organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E,E,E)-1,6-Bis(4-chloro­phen­yl)hexa-1,3,5-triene

aDepartmemt of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 030006, People's Republic of China
*Correspondence e-mail: liubin@sxu.edu.cn

(Received 2 April 2013; accepted 6 April 2013; online 13 April 2013)

The title mol­ecule, C18H14Cl2, lies about an inversion centre. The hexa­triene chain is planar with a maximum deviation of 0.0001 (17) Å. The torsion angle of the single bond between the chain and the benzene ring is −168.49 (17)°. In the crystal, the shortest inter­molecular distance between the Cl atoms is 4.0785 (11) Å.

Related literature

For the preparation, see: Spangler et al. (1989[Spangler, C. W., McCoy, R. K., Dembek, A. A., Sapochak, L. S. & Gates, B. D. (1989). J. Chem. Soc. Perkin Trans 1, pp. 151-154.]). For luminescence and fluorescent properties of trans-diphenyl polyenes, see: Alford & Palmer (1986[Alford, P. C. & Palmer, T. F. (1986). Chem. Phys. Lett. 127, 19-25.]); Sonoda et al.(2003[Sonoda, Y., Kawanishi, Y. & Goto, M. (2003). Acta Cryst. C59, o311-o313.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14Cl2

  • Mr = 301.19

  • Monoclinic, P 21 /c

  • a = 15.6277 (7) Å

  • b = 4.0784 (2) Å

  • c = 12.1026 (5) Å

  • β = 105.810 (4)°

  • V = 742.20 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 291 K

  • 0.42 × 0.38 × 0.30 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero, Eos) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.667, Tmax = 1.000

  • 2513 measured reflections

  • 1560 independent reflections

  • 1214 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.105

  • S = 1.06

  • 1560 reflections

  • 91 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2; software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The luminescence properties of the linear all-trans-diphenyl polyenes Ph-(CH=CH)n—Ph (DPH) have been the subject of numerous investigations(Sonoda et al.(2003)). The emission properties of DPH and its derivatives in solution have been extensively studied because of its unique fluorescence behavior(Alford & Palmer,1986). DPH is known to exhibit dual fluorescence from S1 and S2 at thermal equilibrium. The crystal structure of (E,E,E)-1,6-bis(2,4-dichlorophenyl)hexa-1,3,5-triene has been studied (Sonoda et al.2003). In the crystal structure of the related compound, E,E,E-1,6-bis(p-chlorophenyl)- 1,3,5-hexatriene, the benzene rings are π···π stacked with unit translation along the b-axis with a centroid to centroid distance of 4.0785 (11)Å, a perpendicular distance between the planes of 3.4728 (8)Å and a slippage of 2.139Å.

Related literature top

For the preparation, see: Spangler et al. (1989). For luminescence and fluorescent properties of trans-diphenyl polyenes, see: Alford & Palmer (1986); Sonoda et al.(2003).

Experimental top

The compound was prepared and purified as described previously (Spangler et al.1989). Crystals suitable for the X-ray diffraction study was obtained free evaporation of an solvent chloroform from a highly diluted solution in the dark at room temperature.

Refinement top

H atoms attached to C atoms were placed in geometrically idealized positions with Csp2 = 0.930 Å,and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq.

Structure description top

The luminescence properties of the linear all-trans-diphenyl polyenes Ph-(CH=CH)n—Ph (DPH) have been the subject of numerous investigations(Sonoda et al.(2003)). The emission properties of DPH and its derivatives in solution have been extensively studied because of its unique fluorescence behavior(Alford & Palmer,1986). DPH is known to exhibit dual fluorescence from S1 and S2 at thermal equilibrium. The crystal structure of (E,E,E)-1,6-bis(2,4-dichlorophenyl)hexa-1,3,5-triene has been studied (Sonoda et al.2003). In the crystal structure of the related compound, E,E,E-1,6-bis(p-chlorophenyl)- 1,3,5-hexatriene, the benzene rings are π···π stacked with unit translation along the b-axis with a centroid to centroid distance of 4.0785 (11)Å, a perpendicular distance between the planes of 3.4728 (8)Å and a slippage of 2.139Å.

For the preparation, see: Spangler et al. (1989). For luminescence and fluorescent properties of trans-diphenyl polyenes, see: Alford & Palmer (1986); Sonoda et al.(2003).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: OLEX2 (Dolomanov et al., 2009) and SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The structure of the title compound in 30% probability ellipsoids. H atoms are shown as small spheres of arbitrary radii.
trans,trans,trans-1,6-Bis(4-chlorophenyl)hexa-1,3,5-triene top
Crystal data top
C18H14Cl2F(000) = 312
Mr = 301.19Dx = 1.348 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybcCell parameters from 971 reflections
a = 15.6277 (7) Åθ = 3.4–28.6°
b = 4.0784 (2) ŵ = 0.42 mm1
c = 12.1026 (5) ÅT = 291 K
β = 105.810 (4)°Block, yellow
V = 742.20 (5) Å30.42 × 0.38 × 0.30 mm
Z = 2
Data collection top
Agilent SuperNova (Dual, Cu at zero, Eos)
diffractometer
1560 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1214 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.013
Detector resolution: 16.0733 pixels mm-1θmax = 26.7°, θmin = 3.4°
ω scansh = 1119
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 45
Tmin = 0.667, Tmax = 1.000l = 1515
2513 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.1061P]
where P = (Fo2 + 2Fc2)/3
1560 reflections(Δ/σ)max = 0.001
91 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C18H14Cl2V = 742.20 (5) Å3
Mr = 301.19Z = 2
Monoclinic, P21/cMo Kα radiation
a = 15.6277 (7) ŵ = 0.42 mm1
b = 4.0784 (2) ÅT = 291 K
c = 12.1026 (5) Å0.42 × 0.38 × 0.30 mm
β = 105.810 (4)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Eos)
diffractometer
1560 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
1214 reflections with I > 2σ(I)
Tmin = 0.667, Tmax = 1.000Rint = 0.013
2513 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.06Δρmax = 0.17 e Å3
1560 reflectionsΔρmin = 0.21 e Å3
91 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.94481 (3)0.31466 (16)0.62511 (5)0.0747 (3)
C10.70850 (12)0.6448 (4)0.44590 (15)0.0465 (4)
H10.66230.76510.46080.056*
C20.70013 (10)0.5327 (4)0.33486 (14)0.0396 (4)
C30.61893 (11)0.6044 (4)0.24400 (15)0.0440 (4)
H30.58060.75760.26170.053*
C40.59348 (11)0.4758 (4)0.13885 (14)0.0428 (4)
H40.63010.31870.11960.051*
C50.51318 (11)0.5638 (4)0.05308 (14)0.0442 (4)
H50.47680.72100.07270.053*
C60.78361 (12)0.5819 (4)0.53446 (15)0.0491 (5)
H60.78790.65930.60810.059*
C70.84667 (12)0.2943 (5)0.40343 (16)0.0512 (5)
H70.89360.17690.38920.061*
C80.77155 (11)0.3594 (4)0.31545 (15)0.0462 (4)
H80.76850.28630.24170.055*
C90.85169 (11)0.4047 (4)0.51293 (15)0.0473 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0578 (3)0.0907 (5)0.0617 (4)0.0025 (3)0.0072 (2)0.0067 (3)
C10.0474 (10)0.0494 (10)0.0469 (10)0.0036 (8)0.0197 (8)0.0014 (9)
C20.0397 (8)0.0400 (9)0.0410 (9)0.0025 (7)0.0141 (7)0.0023 (8)
C30.0416 (9)0.0438 (10)0.0492 (10)0.0039 (7)0.0166 (8)0.0027 (8)
C40.0401 (8)0.0418 (9)0.0475 (10)0.0008 (7)0.0137 (7)0.0052 (8)
C50.0399 (9)0.0445 (10)0.0492 (9)0.0010 (7)0.0135 (7)0.0071 (8)
C60.0569 (11)0.0522 (11)0.0392 (9)0.0052 (9)0.0145 (8)0.0021 (8)
C70.0406 (9)0.0593 (12)0.0542 (11)0.0056 (8)0.0137 (8)0.0018 (10)
C80.0458 (9)0.0535 (11)0.0408 (9)0.0003 (8)0.0144 (7)0.0047 (8)
C90.0432 (9)0.0486 (10)0.0462 (10)0.0058 (8)0.0054 (7)0.0060 (9)
Geometric parameters (Å, º) top
Cl1—C91.7376 (17)C4—H40.9300
C1—C61.381 (2)C5—C5i1.342 (3)
C1—C21.392 (2)C5—H50.9300
C1—H10.9300C6—C91.369 (2)
C2—C81.394 (2)C6—H60.9300
C2—C31.464 (2)C7—C81.379 (2)
C3—C41.333 (2)C7—C91.382 (3)
C3—H30.9300C7—H70.9300
C4—C51.439 (2)C8—H80.9300
C6—C1—C2121.66 (16)C4—C5—H5117.5
C6—C1—H1119.2C9—C6—C1119.39 (17)
C2—C1—H1119.2C9—C6—H6120.3
C1—C2—C8117.41 (15)C1—C6—H6120.3
C1—C2—C3119.58 (15)C8—C7—C9119.45 (17)
C8—C2—C3122.99 (15)C8—C7—H7120.3
C4—C3—C2127.62 (16)C9—C7—H7120.3
C4—C3—H3116.2C7—C8—C2121.33 (17)
C2—C3—H3116.2C7—C8—H8119.3
C3—C4—C5124.43 (17)C2—C8—H8119.3
C3—C4—H4117.8C6—C9—C7120.72 (17)
C5—C4—H4117.8C6—C9—Cl1119.46 (15)
C5i—C5—C4125.0 (2)C7—C9—Cl1119.81 (14)
C5i—C5—H5117.5
C6—C1—C2—C81.4 (3)C9—C7—C8—C20.5 (3)
C6—C1—C2—C3179.69 (16)C1—C2—C8—C71.6 (3)
C1—C2—C3—C4168.49 (17)C3—C2—C8—C7179.46 (16)
C8—C2—C3—C412.6 (3)C1—C6—C9—C71.3 (3)
C2—C3—C4—C5178.71 (16)C1—C6—C9—Cl1178.05 (13)
C3—C4—C5—C5i180.0 (2)C8—C7—C9—C61.0 (3)
C2—C1—C6—C90.1 (3)C8—C7—C9—Cl1178.31 (14)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H14Cl2
Mr301.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)15.6277 (7), 4.0784 (2), 12.1026 (5)
β (°) 105.810 (4)
V3)742.20 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.42 × 0.38 × 0.30
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero, Eos)
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.667, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
2513, 1560, 1214
Rint0.013
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.105, 1.06
No. of reflections1560
No. of parameters91
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.21

Computer programs: CrysAlis PRO (Agilent, 2012), SUPERFLIP (Palatinus & Chapuis, 2007), OLEX2 (Dolomanov et al., 2009) and SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

We acknowledge the Scientific and Technological Development Project funding of colleges and universities in Shanxi Province (20111023)

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAlford, P. C. & Palmer, T. F. (1986). Chem. Phys. Lett. 127, 19–25.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSonoda, Y., Kawanishi, Y. & Goto, M. (2003). Acta Cryst. C59, o311–o313.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpangler, C. W., McCoy, R. K., Dembek, A. A., Sapochak, L. S. & Gates, B. D. (1989). J. Chem. Soc. Perkin Trans 1, pp. 151–154.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds