metal-organic compounds
Bis[2-(hydroxyimino)cyclohexan-1-one oximato-κ2N,N′]copper(II)
aInstitute of Applied Physics, Academy of Sciences of Moldova, Academiei str. 5, MD2028 Chisinau, Republic of Moldova, and bInstitute of Chemistry, Academy of Sciences of Moldova, Academiei str. 3, MD2028 Chisinau, Republic of Moldova
*Correspondence e-mail: croitor.lilia@gmail.com
In the title compound, [Cu(C6H9N2O2)2], the CuII atom is located on an inversion center and has a square-planar environment. Two 2-(hydroxyimino)cyclohexan-1-one oximate monoanions chelate to the CuII atom and the Cu—N distances are 1.920 (3) and 1.930 (3) Å. There are two short intramolecular O—H⋯O hydrogen bonds between the ligands. The complex molecules stack into columns extended along the c axis, with a Cu⋯Cu distance between adjacent molecules of 3.3060 (3) Å.
Related literature
For complexes of copper(II) with 1,2-cyclohexanedionedioxime, see: Birkelbach et al. (1997); Cervera et al. (1997); Coropceanu et al. (2011); Mégnamisi-Bélombé & Endres (1983); Simonov et al. (1982). For the of bis(dimethylglyoximato-κ2N,N′)nickel(II), see: Li et al. (2003).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S160053681300785X/gk2564sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053681300785X/gk2564Isup2.hkl
The title compound was obtained by disolving 0.02 g of copper acetate dihydrate and 0.028 g of 1,2-cyclohexanedionedioxime in the 30 ml methanol/dimethylformamide 1:5 (v/v) mixture. The resulting solution was boiled for ca 7 min, filtered off, and then slowly cooled to room temperature resulting in needle-shaped brown crystals (yield: 40%).
The C-bound hydrogen atoms were placed in calculated positions and were treated using a riding model approximation [Uiso(H) = 1.2Ueq(C)]. The O-bound hydrogen atoms were found from electron-density difference maps and refined freely.
A large number of investigations on the complexation of copper(II) with 1,2-cyclohexanedionedioxime have been reported (Cervera et al., 1997; Mégnamisi-Bélombé et al., 1983; Simonov et al., 1982; Birkelbach et al., 1997; Coropceanu et al., 2011). We report here the
of the title compound.In the title coordination compound, the CuII atom has a square-planar geometry being coordinated by four N atoms from two monodeprotonated dioxime ligands (Fig.1). The monodeprotonated 1,2-cyclohexanedionedioxime coordinates in a typical bidentate mode through its oxime nitrogen atoms, thus leading to the formation of a five-membered chelate ring around the metal core with a N1—Cu1—N2 angle of 82.84 (12)° and slightly asymmetric Cu—N distances of 1.920 (3) and 1.930 (3) Å. The cyclohexyl ring of the 1,2-cyclohexanedionedioxime molecule adopts a half-boat conformation. Two dioxime residues are connected via O—H···O hydrogen bonds, typical for all bis-ligand complexes of α -dioximes (Table 1). The packing of the molecules involves columns of Cu atoms with a Cu—Cu separation of 3.3060 (3) Å (Fig.2). Despite the fact that the title compound crystallizes in a lower symmetry (C2/c) its crystal packing strongly resembles that of bis(dimethyl-glyoximato-κ2N,N')nickel(II) (Ibam) (Li et al., 2003).
For complexes of copper(II) with 1,2-cyclohexanedionedioxime, see: Birkelbach et al. (1997); Cervera et al. (1997); Coropceanu et al. (2011); Mégnamisi-Bélombé & Endres (1983); Simonov et al. (1982). For the κ2N,N')nickel(II), see: Li et al. (2003).
of bis(dimethylglyoximato-Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu(C6H9N2O2)2] | F(000) = 716 |
Mr = 345.84 | Dx = 1.681 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 636 reflections |
a = 20.8009 (12) Å | θ = 3.1–28.8° |
b = 10.1124 (7) Å | µ = 1.62 mm−1 |
c = 6.6121 (5) Å | T = 293 K |
β = 100.787 (6)° | Needle, brown |
V = 1366.26 (16) Å3 | 0.40 × 0.08 × 0.08 mm |
Z = 4 |
Oxford Diffraction Xcalibur Eos diffractometer | 1459 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1013 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
Detector resolution: 15.9914 pixels mm-1 | θmax = 27.0°, θmin = 3.6° |
ω scans | h = −26→20 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −12→12 |
Tmin = 0.878, Tmax = 1.000 | l = −8→8 |
2458 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.109 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0427P)2 + 1.319P] where P = (Fo2 + 2Fc2)/3 |
1459 reflections | (Δ/σ)max < 0.001 |
101 parameters | Δρmax = 0.31 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
[Cu(C6H9N2O2)2] | V = 1366.26 (16) Å3 |
Mr = 345.84 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 20.8009 (12) Å | µ = 1.62 mm−1 |
b = 10.1124 (7) Å | T = 293 K |
c = 6.6121 (5) Å | 0.40 × 0.08 × 0.08 mm |
β = 100.787 (6)° |
Oxford Diffraction Xcalibur Eos diffractometer | 1459 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 1013 reflections with I > 2σ(I) |
Tmin = 0.878, Tmax = 1.000 | Rint = 0.022 |
2458 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.109 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | Δρmax = 0.31 e Å−3 |
1459 reflections | Δρmin = −0.30 e Å−3 |
101 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.0000 | 0.0000 | 0.5000 | 0.0373 (2) | |
O2 | 0.13049 (12) | −0.0982 (3) | 0.6603 (4) | 0.0539 (7) | |
O1 | −0.04254 (14) | 0.2753 (3) | 0.4482 (4) | 0.0547 (7) | |
N1 | 0.00765 (14) | 0.1893 (3) | 0.5076 (4) | 0.0422 (7) | |
N2 | 0.09204 (14) | 0.0082 (3) | 0.6185 (5) | 0.0419 (7) | |
C1 | 0.06607 (18) | 0.2333 (4) | 0.5736 (5) | 0.0448 (9) | |
C2 | 0.11585 (17) | 0.1266 (4) | 0.6355 (5) | 0.0435 (9) | |
C3 | 0.18591 (18) | 0.1589 (4) | 0.7027 (7) | 0.0617 (11) | |
H3A | 0.2094 | 0.1347 | 0.5945 | 0.074* | |
H3B | 0.2035 | 0.1067 | 0.8235 | 0.074* | |
C4 | 0.1975 (2) | 0.3041 (5) | 0.7532 (8) | 0.0828 (15) | |
H4A | 0.1872 | 0.3214 | 0.8879 | 0.099* | |
H4B | 0.2435 | 0.3238 | 0.7602 | 0.099* | |
C5 | 0.1582 (2) | 0.3931 (5) | 0.6018 (9) | 0.0923 (17) | |
H5A | 0.1691 | 0.3772 | 0.4675 | 0.111* | |
H5B | 0.1695 | 0.4840 | 0.6396 | 0.111* | |
C6 | 0.0852 (2) | 0.3748 (4) | 0.5874 (7) | 0.0640 (12) | |
H6A | 0.0722 | 0.4137 | 0.7077 | 0.077* | |
H6B | 0.0621 | 0.4211 | 0.4669 | 0.077* | |
H1O1 | −0.077 (3) | 0.224 (6) | 0.408 (9) | 0.15 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0342 (4) | 0.0406 (4) | 0.0358 (3) | 0.0013 (3) | 0.0032 (2) | −0.0015 (3) |
O2 | 0.0417 (14) | 0.0558 (16) | 0.0611 (18) | 0.0155 (14) | 0.0019 (12) | 0.0037 (14) |
O1 | 0.0532 (17) | 0.0465 (16) | 0.0633 (19) | 0.0142 (15) | 0.0078 (13) | 0.0032 (14) |
N1 | 0.0428 (17) | 0.0414 (17) | 0.0418 (16) | 0.0028 (15) | 0.0062 (13) | −0.0024 (14) |
N2 | 0.0343 (16) | 0.0479 (18) | 0.0419 (16) | 0.0013 (15) | 0.0029 (13) | 0.0010 (14) |
C1 | 0.050 (2) | 0.048 (2) | 0.038 (2) | −0.009 (2) | 0.0122 (16) | −0.0028 (17) |
C2 | 0.0383 (19) | 0.059 (2) | 0.0339 (19) | −0.0069 (19) | 0.0071 (15) | −0.0046 (17) |
C3 | 0.045 (2) | 0.073 (3) | 0.065 (3) | −0.010 (2) | 0.0035 (19) | −0.003 (2) |
C4 | 0.059 (3) | 0.091 (4) | 0.092 (4) | −0.029 (3) | −0.003 (2) | −0.003 (3) |
C5 | 0.086 (4) | 0.078 (3) | 0.105 (5) | −0.037 (3) | −0.002 (3) | 0.014 (3) |
C6 | 0.067 (3) | 0.049 (2) | 0.075 (3) | −0.013 (2) | 0.011 (2) | 0.000 (2) |
Cu1—N1 | 1.920 (3) | C3—C4 | 1.515 (6) |
Cu1—N1i | 1.920 (3) | C3—H3A | 0.9700 |
Cu1—N2 | 1.930 (3) | C3—H3B | 0.9700 |
Cu1—N2i | 1.930 (3) | C4—C5 | 1.475 (7) |
O2—N2 | 1.338 (3) | C4—H4A | 0.9700 |
O1—N1 | 1.359 (4) | C4—H4B | 0.9700 |
O1—H1O1 | 0.88 (6) | C5—C6 | 1.514 (6) |
N1—C1 | 1.291 (4) | C5—H5A | 0.9700 |
N2—C2 | 1.293 (4) | C5—H5B | 0.9700 |
C1—C6 | 1.483 (5) | C6—H6A | 0.9700 |
C1—C2 | 1.499 (5) | C6—H6B | 0.9700 |
C2—C3 | 1.478 (5) | ||
N1—Cu1—N1i | 180.00 (17) | C2—C3—H3B | 109.0 |
N1—Cu1—N2 | 82.85 (12) | C4—C3—H3B | 109.0 |
N1i—Cu1—N2 | 97.15 (12) | H3A—C3—H3B | 107.8 |
N1—Cu1—N2i | 97.15 (12) | C5—C4—C3 | 113.4 (4) |
N1i—Cu1—N2i | 82.85 (12) | C5—C4—H4A | 108.9 |
N2—Cu1—N2i | 180.00 (7) | C3—C4—H4A | 108.9 |
N1—O1—H1O1 | 104 (4) | C5—C4—H4B | 108.9 |
C1—N1—O1 | 120.0 (3) | C3—C4—H4B | 108.9 |
C1—N1—Cu1 | 114.9 (3) | H4A—C4—H4B | 107.7 |
O1—N1—Cu1 | 125.1 (2) | C4—C5—C6 | 113.0 (4) |
C2—N2—O2 | 121.5 (3) | C4—C5—H5A | 109.0 |
C2—N2—Cu1 | 114.2 (2) | C6—C5—H5A | 109.0 |
O2—N2—Cu1 | 123.9 (2) | C4—C5—H5B | 109.0 |
N1—C1—C6 | 125.3 (4) | C6—C5—H5B | 109.0 |
N1—C1—C2 | 113.7 (3) | H5A—C5—H5B | 107.8 |
C6—C1—C2 | 120.9 (3) | C1—C6—C5 | 112.1 (4) |
N2—C2—C3 | 124.8 (4) | C1—C6—H6A | 109.2 |
N2—C2—C1 | 114.2 (3) | C5—C6—H6A | 109.2 |
C3—C2—C1 | 121.0 (3) | C1—C6—H6B | 109.2 |
C2—C3—C4 | 112.8 (4) | C5—C6—H6B | 109.2 |
C2—C3—H3A | 109.0 | H6A—C6—H6B | 107.9 |
C4—C3—H3A | 109.0 |
Symmetry code: (i) −x, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O1···O2i | 0.88 (6) | 1.69 (6) | 2.564 (4) | 168 (6) |
Symmetry code: (i) −x, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C6H9N2O2)2] |
Mr | 345.84 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 20.8009 (12), 10.1124 (7), 6.6121 (5) |
β (°) | 100.787 (6) |
V (Å3) | 1366.26 (16) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.62 |
Crystal size (mm) | 0.40 × 0.08 × 0.08 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Eos |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.878, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2458, 1459, 1013 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.109, 1.00 |
No. of reflections | 1459 |
No. of parameters | 101 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.31, −0.30 |
Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O1···O2i | 0.88 (6) | 1.69 (6) | 2.564 (4) | 168 (6) |
Symmetry code: (i) −x, −y, −z+1. |
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Birkelbach, F., Weyhermuller, T., Lengen, M., Gerdan, M., Trautwein, A. X., Wieghardt, K. & Chaudhuri, P. (1997). J. Chem. Soc. Dalton Trans. pp. 4529–4538. Web of Science CSD CrossRef Google Scholar
Cervera, B., Ruiz, R., Lloret, F., Julve, M., Cano, J., Faus, J., Bois, C. & Mrozinski, J. (1997). J. Chem. Soc. Dalton Trans. pp. 395–401. CSD CrossRef Web of Science Google Scholar
Coropceanu, E. B., Croitor, L., Botoshansky, M. M., Siminel, A. V. & Fonari, M. S. (2011). Polyhedron, 30, 2592–2598. Web of Science CSD CrossRef CAS Google Scholar
Li, D.-X., Xu, D.-J. & Xu, Y.-Z. (2003). Acta Cryst. E59, m1094–m1095. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mégnamisi-Bélombé, M. & Endres, H. (1983). Acta Cryst. C39, 707–709. CSD CrossRef Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Simonov, Y. A., Dvorkin, A. A., Malinovskii, T. I., Batir, D. G., Bulgak, I. I. & Ozol, L. D. (1982). Proc. Natl. Acad. Sci. USSR, 263, 1135–1138. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
A large number of investigations on the complexation of copper(II) with 1,2-cyclohexanedionedioxime have been reported (Cervera et al., 1997; Mégnamisi-Bélombé et al., 1983; Simonov et al., 1982; Birkelbach et al., 1997; Coropceanu et al., 2011). We report here the crystal structure of the title compound.
In the title coordination compound, the CuII atom has a square-planar geometry being coordinated by four N atoms from two monodeprotonated dioxime ligands (Fig.1). The monodeprotonated 1,2-cyclohexanedionedioxime coordinates in a typical bidentate mode through its oxime nitrogen atoms, thus leading to the formation of a five-membered chelate ring around the metal core with a N1—Cu1—N2 angle of 82.84 (12)° and slightly asymmetric Cu—N distances of 1.920 (3) and 1.930 (3) Å. The cyclohexyl ring of the 1,2-cyclohexanedionedioxime molecule adopts a half-boat conformation. Two dioxime residues are connected via O—H···O hydrogen bonds, typical for all bis-ligand complexes of α -dioximes (Table 1). The packing of the molecules involves columns of Cu atoms with a Cu—Cu separation of 3.3060 (3) Å (Fig.2). Despite the fact that the title compound crystallizes in a lower symmetry space group (C2/c) its crystal packing strongly resembles that of bis(dimethyl-glyoximato-κ2N,N')nickel(II) (Ibam) (Li et al., 2003).