metal-organic compounds
(Butane-1,4-diyl)(trimethylphosphane-κP)[tris(3,5-dimethylpyrazol-1-yl-κN2)hydroborato]iridium(III)
aInstituto de Investigaciones Químicas (IIQ) and Departamento de Química Inorgánica, Consejo Superior de Investigaciones Cientificas (CSIC) and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain, and bInstitute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164SC, A-1060 Vienna, Austria
*Correspondence e-mail: kurt.mereiter@tuwien.ac.at
In the mononuclear title iridium(III) complex, [Ir(C4H8)(C15H22BN6)(C3H9P)], which is based on the [tris(3,5-dimethylpyrazol-1-yl)hydroborato]iridium moiety, Ir[TpMe2], the IrIII atom is coordinated by a chelating butane-1,4-diyl fragment and a trimethylphosphane ligand in a modestly distorted octahedral coordination environment formed by three facial N, two C and one P atom. The iridium–butane-1,4-diyl ring has an This ring is disordered because alternately the second or the third C atom of the butane-1,4-diyl fragment function as an envelope flap atom (the occupancy ratio is 1:1). In the crystal, molecules are organized into densely packed columns extending along [101]. Coherence between the molecules is essentially based on van der Waals interactions.
Related literature
For general aspects of hydrogen trispyrazolylborate ligands, see: Pettinari & Trofimenko (2008). For general information on mechanistic aspects of organometallic reactions, involving and see: Crabtree (2005). For information on σ-CAM mechanisms, see: Perutz & Sabo-Etienne (2007). For general information on the chemistry and potential of Ir[TpMe2] complexes, see: Conejero et al. (2010). For selected aspects of the synthesis and the of the precursor of the title compound, see: Paneque et al. (2000). For aspects of the chemistry of a CO- instead of PMe3-containing analogue to the precursor of the title compound, see: Gómez et al. (2007). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2003); cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536813008040/gk2565sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813008040/gk2565Isup2.hkl
A solution of [(TpMe2)Ir(κ2-CH2—CH═CH—CH2)(PMe3)] (0.10 g, 0.16 mmol; for synthesis see Paneque et al., 2000) in dioxane (10 ml), with a small amount of PtO2 as catalyst, was transferred to a pressure vessel, charged with H2 at 4 bar and heated at 353 K for 4 days. Then the solvent was removed under reduced pressure and the crude product was purified by (silicagel, hexane/Et2O 10/1 v/v) to give the title compound I in 44% yield. Crystallization from hexane/CH2Cl2 (1:2) at 253 K gave I as colourless crystals. 1H NMR (CDCl3, 298 K) δ 5.71, 5.68 (s, 2:1, 3 CHpz), 2.44, 2.37, 2.36, 2.26 (s, 1:2:2:1, 6 Mepz), 2.33 (m, 4 H, 2 CHAHB), 1.64, 1.27 (m, 2 H cada, 2 CHCHD), 1.37 (d, 9 H, 2JHP = 9.2 Hz, PMe3). 13C{1H} NMR (CDCl3, 298 K) δ 150.5, 148.9 (d, JCP = 3 Hz) (2:1:2:1, Cqpz), 108.3 (d, JCP = 4 Hz), 107.9 (1:2 CHpz), 34.8 (C2, 3JCP = 2 Hz, 1JCH = 122 Hz), 16.2 (d, 1JCP = 37 Hz, PMe3), 16.0, 15.1, 13.7, 13.4 (2:1:1:2, Mepz), -3.6 (C1, 2JCP = 8 Hz, 1JCH = 125 Hz). 31P {1H} NMR (CDCl3, 298 K) δ -48.0 p.p.m..
Conformational disorder in the 5-membered Ir-butane-1,4-diyl chelate ring was resolved with split positions (1:1; ratio fixed after preceeding
had indicated this) for the 2,3-carbon atoms (C17A/C17B and C18A/C18B) stabilized by a SADI restraint for all C—C bonds, EXYZ constraints (C16A/C16B, C19A/C19B), EADP constraints (C16A/C16B, C18A/C18B, C19A/C19B), and a DELU 0.001 0.001 restraint for C16A through C19B. H atoms were placed in calculated positions and thereafter treated as riding, C—H = 0.95–0.99 Å, B—H = 1.00 Å, Uiso(H) = 1.2–1.5Ueq(C,B), using AFIX 137 of program SHELXL97 (Sheldrick, 2008) for the methyl groups.Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
Data collection: SMART (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[Ir(C4H8)(C15H22BN6)(C3H9P)] | F(000) = 1240 |
Mr = 621.57 | Dx = 1.636 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 8250 reflections |
a = 11.1865 (5) Å | θ = 2.3–30.0° |
b = 18.1771 (8) Å | µ = 5.37 mm−1 |
c = 13.4748 (6) Å | T = 173 K |
β = 112.883 (1)° | Oval, colourless |
V = 2524.3 (2) Å3 | 0.22 × 0.15 × 0.14 mm |
Z = 4 |
Bruker SMART APEX CCD diffractometer | 7359 independent reflections |
Radiation source: fine-focus sealed tube | 6892 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
Detector resolution: 0.11 pixels mm-1 | θmax = 30.0°, θmin = 2.0° |
ω and φ scans | h = −15→15 |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | k = −25→25 |
Tmin = 0.36, Tmax = 0.47 | l = −18→18 |
37102 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.017 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.040 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0188P)2 + 1.5354P] where P = (Fo2 + 2Fc2)/3 |
7359 reflections | (Δ/σ)max = 0.002 |
298 parameters | Δρmax = 0.86 e Å−3 |
25 restraints | Δρmin = −0.32 e Å−3 |
[Ir(C4H8)(C15H22BN6)(C3H9P)] | V = 2524.3 (2) Å3 |
Mr = 621.57 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 11.1865 (5) Å | µ = 5.37 mm−1 |
b = 18.1771 (8) Å | T = 173 K |
c = 13.4748 (6) Å | 0.22 × 0.15 × 0.14 mm |
β = 112.883 (1)° |
Bruker SMART APEX CCD diffractometer | 7359 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | 6892 reflections with I > 2σ(I) |
Tmin = 0.36, Tmax = 0.47 | Rint = 0.018 |
37102 measured reflections |
R[F2 > 2σ(F2)] = 0.017 | 25 restraints |
wR(F2) = 0.040 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.86 e Å−3 |
7359 reflections | Δρmin = −0.32 e Å−3 |
298 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ir1 | 0.330539 (6) | 0.149427 (3) | 0.140251 (5) | 0.02163 (2) | |
P1 | 0.13156 (4) | 0.17885 (3) | 0.02261 (4) | 0.02555 (9) | |
N1 | 0.41101 (15) | 0.26249 (9) | 0.13371 (12) | 0.0279 (3) | |
N2 | 0.52542 (16) | 0.26511 (9) | 0.11853 (13) | 0.0313 (3) | |
N3 | 0.39782 (14) | 0.11256 (9) | 0.01330 (12) | 0.0271 (3) | |
N4 | 0.50615 (16) | 0.14845 (9) | 0.01311 (13) | 0.0289 (3) | |
N5 | 0.52880 (14) | 0.12008 (9) | 0.24383 (12) | 0.0258 (3) | |
N6 | 0.62443 (15) | 0.14889 (9) | 0.21463 (13) | 0.0299 (3) | |
B1 | 0.5921 (2) | 0.19391 (13) | 0.11026 (17) | 0.0312 (4) | |
H1 | 0.6748 | 0.2061 | 0.1017 | 0.037* | |
C1 | 0.2641 (3) | 0.35688 (13) | 0.1631 (3) | 0.0507 (6) | |
H1A | 0.2366 | 0.3178 | 0.1997 | 0.076* | |
H1B | 0.1940 | 0.3674 | 0.0934 | 0.076* | |
H1C | 0.2842 | 0.4014 | 0.2076 | 0.076* | |
C2 | 0.3816 (2) | 0.33261 (11) | 0.14579 (16) | 0.0342 (4) | |
C3 | 0.4767 (2) | 0.37982 (12) | 0.13857 (17) | 0.0402 (5) | |
H3 | 0.4791 | 0.4319 | 0.1446 | 0.048* | |
C4 | 0.5652 (2) | 0.33560 (13) | 0.12097 (17) | 0.0406 (5) | |
C5 | 0.6899 (3) | 0.35592 (16) | 0.1088 (2) | 0.0595 (8) | |
H5A | 0.6973 | 0.4096 | 0.1075 | 0.089* | |
H5B | 0.6894 | 0.3353 | 0.0415 | 0.089* | |
H5C | 0.7639 | 0.3360 | 0.1697 | 0.089* | |
C6 | 0.2510 (2) | 0.01374 (14) | −0.09982 (18) | 0.0441 (5) | |
H6A | 0.2293 | 0.0053 | −0.0370 | 0.066* | |
H6B | 0.2763 | −0.0329 | −0.1225 | 0.066* | |
H6C | 0.1753 | 0.0339 | −0.1589 | 0.066* | |
C7 | 0.36048 (18) | 0.06676 (11) | −0.07123 (15) | 0.0305 (4) | |
C8 | 0.4424 (2) | 0.07415 (12) | −0.12664 (16) | 0.0360 (4) | |
H8 | 0.4361 | 0.0486 | −0.1900 | 0.043* | |
C9 | 0.5333 (2) | 0.12547 (13) | −0.07166 (16) | 0.0345 (4) | |
C10 | 0.6438 (3) | 0.15446 (15) | −0.0960 (2) | 0.0503 (6) | |
H10A | 0.6357 | 0.2080 | −0.1049 | 0.075* | |
H10B | 0.6423 | 0.1320 | −0.1626 | 0.075* | |
H10C | 0.7258 | 0.1425 | −0.0365 | 0.075* | |
C11 | 0.5281 (2) | 0.04034 (13) | 0.39711 (17) | 0.0415 (5) | |
H11A | 0.4682 | 0.0728 | 0.4134 | 0.062* | |
H11B | 0.5949 | 0.0225 | 0.4645 | 0.062* | |
H11C | 0.4801 | −0.0016 | 0.3544 | 0.062* | |
C12 | 0.59054 (18) | 0.08183 (11) | 0.33483 (14) | 0.0304 (4) | |
C13 | 0.72443 (19) | 0.08640 (13) | 0.36404 (16) | 0.0375 (4) | |
H13 | 0.7898 | 0.0641 | 0.4247 | 0.045* | |
C14 | 0.74271 (19) | 0.12949 (14) | 0.28780 (16) | 0.0370 (4) | |
C15 | 0.8676 (2) | 0.15468 (18) | 0.2836 (2) | 0.0576 (8) | |
H15A | 0.8712 | 0.2085 | 0.2857 | 0.086* | |
H15B | 0.8734 | 0.1373 | 0.2168 | 0.086* | |
H15C | 0.9403 | 0.1348 | 0.3455 | 0.086* | |
C16A | 0.26125 (19) | 0.04707 (11) | 0.16388 (15) | 0.0317 (4) | 0.50 |
H16A | 0.2210 | 0.0214 | 0.0938 | 0.038* | 0.50 |
H16B | 0.3346 | 0.0167 | 0.2114 | 0.038* | 0.50 |
C17A | 0.1607 (4) | 0.0554 (2) | 0.2149 (3) | 0.0360 (8) | 0.50 |
H17A | 0.0758 | 0.0709 | 0.1603 | 0.043* | 0.50 |
H17B | 0.1492 | 0.0083 | 0.2471 | 0.043* | 0.50 |
C18A | 0.2157 (4) | 0.11462 (19) | 0.3022 (4) | 0.0356 (10) | 0.50 |
H18A | 0.2755 | 0.0908 | 0.3692 | 0.043* | 0.50 |
H18B | 0.1433 | 0.1362 | 0.3174 | 0.043* | 0.50 |
C19A | 0.28856 (18) | 0.17707 (11) | 0.27285 (15) | 0.0305 (3) | 0.50 |
H19A | 0.3703 | 0.1875 | 0.3351 | 0.037* | 0.50 |
H19B | 0.2348 | 0.2222 | 0.2567 | 0.037* | 0.50 |
C16B | 0.26125 (19) | 0.04707 (11) | 0.16388 (15) | 0.0317 (4) | 0.50 |
H16C | 0.1903 | 0.0312 | 0.0963 | 0.038* | 0.50 |
H16D | 0.3319 | 0.0103 | 0.1821 | 0.038* | 0.50 |
C17B | 0.2106 (4) | 0.0498 (2) | 0.2547 (3) | 0.0359 (8) | 0.50 |
H17C | 0.1297 | 0.0205 | 0.2327 | 0.043* | 0.50 |
H17D | 0.2753 | 0.0262 | 0.3197 | 0.043* | 0.50 |
C18B | 0.1831 (4) | 0.12778 (18) | 0.2842 (5) | 0.0356 (10) | 0.50 |
H18C | 0.1874 | 0.1292 | 0.3590 | 0.043* | 0.50 |
H18D | 0.0958 | 0.1443 | 0.2349 | 0.043* | 0.50 |
C19B | 0.28856 (18) | 0.17707 (11) | 0.27285 (15) | 0.0305 (3) | 0.50 |
H19C | 0.3686 | 0.1729 | 0.3389 | 0.037* | 0.50 |
H19D | 0.2594 | 0.2289 | 0.2660 | 0.037* | 0.50 |
C20 | 0.0148 (2) | 0.10666 (15) | −0.0424 (3) | 0.0766 (11) | |
H20A | −0.0670 | 0.1289 | −0.0908 | 0.115* | |
H20B | −0.0007 | 0.0773 | 0.0125 | 0.115* | |
H20C | 0.0490 | 0.0749 | −0.0839 | 0.115* | |
C21 | 0.0218 (2) | 0.23610 (18) | 0.0609 (2) | 0.0561 (7) | |
H21A | −0.0599 | 0.2429 | −0.0015 | 0.084* | |
H21B | 0.0621 | 0.2841 | 0.0858 | 0.084* | |
H21C | 0.0045 | 0.2120 | 0.1190 | 0.084* | |
C22 | 0.1375 (2) | 0.22637 (14) | −0.09285 (17) | 0.0415 (5) | |
H22A | 0.0492 | 0.2385 | −0.1427 | 0.062* | |
H22B | 0.1786 | 0.1947 | −0.1293 | 0.062* | |
H22C | 0.1881 | 0.2717 | −0.0693 | 0.062* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ir1 | 0.01893 (3) | 0.02738 (4) | 0.02017 (3) | 0.00079 (2) | 0.00933 (2) | 0.00218 (2) |
P1 | 0.01929 (19) | 0.0272 (2) | 0.0285 (2) | −0.00024 (16) | 0.00746 (16) | 0.00237 (17) |
N1 | 0.0266 (7) | 0.0315 (8) | 0.0238 (7) | −0.0045 (6) | 0.0080 (6) | 0.0011 (6) |
N2 | 0.0303 (8) | 0.0394 (9) | 0.0256 (7) | −0.0122 (6) | 0.0122 (6) | −0.0033 (6) |
N3 | 0.0234 (7) | 0.0362 (8) | 0.0225 (7) | −0.0001 (6) | 0.0098 (6) | −0.0009 (6) |
N4 | 0.0251 (7) | 0.0427 (9) | 0.0228 (7) | −0.0014 (6) | 0.0137 (6) | −0.0009 (6) |
N5 | 0.0214 (7) | 0.0345 (8) | 0.0225 (7) | 0.0022 (6) | 0.0096 (5) | −0.0004 (6) |
N6 | 0.0198 (7) | 0.0476 (10) | 0.0235 (7) | −0.0001 (6) | 0.0096 (6) | −0.0025 (6) |
B1 | 0.0238 (9) | 0.0479 (12) | 0.0254 (9) | −0.0078 (8) | 0.0134 (8) | −0.0018 (8) |
C1 | 0.0451 (13) | 0.0331 (11) | 0.0691 (18) | 0.0079 (9) | 0.0169 (13) | 0.0008 (10) |
C2 | 0.0351 (10) | 0.0329 (9) | 0.0276 (9) | −0.0014 (8) | 0.0047 (8) | 0.0022 (7) |
C3 | 0.0493 (12) | 0.0316 (10) | 0.0318 (10) | −0.0108 (9) | 0.0073 (9) | 0.0005 (8) |
C4 | 0.0473 (12) | 0.0437 (11) | 0.0305 (10) | −0.0227 (10) | 0.0148 (9) | −0.0029 (8) |
C5 | 0.0594 (17) | 0.0677 (18) | 0.0575 (16) | −0.0358 (14) | 0.0295 (14) | −0.0074 (13) |
C6 | 0.0388 (11) | 0.0524 (13) | 0.0364 (11) | −0.0083 (10) | 0.0094 (9) | −0.0112 (10) |
C7 | 0.0289 (9) | 0.0366 (10) | 0.0236 (8) | 0.0043 (7) | 0.0076 (7) | −0.0016 (7) |
C8 | 0.0378 (10) | 0.0473 (11) | 0.0249 (8) | 0.0051 (9) | 0.0144 (8) | −0.0057 (8) |
C9 | 0.0358 (10) | 0.0483 (11) | 0.0259 (9) | 0.0044 (9) | 0.0190 (8) | 0.0007 (8) |
C10 | 0.0542 (15) | 0.0689 (17) | 0.0444 (13) | −0.0078 (12) | 0.0371 (12) | −0.0049 (11) |
C11 | 0.0430 (11) | 0.0474 (12) | 0.0287 (9) | 0.0013 (9) | 0.0080 (8) | 0.0111 (9) |
C12 | 0.0293 (9) | 0.0364 (9) | 0.0229 (8) | 0.0066 (7) | 0.0074 (7) | −0.0002 (7) |
C13 | 0.0273 (9) | 0.0522 (12) | 0.0267 (9) | 0.0113 (8) | 0.0036 (7) | −0.0031 (8) |
C14 | 0.0214 (8) | 0.0593 (13) | 0.0288 (9) | 0.0030 (8) | 0.0082 (7) | −0.0085 (9) |
C15 | 0.0223 (10) | 0.100 (2) | 0.0496 (15) | −0.0031 (11) | 0.0125 (10) | −0.0062 (13) |
C16A | 0.0358 (9) | 0.0280 (8) | 0.0341 (9) | 0.0021 (7) | 0.0167 (7) | 0.0057 (7) |
C17A | 0.033 (2) | 0.0384 (19) | 0.040 (2) | −0.0027 (15) | 0.0187 (18) | 0.0128 (13) |
C18A | 0.017 (2) | 0.0585 (14) | 0.038 (2) | 0.0027 (16) | 0.018 (2) | 0.0024 (14) |
C19A | 0.0327 (9) | 0.0356 (8) | 0.0287 (9) | 0.0026 (7) | 0.0180 (7) | 0.0002 (7) |
C16B | 0.0358 (9) | 0.0280 (8) | 0.0341 (9) | 0.0021 (7) | 0.0167 (7) | 0.0057 (7) |
C17B | 0.034 (2) | 0.0433 (12) | 0.032 (2) | −0.0098 (16) | 0.0145 (17) | 0.0081 (19) |
C18B | 0.017 (2) | 0.0585 (14) | 0.038 (2) | 0.0027 (16) | 0.018 (2) | 0.0024 (14) |
C19B | 0.0327 (9) | 0.0356 (8) | 0.0287 (9) | 0.0026 (7) | 0.0180 (7) | 0.0002 (7) |
C20 | 0.0219 (10) | 0.0399 (13) | 0.136 (3) | −0.0061 (9) | −0.0040 (14) | −0.0021 (16) |
C21 | 0.0346 (11) | 0.087 (2) | 0.0450 (13) | 0.0244 (12) | 0.0136 (10) | −0.0045 (13) |
C22 | 0.0356 (10) | 0.0567 (13) | 0.0292 (9) | 0.0088 (9) | 0.0093 (8) | 0.0135 (9) |
Ir1—C19A | 2.0780 (18) | C9—C10 | 1.492 (3) |
Ir1—C16A | 2.0871 (19) | C10—H10A | 0.9800 |
Ir1—N5 | 2.1781 (14) | C10—H10B | 0.9800 |
Ir1—N3 | 2.2233 (15) | C10—H10C | 0.9800 |
Ir1—P1 | 2.2381 (5) | C11—C12 | 1.489 (3) |
Ir1—N1 | 2.2590 (15) | C11—H11A | 0.9800 |
P1—C22 | 1.803 (2) | C11—H11B | 0.9800 |
P1—C20 | 1.818 (2) | C11—H11C | 0.9800 |
P1—C21 | 1.830 (2) | C12—C13 | 1.395 (3) |
N1—C2 | 1.342 (3) | C13—C14 | 1.369 (3) |
N1—N2 | 1.373 (2) | C13—H13 | 0.9500 |
N2—C4 | 1.353 (3) | C14—C15 | 1.492 (3) |
N2—B1 | 1.520 (3) | C15—H15A | 0.9800 |
N3—C7 | 1.340 (2) | C15—H15B | 0.9800 |
N3—N4 | 1.377 (2) | C15—H15C | 0.9800 |
N4—C9 | 1.357 (2) | C16A—C17A | 1.537 (2) |
N4—B1 | 1.531 (3) | C16A—H16A | 0.9900 |
N5—C12 | 1.344 (2) | C16A—H16B | 0.9900 |
N5—N6 | 1.379 (2) | C17A—C18A | 1.536 (2) |
N6—C14 | 1.354 (2) | C17A—H17A | 0.9900 |
N6—B1 | 1.544 (3) | C17A—H17B | 0.9900 |
B1—H1 | 1.0000 | C18A—C19A | 1.536 (2) |
C1—C2 | 1.489 (4) | C18A—H18A | 0.9900 |
C1—H1A | 0.9800 | C18A—H18B | 0.9900 |
C1—H1B | 0.9800 | C19A—H19A | 0.9900 |
C1—H1C | 0.9800 | C19A—H19B | 0.9900 |
C2—C3 | 1.399 (3) | C17B—C18B | 1.536 (2) |
C3—C4 | 1.366 (4) | C17B—H17C | 0.9900 |
C3—H3 | 0.9500 | C17B—H17D | 0.9900 |
C4—C5 | 1.512 (3) | C18B—H18C | 0.9900 |
C5—H5A | 0.9800 | C18B—H18D | 0.9900 |
C5—H5B | 0.9800 | C20—H20A | 0.9800 |
C5—H5C | 0.9800 | C20—H20B | 0.9800 |
C6—C7 | 1.487 (3) | C20—H20C | 0.9800 |
C6—H6A | 0.9800 | C21—H21A | 0.9800 |
C6—H6B | 0.9800 | C21—H21B | 0.9800 |
C6—H6C | 0.9800 | C21—H21C | 0.9800 |
C7—C8 | 1.395 (3) | C22—H22A | 0.9800 |
C8—C9 | 1.367 (3) | C22—H22B | 0.9800 |
C8—H8 | 0.9500 | C22—H22C | 0.9800 |
C19A—Ir1—C16A | 82.12 (8) | N4—C9—C8 | 107.64 (17) |
C19A—Ir1—N5 | 91.29 (7) | N4—C9—C10 | 123.5 (2) |
C16A—Ir1—N5 | 91.71 (7) | C8—C9—C10 | 128.87 (19) |
C19A—Ir1—N3 | 172.64 (7) | C9—C10—H10A | 109.5 |
C16A—Ir1—N3 | 96.06 (7) | C9—C10—H10B | 109.5 |
N5—Ir1—N3 | 81.62 (5) | H10A—C10—H10B | 109.5 |
C19A—Ir1—P1 | 93.22 (6) | C9—C10—H10C | 109.5 |
C16A—Ir1—P1 | 89.71 (6) | H10A—C10—H10C | 109.5 |
N5—Ir1—P1 | 175.42 (4) | H10B—C10—H10C | 109.5 |
N3—Ir1—P1 | 93.90 (4) | C12—C11—H11A | 109.5 |
C19A—Ir1—N1 | 92.31 (7) | C12—C11—H11B | 109.5 |
C16A—Ir1—N1 | 173.83 (6) | H11A—C11—H11B | 109.5 |
N5—Ir1—N1 | 85.75 (6) | C12—C11—H11C | 109.5 |
N3—Ir1—N1 | 89.14 (6) | H11A—C11—H11C | 109.5 |
P1—Ir1—N1 | 93.25 (4) | H11B—C11—H11C | 109.5 |
C22—P1—C20 | 101.00 (15) | N5—C12—C13 | 109.95 (18) |
C22—P1—C21 | 103.01 (12) | N5—C12—C11 | 126.10 (17) |
C20—P1—C21 | 96.38 (14) | C13—C12—C11 | 123.96 (18) |
C22—P1—Ir1 | 111.42 (7) | C14—C13—C12 | 106.23 (17) |
C20—P1—Ir1 | 119.95 (9) | C14—C13—H13 | 126.9 |
C21—P1—Ir1 | 121.84 (8) | C12—C13—H13 | 126.9 |
C2—N1—N2 | 105.75 (16) | N6—C14—C13 | 107.86 (18) |
C2—N1—Ir1 | 137.67 (14) | N6—C14—C15 | 123.8 (2) |
N2—N1—Ir1 | 116.49 (12) | C13—C14—C15 | 128.3 (2) |
C4—N2—N1 | 110.26 (18) | C14—C15—H15A | 109.5 |
C4—N2—B1 | 129.95 (18) | C14—C15—H15B | 109.5 |
N1—N2—B1 | 119.62 (15) | H15A—C15—H15B | 109.5 |
C7—N3—N4 | 106.05 (15) | C14—C15—H15C | 109.5 |
C7—N3—Ir1 | 138.98 (13) | H15A—C15—H15C | 109.5 |
N4—N3—Ir1 | 114.84 (11) | H15B—C15—H15C | 109.5 |
C9—N4—N3 | 109.95 (16) | C17A—C16A—Ir1 | 111.13 (19) |
C9—N4—B1 | 127.88 (17) | C17A—C16A—H16A | 109.4 |
N3—N4—B1 | 121.00 (14) | Ir1—C16A—H16A | 109.4 |
C12—N5—N6 | 106.05 (15) | C17A—C16A—H16B | 109.4 |
C12—N5—Ir1 | 138.20 (13) | Ir1—C16A—H16B | 109.4 |
N6—N5—Ir1 | 115.71 (11) | H16A—C16A—H16B | 108.0 |
C14—N6—N5 | 109.89 (16) | C18A—C17A—C16A | 105.5 (3) |
C14—N6—B1 | 128.16 (17) | C18A—C17A—H17A | 110.6 |
N5—N6—B1 | 121.92 (15) | C16A—C17A—H17A | 110.6 |
N2—B1—N4 | 111.05 (16) | C18A—C17A—H17B | 110.6 |
N2—B1—N6 | 109.40 (15) | C16A—C17A—H17B | 110.6 |
N4—B1—N6 | 109.86 (17) | H17A—C17A—H17B | 108.8 |
N2—B1—H1 | 108.8 | C17A—C18A—C19A | 114.6 (3) |
N4—B1—H1 | 108.8 | C17A—C18A—H18A | 108.6 |
N6—B1—H1 | 108.8 | C19A—C18A—H18A | 108.6 |
C2—C1—H1A | 109.5 | C17A—C18A—H18B | 108.6 |
C2—C1—H1B | 109.5 | C19A—C18A—H18B | 108.6 |
H1A—C1—H1B | 109.5 | H18A—C18A—H18B | 107.6 |
C2—C1—H1C | 109.5 | C18A—C19A—Ir1 | 111.3 (2) |
H1A—C1—H1C | 109.5 | C18A—C19A—H19A | 109.4 |
H1B—C1—H1C | 109.5 | Ir1—C19A—H19A | 109.4 |
N1—C2—C3 | 110.2 (2) | C18A—C19A—H19B | 109.4 |
N1—C2—C1 | 124.98 (19) | Ir1—C19A—H19B | 109.4 |
C3—C2—C1 | 124.8 (2) | H19A—C19A—H19B | 108.0 |
C4—C3—C2 | 105.85 (19) | C18B—C17B—H17C | 108.7 |
C4—C3—H3 | 127.1 | C18B—C17B—H17D | 108.7 |
C2—C3—H3 | 127.1 | H17C—C17B—H17D | 107.6 |
N2—C4—C3 | 107.92 (19) | C17B—C18B—H18C | 110.6 |
N2—C4—C5 | 122.5 (2) | C17B—C18B—H18D | 110.6 |
C3—C4—C5 | 129.5 (2) | H18C—C18B—H18D | 108.7 |
C4—C5—H5A | 109.5 | P1—C20—H20A | 109.5 |
C4—C5—H5B | 109.5 | P1—C20—H20B | 109.5 |
H5A—C5—H5B | 109.5 | H20A—C20—H20B | 109.5 |
C4—C5—H5C | 109.5 | P1—C20—H20C | 109.5 |
H5A—C5—H5C | 109.5 | H20A—C20—H20C | 109.5 |
H5B—C5—H5C | 109.5 | H20B—C20—H20C | 109.5 |
C7—C6—H6A | 109.5 | P1—C21—H21A | 109.5 |
C7—C6—H6B | 109.5 | P1—C21—H21B | 109.5 |
H6A—C6—H6B | 109.5 | H21A—C21—H21B | 109.5 |
C7—C6—H6C | 109.5 | P1—C21—H21C | 109.5 |
H6A—C6—H6C | 109.5 | H21A—C21—H21C | 109.5 |
H6B—C6—H6C | 109.5 | H21B—C21—H21C | 109.5 |
N3—C7—C8 | 110.04 (17) | P1—C22—H22A | 109.5 |
N3—C7—C6 | 125.19 (18) | P1—C22—H22B | 109.5 |
C8—C7—C6 | 124.74 (18) | H22A—C22—H22B | 109.5 |
C9—C8—C7 | 106.32 (17) | P1—C22—H22C | 109.5 |
C9—C8—H8 | 126.8 | H22A—C22—H22C | 109.5 |
C7—C8—H8 | 126.8 | H22B—C22—H22C | 109.5 |
C19A—Ir1—P1—C22 | 139.06 (10) | C9—N4—B1—N6 | −117.7 (2) |
C16A—Ir1—P1—C22 | −138.85 (10) | N3—N4—B1—N6 | 48.6 (2) |
N3—Ir1—P1—C22 | −42.79 (10) | C14—N6—B1—N2 | −116.6 (2) |
N1—Ir1—P1—C22 | 46.56 (10) | N5—N6—B1—N2 | 65.6 (2) |
C19A—Ir1—P1—C20 | −103.39 (16) | C14—N6—B1—N4 | 121.2 (2) |
C16A—Ir1—P1—C20 | −21.30 (16) | N5—N6—B1—N4 | −56.6 (2) |
N3—Ir1—P1—C20 | 74.76 (16) | N2—N1—C2—C3 | −0.1 (2) |
N1—Ir1—P1—C20 | 164.11 (16) | Ir1—N1—C2—C3 | 176.12 (14) |
C19A—Ir1—P1—C21 | 17.18 (14) | N2—N1—C2—C1 | 179.2 (2) |
C16A—Ir1—P1—C21 | 99.27 (14) | Ir1—N1—C2—C1 | −4.5 (3) |
N3—Ir1—P1—C21 | −164.67 (13) | N1—C2—C3—C4 | 0.3 (2) |
N1—Ir1—P1—C21 | −75.32 (13) | C1—C2—C3—C4 | −179.0 (2) |
C19A—Ir1—N1—C2 | −40.51 (19) | N1—N2—C4—C3 | 0.4 (2) |
N5—Ir1—N1—C2 | −131.63 (19) | B1—N2—C4—C3 | −174.72 (18) |
N3—Ir1—N1—C2 | 146.71 (19) | N1—N2—C4—C5 | 178.7 (2) |
P1—Ir1—N1—C2 | 52.85 (19) | B1—N2—C4—C5 | 3.6 (3) |
C19A—Ir1—N1—N2 | 135.43 (13) | C2—C3—C4—N2 | −0.4 (2) |
N5—Ir1—N1—N2 | 44.31 (12) | C2—C3—C4—C5 | −178.6 (2) |
N3—Ir1—N1—N2 | −37.35 (12) | N4—N3—C7—C8 | −1.2 (2) |
P1—Ir1—N1—N2 | −131.21 (11) | Ir1—N3—C7—C8 | 174.17 (15) |
C2—N1—N2—C4 | −0.2 (2) | N4—N3—C7—C6 | 176.69 (19) |
Ir1—N1—N2—C4 | −177.32 (13) | Ir1—N3—C7—C6 | −7.9 (3) |
C2—N1—N2—B1 | 175.50 (16) | N3—C7—C8—C9 | 1.1 (2) |
Ir1—N1—N2—B1 | −1.7 (2) | C6—C7—C8—C9 | −176.8 (2) |
C16A—Ir1—N3—C7 | 37.8 (2) | N3—N4—C9—C8 | −0.2 (2) |
N5—Ir1—N3—C7 | 128.7 (2) | B1—N4—C9—C8 | 167.3 (2) |
P1—Ir1—N3—C7 | −52.3 (2) | N3—N4—C9—C10 | 179.1 (2) |
N1—Ir1—N3—C7 | −145.5 (2) | B1—N4—C9—C10 | −13.4 (3) |
C16A—Ir1—N3—N4 | −147.08 (13) | C7—C8—C9—N4 | −0.5 (2) |
N5—Ir1—N3—N4 | −56.23 (12) | C7—C8—C9—C10 | −179.7 (2) |
P1—Ir1—N3—N4 | 122.79 (12) | N6—N5—C12—C13 | 0.3 (2) |
N1—Ir1—N3—N4 | 29.60 (12) | Ir1—N5—C12—C13 | −177.23 (15) |
C7—N3—N4—C9 | 0.9 (2) | N6—N5—C12—C11 | −179.78 (19) |
Ir1—N3—N4—C9 | −175.78 (13) | Ir1—N5—C12—C11 | 2.7 (3) |
C7—N3—N4—B1 | −167.66 (17) | N5—C12—C13—C14 | 0.5 (2) |
Ir1—N3—N4—B1 | 15.7 (2) | C11—C12—C13—C14 | −179.4 (2) |
C19A—Ir1—N5—C12 | 45.3 (2) | N5—N6—C14—C13 | 1.3 (2) |
C16A—Ir1—N5—C12 | −36.8 (2) | B1—N6—C14—C13 | −176.71 (19) |
N3—Ir1—N5—C12 | −132.7 (2) | N5—N6—C14—C15 | −176.8 (2) |
N1—Ir1—N5—C12 | 137.5 (2) | B1—N6—C14—C15 | 5.2 (3) |
C19A—Ir1—N5—N6 | −132.07 (13) | C12—C13—C14—N6 | −1.1 (2) |
C16A—Ir1—N5—N6 | 145.77 (13) | C12—C13—C14—C15 | 176.9 (2) |
N3—Ir1—N5—N6 | 49.90 (12) | C19A—Ir1—C16A—C17A | 29.0 (2) |
N1—Ir1—N5—N6 | −39.86 (12) | N5—Ir1—C16A—C17A | 120.0 (2) |
C12—N5—N6—C14 | −1.0 (2) | N3—Ir1—C16A—C17A | −158.2 (2) |
Ir1—N5—N6—C14 | 177.18 (13) | P1—Ir1—C16A—C17A | −64.3 (2) |
C12—N5—N6—B1 | 177.15 (17) | Ir1—C16A—C17A—C18A | −42.2 (4) |
Ir1—N5—N6—B1 | −4.7 (2) | C16A—C17A—C18A—C19A | 36.2 (5) |
C4—N2—B1—N4 | −123.3 (2) | C17A—C18A—C19A—Ir1 | −14.3 (4) |
N1—N2—B1—N4 | 62.0 (2) | C16A—Ir1—C19A—C18A | −8.1 (2) |
C4—N2—B1—N6 | 115.2 (2) | N5—Ir1—C19A—C18A | −99.6 (2) |
N1—N2—B1—N6 | −59.4 (2) | P1—Ir1—C19A—C18A | 81.2 (2) |
C9—N4—B1—N2 | 121.1 (2) | N1—Ir1—C19A—C18A | 174.6 (2) |
N3—N4—B1—N2 | −72.6 (2) |
Experimental details
Crystal data | |
Chemical formula | [Ir(C4H8)(C15H22BN6)(C3H9P)] |
Mr | 621.57 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 173 |
a, b, c (Å) | 11.1865 (5), 18.1771 (8), 13.4748 (6) |
β (°) | 112.883 (1) |
V (Å3) | 2524.3 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.37 |
Crystal size (mm) | 0.22 × 0.15 × 0.14 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2003) |
Tmin, Tmax | 0.36, 0.47 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 37102, 7359, 6892 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.017, 0.040, 1.08 |
No. of reflections | 7359 |
No. of parameters | 298 |
No. of restraints | 25 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.86, −0.32 |
Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).
Ir1—C19A | 2.0780 (18) | Ir1—N3 | 2.2233 (15) |
Ir1—C16A | 2.0871 (19) | Ir1—P1 | 2.2381 (5) |
Ir1—N5 | 2.1781 (14) | Ir1—N1 | 2.2590 (15) |
Acknowledgements
Financial support (FEDER) from the Spanish Ministry of Science (projects CTQ2010–17476 and Consolider-Ingenio 2010 CSD2007–00006) and the Junta de Andalucía (grant FQM-119 and project P09-FQM-4832) is acknowledged.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Conejero, S., Paneque, M., Poveda, M. L., Santos, L. L. & Carmona, E. (2010). Acc. Chem. Res. 43, 572–580. Web of Science CrossRef CAS PubMed Google Scholar
Crabtree, R. H. (2005). The Organometallic Chemistry of the Transition Metals, 4th ed. New Jersey: John Wiley and Sons Inc. Google Scholar
Gómez, M., Paneque, M., Poveda, M. L. & Alvarez, E. (2007). J. Am. Chem. Soc. 129, 6092–6093. Web of Science PubMed Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Paneque, M., Poveda, M. L., Salazar, V., Gutiérrez-Puebla, E. & Monge, A. (2000). Organometallics, 19, 3120–3126. Web of Science CSD CrossRef CAS Google Scholar
Perutz, R. N. & Sabo-Etienne, S. (2007). Angew. Chem. Int. Ed. 46, 2578–2592. Web of Science CrossRef CAS Google Scholar
Pettinari, C. & Trofimenko, S. (2008). In Scorpionates II: Chelating Borate Ligands. London: Imperial College Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Iridium complexes with the stabilizing ligand hydrogen tris(3,5-dimethylpyrazolyl)borate (TpMe2) (Pettinari & Trofimenko, 2008) and containing carbon bearing co-ligands possess a rich chemistry (Conejero et al., 2010) and are capable of a broad range of bond activation and coupling reactions either via oxidative addition and reductive elimination (Crabtree, 2005) or via σ-CAM mechanisms (Perutz & Sabo-Etienne, 2007). When the conveniently accessible Ir(I) complex [(TpMe2)Ir(η4-CH2═CH—CH═CH2)] containing a π-bonded butadiene is treated with a Lewis base like PMe3 it transforms cleanly into the Ir(III) complex [(TpMe2)Ir(κ2-CH2—CH═CH—CH2)(PMe3)] in a process which implies the transformation of the butadiene ligand into a but-2-ene-1,4-diyl one (Paneque et al., 2000). This complex is inert to substitution of the phosphine ligand so the metallacyclic structure can experience some cyclopentene-like reactivity without rupturing the Ir—C bonds. The analogous product with a CO ligand instead of PMe3 behaves similarly and experiences for instance a series of reactions (subsequent hydroboration-oxidation of double bond, alcohol oxidation to ketone and α-formylation of ketone) leading to the formation a new α-formyl-3-iridacyclopentanone (Gómez et al., 2007). The catalytic hydrogenation of the PMe3 derivative under slightly harsher conditions leads to the formation of the title compound [(TpMe2)Ir(κ2-CH2—CH2—CH2—CH2)(PMe3)], (I). A view of the complex is shown in Fig. 1. Iridium has a modestly distorted octahedral coordination with bond lengths given in Table 1. Bond angles about Ir are in the ranges 82.12 (8)–96.06 (7)° and 172.64 (7)–175.42 (4)° with the smallest angle (C—Ir—C = 82.12 (8)°) for the Ir butane-1,4-diyl ring. This ring has an envelope conformation but is disordered because either the 2nd or the 3rd carbon atom of the butane fragment is the flap atom in 1:1 ratio (cf. Fig. 1). In the first case Ir1, C16A, C18A, and C19A are flat within 0.053 Å mean deviation from planarity and C17A is the flap atom that deviates by 0.569 (6) Å from the mean plane of the four. In the second case Ir1, C16B, C17B, and C19B are flat (0.028 Å mean deviation) and C18B is the flap atom which deviates by 0.537 (7) Å from the corresponding mean plane. Except for the envelope conformation of the IrC4 ring the molecular structure of I is closely similar to that of [(TpMe2)Ir(κ2-CH2—CH═CH—CH2)(PMe3)] (Paneque et al., 2000; for crystal structure data see Cambridge Crystallographic Database, refcode ABIBOC; CCD version 5.33; Allen, 2002). This includes also bond lengths and bond angles about Ir, which for the latter complex are: Ir—N = 2.25 (1), 2.22 (1), 2.16 (1) Å; Ir—C = 2.09 (1), 2.09 (1) Å, Ir—P = 2.234 (3) Å; the C═C bond in the olefinic IrC4 ring is 1.27 (2) Å compared with C—C = 1.536 (1) Å for the aliphatic IrC4 ring in I. Despite similar shapes of the two complexes under consideration and analogous crystallization conditions (see Experimental) their crystal structures are dissimilar: [(TpMe2)Ir(κ2-CH2—CH═CH—CH2)(PMe3)] crystallized as a dichloromethane solvate of triclinic symmetry (Paneque et al., 2000), whereas I is monoclinic and unsolvated. In the lack of distinctly polar groups on the outer surface of the molecules of I, their crystal structure is held together essentially by van der Waals interactions. The most prominent feature of the crystal structure of I are columns of tightly packed molecules extending along [101], as exemplified in Fig. 2. Mutual contacts between the columns perpendicular to [101] are more open and appear to represent weaker coherence. In the crystal structure of [(TpMe2)Ir(κ2-CH2—CH═CH—CH2)(PMe3)].1/4CH2Cl2 (Paneque et al., 2000) the column motif of I is absent.