The nitro group makes a dihedral angle of 12.5 (3)° with the plane of the benzene to which it is bonded. In the crystal, weak C—H···N intermolecular interactions are observed and contribute to packing stability (Fig. 2). The crystal studied was an inversion twin, the refined ratio of the twin components being 0.6060 (9):0.3939 (1).