metal-organic compounds
Dichlorido{2,6-diisopropyl-N-[(S)-pyrrolidin-2-ylmethyl]aniline-κ2N,N′}palladium(II)
aDepartment of Chemistry, Kyungpook National University, Taegu 702-701, Republic of Korea
*Correspondence e-mail: jeongjh@knu.ac.kr
In the title compound, [PdCl2(C17H28N2)], the PdII atom displays a square-planar coordination involving two N atoms of a 2,6-diisopropyl-N-[(S)-pyrrolidin-2-ylmethyl]aniline ligand and two chloride ligands, with a deviation of 0.090 (1) Å for the PdII atom from the best plane. The of the chiral C atom of the pyrrolidine ring is S, which induces R configurations at the two N atoms of the aniline ligand. Optical arising from the chelate five-membered ring is configured as δ. The Pd—N bond lengths are 2.040 (3) and 2.072 (2) Å, and the Pd—Cl bond lengths are 2.3055 (8) and 2.3160 (8) Å. In the crystal, pairs of N—H⋯Cl hydrogen bonds link molecules into discrete dimers.
Related literature
For background to the use of palladium complexes bearing enantiopure ligands in ); Quintard et al. (2008); Tan et al. (2009) and as anticancer drugs, see: Barnham et al. (1994). For the synthesis of the 2,6-diisopropyl-N-[(S)-pyrrolidin-2-ylmethyl]aniline ligand, see: Shifeng et al. (2010). For related structures, see: Rafii et al. (2007). For a description of the Cambridge Structural Database, see: Allen et al. (2002).
see: Sodeoka & Hamashima (2006Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: XCAD (McArdle, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536813008271/fk2069sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813008271/fk2069Isup2.hkl
The ligand, 2,6-diisopropyl-N-(S-pyrrolidin-2-yl)methyl) benzenamine, was prepared by the reported method (Shifeng et al., 2010). Ligand (0.30 g, 1.15 mmol) solution in CH3CN (7 ml) was treated with PdCl2(CH3CN)2 (0.30 g, 1.15 mmol) in CH3CN (10 ml) at ambient temperature for overnight. The solvent was removed under reduced pressure to get brown orange reside. Washing the precipitate with cold Et2O afforded orange solid as the final product (0.38 g, 76%). Anal. Calcd. for C17H28Cl2N2Pd: C, 46.64; H, 6.45; N, 6.40. Found: C, 46.60; H, 6.51; N, 6.37%. 1H NMR (400 MHz, CDCl3) δ 7.19 (m, 2H, ArH), 7.05 [m, 1H, ArH], 3.73 (m, 2H, PyCH2), 3.52 (m, 2H, ArCH2), 3.32 (m, 2H, pyH & ArNH), 3.00–2.64 (m, 2H, pyH), 2.60- 2.51 (br s, 1H, PyNH), 1.91 (m, 2H, pyH), 1.63–1.57 (m, 2H, pyH), 1.29 (d, J = 6.8 Hz, 12H, 4 CH3).
All H atoms were positioned geometrically and refined using a riding model with C—H 0.93 - 0.98 Å, N—H 0.86 Å and Uiso = 1.5Ueq(C) for CH3 and 1.2Ueq(C,N).
Palladium complexes of various types bearing the δ. The bond lengths of Pd—N are 2.040 (3) and 2.072 (2) Å and those of Pd—Cl are 2.3055 (8) and 2.3160 (8) Å. These bond lengths are similar to the known average Pd—N and Pd—Cl lengths of (1R,2R)-(1,2-bisbenzyl)-1,2- diaminocyclohexane palladium dichloride complex (Rafii et al., 2007). There are two intermolecular N—H···Cl between each two molecules to form discrete dimers as shown in Fig. 2. Hydrogen-bond parameters are listed in Table 1.
ligands are widely used in modern (Sodeoka et al., 2006). Palladium complexes (Quintard et al., 2008; Tan et al., 2009) containing homochiral diamine ligands derivable from natural amino acids are now well established in the clinical treatment as anticancer drugs (Barnham et al., 1994). In this paper, we describe synthesis and the of novel chiral dichloro Pd(II) complex bearing the ligand 2,6-diisopropyl-N-(S-pyrrolidin-2-yl) methyl)benzenamine which was prepared by the reported method (Shifeng et al., 2010). The geometry around the Pd(II) centre is almost square-planar (Fig. 1). The coordination plane composed of Pd, Cl1, Cl2, N1, and N2 is nearly coplanar within 0.090 (1) Å deviation from the best plane. The bite angle of N1—Pd—N2 [84.0 (1) °] is much smaller than the Cl1—Pd—Cl2 [93.10 (3) °] angle. The chiral C atom of the pyrrolidine moiety has S configuration and the induced chiralities at two N atoms of the ligand show R configuration. The orientation of the hydrogen atoms of the chiral C and N atoms is in head-to-head. Optical arising from the chelate five-membered ring is configured asFor background to the use of palladium complexes bearing
ligands in see: Sodeoka & Hamashima (2006); Quintard et al. (2008); Tan et al. (2009) and as anticancer drugs, see: Barnham et al. (1994). For the synthesis of the 2,6-diisopropyl-N-[(S)-pyrrolidin-2-ylmethyl]aniline ligand, see: Shifeng et al. (2010). For related structures, see: Rafii et al. (2007). For a description of the Cambridge Structural Database, see: Allen et al. (2002).Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD (McArdle, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII(Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[PdCl2(C17H28N2)] | F(000) = 1792 |
Mr = 437.71 | Dx = 1.513 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 25 reflections |
a = 24.287 (3) Å | θ = 9.0–13.0° |
b = 8.6534 (12) Å | µ = 1.24 mm−1 |
c = 18.355 (2) Å | T = 293 K |
β = 94.851 (9)° | Brick, orange |
V = 3843.7 (8) Å3 | 0.45 × 0.40 × 0.40 mm |
Z = 8 |
Enraf–Nonius CAD-4 four-circle diffractometer | 3089 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.018 |
Graphite monochromator | θmax = 25.5°, θmin = 1.7° |
ω/2θ scans | h = 0→29 |
Absorption correction: ψ scan (ABSCALC; McArdle & Daly, 1999) | k = −10→0 |
Tmin = 0.578, Tmax = 0.608 | l = −22→22 |
3790 measured reflections | 3 standard reflections every 60 min |
3580 independent reflections | intensity decay: 0.2% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0819P)2 + 0.2845P] where P = (Fo2 + 2Fc2)/3 |
3580 reflections | (Δ/σ)max = 0.004 |
199 parameters | Δρmax = 1.33 e Å−3 |
0 restraints | Δρmin = −1.56 e Å−3 |
[PdCl2(C17H28N2)] | V = 3843.7 (8) Å3 |
Mr = 437.71 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 24.287 (3) Å | µ = 1.24 mm−1 |
b = 8.6534 (12) Å | T = 293 K |
c = 18.355 (2) Å | 0.45 × 0.40 × 0.40 mm |
β = 94.851 (9)° |
Enraf–Nonius CAD-4 four-circle diffractometer | 3089 reflections with I > 2σ(I) |
Absorption correction: ψ scan (ABSCALC; McArdle & Daly, 1999) | Rint = 0.018 |
Tmin = 0.578, Tmax = 0.608 | 3 standard reflections every 60 min |
3790 measured reflections | intensity decay: 0.2% |
3580 independent reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 1.08 | Δρmax = 1.33 e Å−3 |
3580 reflections | Δρmin = −1.56 e Å−3 |
199 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Pd | 0.792743 (8) | 0.79819 (2) | 0.934349 (11) | 0.02593 (12) | |
Cl1 | 0.71265 (3) | 0.92407 (9) | 0.89218 (4) | 0.0389 (2) | |
Cl2 | 0.83021 (3) | 1.01710 (9) | 0.99173 (5) | 0.0391 (2) | |
N1 | 0.76098 (10) | 0.5922 (3) | 0.89652 (14) | 0.0320 (5) | |
H1 | 0.7308 | 0.5786 | 0.9169 | 0.038* | |
N2 | 0.86249 (10) | 0.6681 (3) | 0.96516 (14) | 0.0296 (5) | |
H2 | 0.8597 | 0.6456 | 1.0103 | 0.035* | |
C1 | 0.74724 (15) | 0.5713 (4) | 0.81664 (19) | 0.0448 (8) | |
H1A | 0.7770 | 0.6075 | 0.7889 | 0.054* | |
H1B | 0.7135 | 0.6253 | 0.8001 | 0.054* | |
C2 | 0.74001 (19) | 0.3971 (4) | 0.8098 (2) | 0.0560 (10) | |
H2A | 0.7043 | 0.3650 | 0.8245 | 0.067* | |
H2B | 0.7436 | 0.3629 | 0.7601 | 0.067* | |
C3 | 0.78631 (16) | 0.3348 (4) | 0.8613 (2) | 0.0518 (10) | |
H3A | 0.8189 | 0.3156 | 0.8356 | 0.062* | |
H3B | 0.7754 | 0.2388 | 0.8833 | 0.062* | |
C4 | 0.79815 (12) | 0.4599 (4) | 0.92021 (18) | 0.0352 (7) | |
H4 | 0.7888 | 0.4211 | 0.9678 | 0.042* | |
C5 | 0.85712 (12) | 0.5168 (3) | 0.92571 (19) | 0.0362 (7) | |
H5A | 0.8808 | 0.4409 | 0.9515 | 0.043* | |
H5B | 0.8692 | 0.5287 | 0.8770 | 0.043* | |
C6 | 0.91821 (11) | 0.7313 (3) | 0.96309 (17) | 0.0291 (6) | |
C7 | 0.95576 (13) | 0.7160 (3) | 1.02479 (18) | 0.0327 (7) | |
C8 | 0.93964 (13) | 0.6498 (4) | 1.09665 (17) | 0.0372 (7) | |
H8 | 0.9095 | 0.5762 | 1.0852 | 0.045* | |
C9 | 0.9180 (2) | 0.7757 (5) | 1.1435 (3) | 0.0637 (12) | |
H9A | 0.9469 | 0.8491 | 1.1562 | 0.096* | |
H9B | 0.9058 | 0.7311 | 1.1873 | 0.096* | |
H9C | 0.8876 | 0.8270 | 1.1169 | 0.096* | |
C10 | 0.98669 (18) | 0.5623 (6) | 1.1401 (2) | 0.0643 (11) | |
H10A | 1.0162 | 0.6329 | 1.1544 | 0.096* | |
H10B | 1.0002 | 0.4822 | 1.1101 | 0.096* | |
H10C | 0.9732 | 0.5173 | 1.1829 | 0.096* | |
C11 | 1.00930 (14) | 0.7704 (4) | 1.0203 (2) | 0.0406 (8) | |
H11 | 1.0347 | 0.7629 | 1.0610 | 0.049* | |
C12 | 1.02549 (14) | 0.8350 (5) | 0.9571 (2) | 0.0463 (8) | |
H12 | 1.0616 | 0.8691 | 0.9548 | 0.056* | |
C13 | 0.98797 (13) | 0.8487 (4) | 0.8975 (2) | 0.0410 (7) | |
H13 | 0.9993 | 0.8927 | 0.8550 | 0.049* | |
C14 | 0.93362 (13) | 0.7992 (3) | 0.89800 (18) | 0.0319 (7) | |
C15 | 0.89514 (13) | 0.8238 (4) | 0.82901 (18) | 0.0383 (7) | |
H15 | 0.8582 | 0.7891 | 0.8393 | 0.046* | |
C16 | 0.89141 (18) | 0.9966 (5) | 0.8104 (3) | 0.0623 (11) | |
H16A | 0.9274 | 1.0348 | 0.8020 | 0.093* | |
H16B | 0.8776 | 1.0520 | 0.8504 | 0.093* | |
H16C | 0.8668 | 1.0113 | 0.7672 | 0.093* | |
C17 | 0.91266 (18) | 0.7291 (6) | 0.7649 (2) | 0.0580 (11) | |
H17A | 0.9496 | 0.7572 | 0.7552 | 0.087* | |
H17B | 0.8879 | 0.7492 | 0.7224 | 0.087* | |
H17C | 0.9116 | 0.6211 | 0.7768 | 0.087* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd | 0.02146 (17) | 0.02124 (17) | 0.03568 (17) | 0.00033 (7) | 0.00598 (10) | −0.00046 (8) |
Cl1 | 0.0303 (4) | 0.0360 (4) | 0.0503 (5) | 0.0077 (3) | 0.0037 (3) | 0.0045 (3) |
Cl2 | 0.0330 (4) | 0.0265 (4) | 0.0583 (5) | −0.0053 (3) | 0.0064 (3) | −0.0055 (3) |
N1 | 0.0259 (12) | 0.0289 (13) | 0.0417 (14) | −0.0020 (10) | 0.0056 (10) | −0.0027 (11) |
N2 | 0.0253 (12) | 0.0252 (11) | 0.0385 (14) | 0.0003 (10) | 0.0048 (10) | 0.0039 (11) |
C1 | 0.054 (2) | 0.0314 (17) | 0.0469 (19) | 0.0011 (14) | −0.0072 (15) | −0.0049 (14) |
C2 | 0.077 (3) | 0.0322 (18) | 0.057 (2) | −0.0009 (18) | −0.0068 (19) | −0.0135 (17) |
C3 | 0.053 (2) | 0.0223 (15) | 0.079 (3) | −0.0006 (15) | −0.0031 (19) | −0.0053 (17) |
C4 | 0.0348 (15) | 0.0246 (15) | 0.0461 (17) | −0.0013 (12) | 0.0030 (13) | 0.0054 (13) |
C5 | 0.0317 (15) | 0.0245 (15) | 0.0526 (19) | 0.0015 (12) | 0.0054 (13) | −0.0026 (13) |
C6 | 0.0207 (13) | 0.0271 (14) | 0.0399 (16) | 0.0026 (11) | 0.0048 (11) | −0.0020 (12) |
C7 | 0.0309 (15) | 0.0262 (15) | 0.0409 (17) | 0.0031 (11) | 0.0027 (13) | −0.0018 (12) |
C8 | 0.0385 (17) | 0.0371 (17) | 0.0354 (16) | −0.0002 (14) | −0.0005 (13) | 0.0023 (14) |
C9 | 0.075 (3) | 0.057 (3) | 0.063 (3) | 0.006 (2) | 0.029 (2) | −0.005 (2) |
C10 | 0.063 (3) | 0.065 (3) | 0.064 (3) | 0.013 (2) | −0.003 (2) | 0.016 (2) |
C11 | 0.0279 (15) | 0.0421 (19) | 0.050 (2) | −0.0007 (13) | −0.0054 (14) | −0.0020 (16) |
C12 | 0.0281 (16) | 0.0480 (19) | 0.064 (2) | −0.0051 (15) | 0.0089 (15) | 0.0036 (18) |
C13 | 0.0302 (15) | 0.0403 (18) | 0.054 (2) | −0.0019 (14) | 0.0116 (14) | 0.0073 (15) |
C14 | 0.0289 (15) | 0.0274 (16) | 0.0404 (17) | 0.0013 (10) | 0.0079 (13) | −0.0007 (12) |
C15 | 0.0319 (16) | 0.0445 (19) | 0.0402 (18) | 0.0028 (13) | 0.0133 (14) | 0.0112 (15) |
C16 | 0.056 (2) | 0.059 (3) | 0.071 (3) | 0.0042 (19) | 0.003 (2) | 0.028 (2) |
C17 | 0.048 (2) | 0.083 (3) | 0.043 (2) | 0.006 (2) | 0.0075 (17) | −0.004 (2) |
Pd—N1 | 2.040 (3) | C7—C8 | 1.519 (5) |
Pd—N2 | 2.072 (2) | C8—C9 | 1.510 (5) |
Pd—Cl1 | 2.3055 (8) | C8—C10 | 1.536 (5) |
Pd—Cl2 | 2.3160 (8) | C8—H8 | 0.9800 |
N1—C1 | 1.487 (4) | C9—H9A | 0.9600 |
N1—C4 | 1.500 (4) | C9—H9B | 0.9600 |
N1—H1 | 0.8600 | C9—H9C | 0.9600 |
N2—C6 | 1.463 (4) | C10—H10A | 0.9600 |
N2—C5 | 1.497 (4) | C10—H10B | 0.9600 |
N2—H2 | 0.8600 | C10—H10C | 0.9600 |
C1—C2 | 1.521 (5) | C11—C12 | 1.375 (5) |
C1—H1A | 0.9700 | C11—H11 | 0.9300 |
C1—H1B | 0.9700 | C12—C13 | 1.369 (5) |
C2—C3 | 1.507 (5) | C12—H12 | 0.9300 |
C2—H2A | 0.9700 | C13—C14 | 1.388 (4) |
C2—H2B | 0.9700 | C13—H13 | 0.9300 |
C3—C4 | 1.539 (5) | C14—C15 | 1.524 (5) |
C3—H3A | 0.9700 | C15—C17 | 1.524 (5) |
C3—H3B | 0.9700 | C15—C16 | 1.535 (5) |
C4—C5 | 1.510 (4) | C15—H15 | 0.9800 |
C4—H4 | 0.9800 | C16—H16A | 0.9600 |
C5—H5A | 0.9700 | C16—H16B | 0.9600 |
C5—H5B | 0.9700 | C16—H16C | 0.9600 |
C6—C7 | 1.399 (4) | C17—H17A | 0.9600 |
C6—C14 | 1.410 (4) | C17—H17B | 0.9600 |
C7—C11 | 1.392 (5) | C17—H17C | 0.9600 |
N1—Pd—N2 | 83.98 (10) | C11—C7—C6 | 117.9 (3) |
N1—Pd—Cl1 | 90.83 (7) | C11—C7—C8 | 119.3 (3) |
N2—Pd—Cl1 | 174.45 (7) | C6—C7—C8 | 122.7 (3) |
N1—Pd—Cl2 | 172.72 (7) | C9—C8—C7 | 110.5 (3) |
N2—Pd—Cl2 | 92.27 (8) | C9—C8—C10 | 109.8 (3) |
Cl1—Pd—Cl2 | 93.10 (3) | C7—C8—C10 | 113.6 (3) |
C1—N1—C4 | 105.8 (2) | C9—C8—H8 | 107.5 |
C1—N1—Pd | 119.3 (2) | C7—C8—H8 | 107.5 |
C4—N1—Pd | 111.56 (18) | C10—C8—H8 | 107.5 |
C1—N1—H1 | 106.5 | C8—C9—H9A | 109.5 |
C4—N1—H1 | 106.5 | C8—C9—H9B | 109.5 |
Pd—N1—H1 | 106.5 | H9A—C9—H9B | 109.5 |
C6—N2—C5 | 111.0 (2) | C8—C9—H9C | 109.5 |
C6—N2—Pd | 121.74 (19) | H9A—C9—H9C | 109.5 |
C5—N2—Pd | 107.90 (18) | H9B—C9—H9C | 109.5 |
C6—N2—H2 | 104.9 | C8—C10—H10A | 109.5 |
C5—N2—H2 | 104.9 | C8—C10—H10B | 109.5 |
Pd—N2—H2 | 104.9 | H10A—C10—H10B | 109.5 |
N1—C1—C2 | 102.5 (3) | C8—C10—H10C | 109.5 |
N1—C1—H1A | 111.3 | H10A—C10—H10C | 109.5 |
C2—C1—H1A | 111.3 | H10B—C10—H10C | 109.5 |
N1—C1—H1B | 111.3 | C12—C11—C7 | 121.5 (3) |
C2—C1—H1B | 111.3 | C12—C11—H11 | 119.3 |
H1A—C1—H1B | 109.2 | C7—C11—H11 | 119.3 |
C3—C2—C1 | 103.2 (3) | C13—C12—C11 | 119.4 (3) |
C3—C2—H2A | 111.1 | C13—C12—H12 | 120.3 |
C1—C2—H2A | 111.1 | C11—C12—H12 | 120.3 |
C3—C2—H2B | 111.1 | C12—C13—C14 | 122.5 (3) |
C1—C2—H2B | 111.1 | C12—C13—H13 | 118.8 |
H2A—C2—H2B | 109.1 | C14—C13—H13 | 118.8 |
C2—C3—C4 | 105.9 (3) | C13—C14—C6 | 117.1 (3) |
C2—C3—H3A | 110.6 | C13—C14—C15 | 117.9 (3) |
C4—C3—H3A | 110.6 | C6—C14—C15 | 125.0 (3) |
C2—C3—H3B | 110.6 | C17—C15—C14 | 112.0 (3) |
C4—C3—H3B | 110.6 | C17—C15—C16 | 111.6 (3) |
H3A—C3—H3B | 108.7 | C14—C15—C16 | 110.0 (3) |
N1—C4—C5 | 108.3 (2) | C17—C15—H15 | 107.7 |
N1—C4—C3 | 105.2 (3) | C14—C15—H15 | 107.7 |
C5—C4—C3 | 113.3 (3) | C16—C15—H15 | 107.7 |
N1—C4—H4 | 110.0 | C15—C16—H16A | 109.5 |
C5—C4—H4 | 110.0 | C15—C16—H16B | 109.5 |
C3—C4—H4 | 110.0 | H16A—C16—H16B | 109.5 |
N2—C5—C4 | 111.2 (2) | C15—C16—H16C | 109.5 |
N2—C5—H5A | 109.4 | H16A—C16—H16C | 109.5 |
C4—C5—H5A | 109.4 | H16B—C16—H16C | 109.5 |
N2—C5—H5B | 109.4 | C15—C17—H17A | 109.5 |
C4—C5—H5B | 109.4 | C15—C17—H17B | 109.5 |
H5A—C5—H5B | 108.0 | H17A—C17—H17B | 109.5 |
C7—C6—C14 | 121.6 (3) | C15—C17—H17C | 109.5 |
C7—C6—N2 | 119.0 (3) | H17A—C17—H17C | 109.5 |
C14—C6—N2 | 119.4 (3) | H17B—C17—H17C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl2i | 0.86 | 2.47 | 3.283 (3) | 158 |
N2—H2···Cl1i | 0.86 | 2.68 | 3.410 (3) | 144 |
Symmetry code: (i) −x+3/2, −y+3/2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | [PdCl2(C17H28N2)] |
Mr | 437.71 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 24.287 (3), 8.6534 (12), 18.355 (2) |
β (°) | 94.851 (9) |
V (Å3) | 3843.7 (8) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 1.24 |
Crystal size (mm) | 0.45 × 0.40 × 0.40 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 four-circle |
Absorption correction | ψ scan (ABSCALC; McArdle & Daly, 1999) |
Tmin, Tmax | 0.578, 0.608 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3790, 3580, 3089 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.605 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.105, 1.08 |
No. of reflections | 3580 |
No. of parameters | 199 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.33, −1.56 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD (McArdle, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII(Burnett & Johnson, 1996).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl2i | 0.86 | 2.471 | 3.283 (3) | 157.49 |
N2—H2···Cl1i | 0.86 | 2.681 | 3.410 (3) | 143.47 |
Symmetry code: (i) −x+3/2, −y+3/2, −z+2. |
Acknowledgements
This research was supported by the Kyungpook National University Research Fund, 2012.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Barnham, K. J., Djuran, M. I., Frey, U., Mazid, M. A. & Sadler, P. J. (1994). J. Chem. Soc. Chem. Commun. pp. 65–66. CrossRef Web of Science Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA. Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, Netherland. Google Scholar
McArdle, P. (1999). XCAD. National University of Ireland, Galway, Ireland. Google Scholar
McArdle, P. & Daly, P. (1999). ABSCALC. National University of Ireland, Galway, Ireland. Google Scholar
Quintard, A., Bournaud, C. & Alexakis, A. (2008). Chem. Eur. J. 14, 7504–7507. Web of Science CrossRef PubMed CAS Google Scholar
Rafii, E., Dassonneville, B. & Heumann, A. (2007). Chem. Commun. pp. 583–585. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shifeng, M., Jinjin, B., Jin, Y. & Yawen, Z. (2010). Chirality, 22, 855–862. Web of Science PubMed Google Scholar
Sodeoka, M. & Hamashima, Y. (2006). Pure Appl. Chem. 78, 477–494. Web of Science CrossRef CAS Google Scholar
Tan, B., Zeng, X., Lu, Y., Chua, P. J. & Zhong, G. (2009). Org. Lett. 11, 1927–1930. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Palladium complexes of various types bearing the enantiopure ligands are widely used in modern asymmetric synthesis (Sodeoka et al., 2006). Palladium complexes (Quintard et al., 2008; Tan et al., 2009) containing homochiral diamine ligands derivable from natural amino acids are now well established in the clinical treatment as anticancer drugs (Barnham et al., 1994). In this paper, we describe synthesis and the crystal structure of novel chiral dichloro Pd(II) complex bearing the ligand 2,6-diisopropyl-N-(S-pyrrolidin-2-yl) methyl)benzenamine which was prepared by the reported method (Shifeng et al., 2010). The geometry around the Pd(II) centre is almost square-planar (Fig. 1). The coordination plane composed of Pd, Cl1, Cl2, N1, and N2 is nearly coplanar within 0.090 (1) Å deviation from the best plane. The bite angle of N1—Pd—N2 [84.0 (1) °] is much smaller than the Cl1—Pd—Cl2 [93.10 (3) °] angle. The chiral C atom of the pyrrolidine moiety has S configuration and the induced chiralities at two N atoms of the ligand show R configuration. The orientation of the hydrogen atoms of the chiral C and N atoms is in head-to-head. Optical isomerism arising from the chelate five-membered ring is configured as δ. The bond lengths of Pd—N are 2.040 (3) and 2.072 (2) Å and those of Pd—Cl are 2.3055 (8) and 2.3160 (8) Å. These bond lengths are similar to the known average Pd—N and Pd—Cl lengths of (1R,2R)-(1,2-bisbenzyl)-1,2- diaminocyclohexane palladium dichloride complex (Rafii et al., 2007). There are two intermolecular N—H···Cl between each two molecules to form discrete dimers as shown in Fig. 2. Hydrogen-bond parameters are listed in Table 1.