organic compounds
3,4,5-Trimethoxy-4′-methylbiphenyl
aUniversity of Jyväskylä, Department of Chemistry, PO Box 35, FI-40014 JY, Finland, bVTT Technical Research Centre of Finland, Tampere, FIN-33101, Finland, and cMolecular Materials, Department of Applied Physics, School of Science, Aalto University, PO Box 15100, FI-00076 Aalto, Finland
*Correspondence e-mail: sami.nummelin@aalto.fi
In the title compound, C16H18O3, the dihedral angle between the benzene rings is 33.4 (2)°. In the crystal, molecules are packed in a zigzag arrangement along the b-axis and are interconnected via weak C—H⋯O hydrogen bonds, and C—H⋯π interactions involving the methoxy groups and the benzene rings of neighbouring molecules.
Related literature
For related single-crystal structures based on AB2– and AB3-branched biphenyls, see: Lahtinen et al. (2013a,b,c); Lahtinen & Nummelin (2013). For synthesis of the title compound, see: Percec et al. (2006, 2007). For crystal structures of dendrimers, see: Mekelburger et al. (1993); Nättinen & Rissanen (2003); Ropponen et al. (2004a). For related Percec-type self-assembling supramolecular dendrimers, see: Percec et al. (2006, 2007, 2008); Roche & Percec (2013). For dendrimersomes, see: Percec et al. (2010). For aliphatic and aromatic polyester building blocks for dendrimersomes, see: Ropponen et al. (2004b,c); Nummelin et al. (2000).
Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 1998); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2.
Supporting information
https://doi.org/10.1107/S1600536813010969/go2088sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813010969/go2088Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536813010969/go2088Isup3.cml
A flame-dried Schlenk-tube was loaded with p-tolylboronic acid (3.3 g, 24.3 mmol), KF (2.8 g, 48.6 mmol), 3,4,5-trimethoxy bromobenzene (4.0 g, 16.2 mmol), Pd(OAc)2 (36 mg, 0.16 mmol, 1.0 mol%) and 2-(di-tert-butylphosphino)biphenyl (97 mg, 0.33 mmol, 2.0 mol%). The tube was sealed with a teflon screwcap and evacuated/backfilled with argon (5x). Then dry, degassed THF (30 ml) was added via syringe and the reaction mixture was stirred at RT until the aryl bromide had been completely consumed as judged by TLC analysis. The mixture was diluted with ether, filtered, and washed with 1M NaOH. The aqueous layer was extracted with ether, the combined organic layer was washed with brine and dried with MgSO4. After evaporation the pale yellow solid was chromatographed on silica gel using dichloromethane as
Recrystallization from ethanol gave 3.9 g (93%) of the title compound (I) as a white crystalline solid. Crystals suitable for a single-crystal were obtained from a slow evaporation of the solvent.Hydrogen atoms were calculated to their positions as riding atoms (C host) using isotropic displacement parameters that were fixed to be 1.2 or 1.5 times larger than those of the attached non-hydrogen atom.
3,4,5-Trimethoxy-4'-methyl biphenyl was synthesized in a gram quantities by employing a metal catalyzed coupling reaction between an aryl bromide and p-tolylboronic acid (Percec et al. 2006, 2007). The title compound (I) was used as a building block for the construction of
AB2– and AB3-branched biphenyl dendrons (Percec et al. 2006) and hybrid (phenyl–biphenyl) dendrons (Percec et al. 2007). With few exceptions (e.g. Mekelburger et al. 1993; Nättinen & Rissanen 2003; Ropponen et al. 2004a) most dendrimers are liquid or amorphous. However, Percec-type dendrons and dendrimers have the ability to self-assemble in the solid state and in selected solvents into supramolecular architectures, such as hollow or non-hollow columns or spheres, which, in turn, self-organize into periodic lattices or quasi-periodic arrays in the solid state (Percec et al. 2006, 2007, 2008). In addition, biphenyls (Percec et al. 2006, 2007) are key building blocks on expanding the scope of libraries of Janus-dendrimers (Ropponen et al. 2004b; Percec et al. 2010) based on hydrophobic Percec-type building blocks and hydrophilic aliphatic and aromatic polyester building blocks. (Ropponen et al. 2004b,c; Nummelin et al. 2000). Janus-dendrimers self-assemble into uniform liposome-like structures denoted as dendrimersomes (Percec et al. 2010) and other complex adaptable systems (Roche & Percec 2013) in water and selected biological buffers. Herein, we report the title compound 3,4,5-trimethoxy-4'-methyl biphenyl (I) as a contribution to a structural study of biphenyl derivatives (Lahtinen et al. 2013a,b,c; Lahtinen & Nummelin 2013).Compound (I) has a dihedral angle between the aromatic rings of 33.4 (2)°, and is analogous to various biphenyl structures (Lahtinen et al. 2103a,b). The methoxy groups in 3- and 5-positions (Fig. 1) are co-planar with the [C(8)>C(19)] ring with the dihedral angles of 0.2 (2)° and 0.7 (2)°, respectively, whereas the methoxy group in the 4-position is tilted out from the plane with angle 113.32 (13)°. The molecules are packed in a zigzag formation along b -axis. This formation origates from antiparallel rows of molecules running through c -axis (Figures 2 and 3). Three weak CH···O hydrogen bonds occur with donor-acceptor d(D···A) bond distances of 3.382 (2), 3.465 (2), and 3.488 (2) Å, respectively (Fig. 4). Moreover, a network of weak CH···π interactions is observable between methoxy groups and nearby phenyl groups having ring-centroid to methyl(C) distances of 3.692 (2) - 4.061 (2)Å.
For related single-crystal structures based on AB2– and AB3-branched biphenyls, see: Lahtinen et al. (2013a,b,c); Lahtinen & Nummelin (2013). For synthesis of the title compound, see Percec et al. (2006, 2007). For selected and sparse examples on single-crystal structures of dendrimers, see Mekelburger et al. (1993); Nättinen & Rissanen (2003); Ropponen et al. (2004a). For related Percec-type self-assembling supramolecular dendrimers, see: Percec et al. (2006, 2007, 2008); Roche & Percec (2013). For dendrimersomes, see Percec et al. (2010). For aliphatic and aromatic polyester building blocks for dendrimersomes, see Ropponen et al. (2004b,c); Nummelin et al. (2000).
Data collection: COLLECT (Nonius, 1998); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).Fig. 1. The molecular structure and atomic numbering of the title compound showing 50% probability displacement ellipsoids. | |
Fig. 2. Antiparallel rows of molecules viewed along a-axis. | |
Fig. 3. The zigzag arrangement of the molecules viewed along c-axis. | |
Fig. 4. CH···O and CH···π interactions shown by blue and black contact lines, respectively. |
C16H18O3 | Dx = 1.254 Mg m−3 |
Mr = 258.30 | Mo Kα radiation, λ = 0.71069 Å |
Orthorhombic, Pbca | Cell parameters from 9816 reflections |
a = 8.4669 (2) Å | θ = 2.9–25.7° |
b = 15.0636 (3) Å | µ = 0.09 mm−1 |
c = 21.4516 (4) Å | T = 173 K |
V = 2735.98 (10) Å3 | Plate, colourless |
Z = 8 | 0.3 × 0.25 × 0.2 mm |
F(000) = 1104 |
Bruker–Nonius KappaCCD diffractometer equipped with an APEXII detector | 2589 independent reflections |
Radiation source: sealed tube | 1984 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.052 |
Detector resolution: 8 pixels mm-1 | θmax = 25.7°, θmin = 2.9° |
ω and φ scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −16→18 |
Tmin = 0.975, Tmax = 0.983 | l = −25→26 |
17856 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0571P)2 + 1.2608P] where P = (Fo2 + 2Fc2)/3 |
2589 reflections | (Δ/σ)max < 0.001 |
173 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
0 constraints |
C16H18O3 | V = 2735.98 (10) Å3 |
Mr = 258.30 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 8.4669 (2) Å | µ = 0.09 mm−1 |
b = 15.0636 (3) Å | T = 173 K |
c = 21.4516 (4) Å | 0.3 × 0.25 × 0.2 mm |
Bruker–Nonius KappaCCD diffractometer equipped with an APEXII detector | 2589 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1984 reflections with I > 2σ(I) |
Tmin = 0.975, Tmax = 0.983 | Rint = 0.052 |
17856 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.28 e Å−3 |
2589 reflections | Δρmin = −0.20 e Å−3 |
173 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.5594 (2) | −0.00288 (14) | 0.14685 (10) | 0.0423 (5) | |
H1A | −0.6400 | 0.0432 | 0.1521 | 0.063* | |
H1B | −0.5619 | −0.0432 | 0.1827 | 0.063* | |
H1C | −0.5807 | −0.0364 | 0.1086 | 0.063* | |
C2 | −0.3984 (2) | 0.03996 (12) | 0.14242 (9) | 0.0324 (4) | |
C3 | −0.3444 (2) | 0.07517 (12) | 0.08647 (9) | 0.0333 (4) | |
H3 | −0.4095 | 0.0715 | 0.0505 | 0.040* | |
C4 | −0.1974 (2) | 0.11563 (11) | 0.08190 (8) | 0.0305 (4) | |
H4 | −0.1630 | 0.1387 | 0.0430 | 0.037* | |
C5 | −0.10199 (19) | 0.12239 (10) | 0.13322 (7) | 0.0230 (4) | |
C6 | −0.1534 (2) | 0.08818 (12) | 0.18971 (8) | 0.0284 (4) | |
H6 | −0.0881 | 0.0929 | 0.2256 | 0.034* | |
C7 | −0.2995 (2) | 0.04713 (11) | 0.19405 (8) | 0.0311 (4) | |
H7 | −0.3327 | 0.0235 | 0.2329 | 0.037* | |
C8 | 0.0553 (2) | 0.17020 (11) | 0.12955 (8) | 0.0245 (4) | |
C9 | 0.1441 (2) | 0.16780 (11) | 0.07478 (7) | 0.0248 (4) | |
H9 | 0.1084 | 0.1337 | 0.0403 | 0.030* | |
C10 | 0.28466 (19) | 0.21507 (11) | 0.07052 (7) | 0.0229 (4) | |
C12 | 0.3296 (2) | 0.16804 (13) | −0.03432 (8) | 0.0356 (5) | |
H12A | 0.4071 | 0.1748 | −0.0679 | 0.053* | |
H12B | 0.2268 | 0.1904 | −0.0483 | 0.053* | |
H12C | 0.3201 | 0.1052 | −0.0232 | 0.053* | |
C13 | 0.33806 (19) | 0.26545 (11) | 0.12094 (7) | 0.0233 (4) | |
C15 | 0.4574 (2) | 0.40464 (12) | 0.10715 (9) | 0.0347 (4) | |
H15A | 0.5609 | 0.4335 | 0.1040 | 0.052* | |
H15B | 0.3993 | 0.4294 | 0.1426 | 0.052* | |
H15C | 0.3977 | 0.4150 | 0.0687 | 0.052* | |
C16 | 0.2514 (2) | 0.26602 (11) | 0.17617 (7) | 0.0244 (4) | |
C18 | 0.2258 (2) | 0.31828 (12) | 0.28086 (7) | 0.0294 (4) | |
H18A | 0.2816 | 0.3556 | 0.3112 | 0.044* | |
H18B | 0.2148 | 0.2581 | 0.2976 | 0.044* | |
H18C | 0.1209 | 0.3433 | 0.2728 | 0.044* | |
C19 | 0.1099 (2) | 0.21951 (11) | 0.18045 (8) | 0.0251 (4) | |
H19 | 0.0502 | 0.2212 | 0.2179 | 0.030* | |
O11 | 0.38021 (14) | 0.21736 (8) | 0.01893 (5) | 0.0286 (3) | |
O14 | 0.47847 (13) | 0.31138 (8) | 0.11607 (5) | 0.0270 (3) | |
O17 | 0.31410 (14) | 0.31530 (8) | 0.22369 (5) | 0.0309 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0279 (10) | 0.0437 (12) | 0.0554 (13) | −0.0092 (9) | 0.0020 (9) | −0.0026 (10) |
C2 | 0.0239 (9) | 0.0260 (9) | 0.0473 (11) | −0.0003 (8) | 0.0001 (8) | −0.0004 (8) |
C3 | 0.0298 (10) | 0.0290 (10) | 0.0413 (10) | −0.0032 (8) | −0.0080 (8) | 0.0006 (8) |
C4 | 0.0309 (10) | 0.0260 (9) | 0.0347 (9) | −0.0022 (8) | 0.0003 (8) | 0.0020 (8) |
C5 | 0.0222 (9) | 0.0167 (8) | 0.0302 (8) | 0.0055 (7) | 0.0031 (7) | 0.0009 (6) |
C6 | 0.0242 (9) | 0.0265 (9) | 0.0346 (9) | −0.0002 (7) | −0.0020 (7) | −0.0013 (7) |
C7 | 0.0294 (10) | 0.0273 (10) | 0.0366 (10) | −0.0011 (8) | 0.0050 (8) | 0.0009 (8) |
C8 | 0.0201 (9) | 0.0225 (8) | 0.0307 (9) | 0.0008 (7) | −0.0023 (7) | 0.0020 (7) |
C9 | 0.0251 (9) | 0.0242 (9) | 0.0252 (8) | −0.0010 (7) | −0.0038 (7) | −0.0020 (7) |
C10 | 0.0218 (9) | 0.0241 (9) | 0.0229 (8) | 0.0025 (7) | 0.0009 (6) | 0.0027 (6) |
C12 | 0.0410 (11) | 0.0395 (11) | 0.0262 (9) | −0.0062 (9) | 0.0034 (8) | −0.0062 (8) |
C13 | 0.0173 (8) | 0.0243 (9) | 0.0283 (9) | 0.0003 (7) | −0.0006 (6) | 0.0013 (7) |
C15 | 0.0336 (11) | 0.0278 (10) | 0.0426 (11) | −0.0050 (8) | 0.0047 (9) | −0.0012 (8) |
C16 | 0.0213 (8) | 0.0259 (9) | 0.0259 (8) | 0.0011 (7) | −0.0029 (7) | −0.0034 (7) |
C18 | 0.0287 (10) | 0.0335 (10) | 0.0259 (9) | −0.0017 (8) | 0.0027 (7) | −0.0037 (7) |
C19 | 0.0219 (9) | 0.0272 (9) | 0.0261 (9) | 0.0001 (7) | 0.0018 (7) | 0.0002 (7) |
O11 | 0.0276 (7) | 0.0353 (7) | 0.0229 (6) | −0.0037 (5) | 0.0021 (5) | −0.0031 (5) |
O14 | 0.0191 (6) | 0.0283 (7) | 0.0335 (7) | −0.0037 (5) | 0.0015 (5) | −0.0025 (5) |
O17 | 0.0247 (6) | 0.0421 (8) | 0.0259 (6) | −0.0074 (6) | 0.0028 (5) | −0.0094 (5) |
C1—H1A | 0.9800 | C10—C13 | 1.396 (2) |
C1—H1B | 0.9800 | C10—O11 | 1.3713 (19) |
C1—H1C | 0.9800 | C12—H12A | 0.9800 |
C1—C2 | 1.511 (3) | C12—H12B | 0.9800 |
C2—C3 | 1.389 (3) | C12—H12C | 0.9800 |
C2—C7 | 1.393 (3) | C12—O11 | 1.429 (2) |
C3—H3 | 0.9500 | C13—C16 | 1.394 (2) |
C3—C4 | 1.389 (3) | C13—O14 | 1.3795 (19) |
C4—H4 | 0.9500 | C15—H15A | 0.9800 |
C4—C5 | 1.370 (2) | C15—H15B | 0.9800 |
C5—C6 | 1.387 (2) | C15—H15C | 0.9800 |
C5—C8 | 1.516 (2) | C15—O14 | 1.429 (2) |
C6—H6 | 0.9500 | C16—C19 | 1.391 (2) |
C6—C7 | 1.386 (3) | C16—O17 | 1.3683 (19) |
C7—H7 | 0.9500 | C18—H18A | 0.9800 |
C8—C9 | 1.396 (2) | C18—H18B | 0.9800 |
C8—C19 | 1.399 (2) | C18—H18C | 0.9800 |
C9—H9 | 0.9500 | C18—O17 | 1.4370 (19) |
C9—C10 | 1.389 (2) | C19—H19 | 0.9500 |
H1A—C1—H1B | 109.5 | O11—C10—C13 | 114.86 (14) |
H1A—C1—H1C | 109.5 | H12A—C12—H12B | 109.5 |
H1B—C1—H1C | 109.5 | H12A—C12—H12C | 109.5 |
C2—C1—H1A | 109.5 | H12B—C12—H12C | 109.5 |
C2—C1—H1B | 109.5 | O11—C12—H12A | 109.5 |
C2—C1—H1C | 109.5 | O11—C12—H12B | 109.5 |
C3—C2—C1 | 120.94 (17) | O11—C12—H12C | 109.5 |
C3—C2—C7 | 117.35 (16) | C16—C13—C10 | 119.42 (15) |
C7—C2—C1 | 121.70 (17) | O14—C13—C10 | 119.53 (14) |
C2—C3—H3 | 119.2 | O14—C13—C16 | 121.01 (14) |
C4—C3—C2 | 121.55 (17) | H15A—C15—H15B | 109.5 |
C4—C3—H3 | 119.2 | H15A—C15—H15C | 109.5 |
C3—C4—H4 | 119.9 | H15B—C15—H15C | 109.5 |
C5—C4—C3 | 120.30 (17) | O14—C15—H15A | 109.5 |
C5—C4—H4 | 119.9 | O14—C15—H15B | 109.5 |
C4—C5—C6 | 119.32 (16) | O14—C15—H15C | 109.5 |
C4—C5—C8 | 120.80 (15) | C19—C16—C13 | 120.44 (15) |
C6—C5—C8 | 119.83 (15) | O17—C16—C13 | 115.61 (15) |
C5—C6—H6 | 119.9 | O17—C16—C19 | 123.95 (15) |
C7—C6—C5 | 120.29 (16) | H18A—C18—H18B | 109.5 |
C7—C6—H6 | 119.9 | H18A—C18—H18C | 109.5 |
C2—C7—H7 | 119.4 | H18B—C18—H18C | 109.5 |
C6—C7—C2 | 121.19 (17) | O17—C18—H18A | 109.5 |
C6—C7—H7 | 119.4 | O17—C18—H18B | 109.5 |
C9—C8—C5 | 120.31 (14) | O17—C18—H18C | 109.5 |
C9—C8—C19 | 119.55 (15) | C8—C19—H19 | 120.0 |
C19—C8—C5 | 120.11 (15) | C16—C19—C8 | 120.02 (15) |
C8—C9—H9 | 119.9 | C16—C19—H19 | 120.0 |
C10—C9—C8 | 120.22 (15) | C10—O11—C12 | 117.08 (13) |
C10—C9—H9 | 119.9 | C13—O14—C15 | 113.32 (13) |
C9—C10—C13 | 120.32 (15) | C16—O17—C18 | 116.80 (13) |
O11—C10—C9 | 124.82 (14) | ||
C1—C2—C3—C4 | 179.25 (17) | C9—C8—C19—C16 | 0.3 (2) |
C1—C2—C7—C6 | −178.67 (17) | C9—C10—C13—C16 | 1.7 (2) |
C2—C3—C4—C5 | −0.5 (3) | C9—C10—C13—O14 | 179.48 (14) |
C3—C2—C7—C6 | 0.3 (3) | C9—C10—O11—C12 | 0.7 (2) |
C3—C4—C5—C6 | 0.2 (3) | C10—C13—C16—C19 | −2.3 (2) |
C3—C4—C5—C8 | −177.12 (16) | C10—C13—C16—O17 | 178.43 (15) |
C4—C5—C6—C7 | 0.4 (3) | C10—C13—O14—C15 | 104.14 (17) |
C4—C5—C8—C9 | −33.4 (2) | C13—C10—O11—C12 | −179.01 (15) |
C4—C5—C8—C19 | 144.48 (17) | C13—C16—C19—C8 | 1.4 (3) |
C5—C6—C7—C2 | −0.6 (3) | C13—C16—O17—C18 | 178.99 (15) |
C5—C8—C9—C10 | 176.97 (15) | C16—C13—O14—C15 | −78.13 (19) |
C5—C8—C19—C16 | −177.60 (15) | C19—C8—C9—C10 | −0.9 (2) |
C6—C5—C8—C9 | 149.32 (16) | C19—C16—O17—C18 | −0.2 (2) |
C6—C5—C8—C19 | −32.8 (2) | O11—C10—C13—C16 | −178.55 (14) |
C7—C2—C3—C4 | 0.3 (3) | O11—C10—C13—O14 | −0.8 (2) |
C8—C5—C6—C7 | 177.71 (15) | O14—C13—C16—C19 | 179.92 (15) |
C8—C9—C10—C13 | −0.1 (2) | O14—C13—C16—O17 | 0.7 (2) |
C8—C9—C10—O11 | −179.81 (15) | O17—C16—C19—C8 | −179.47 (15) |
Cg1 and Cg2 are the centroids of the C2–C7 and C8–C10/C13/C16/C19 aromatic rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O11i | 0.95 | 2.57 | 3.382 (2) | 144 |
C12—H12B···O14i | 0.98 | 2.56 | 3.465 (2) | 154 |
C18—H18C···O17ii | 0.98 | 2.63 | 3.488 (2) | 146 |
C15—H15A···Cg1iii | 0.98 | 2.84 | 3.692 (2) | 139 |
C12—H12A···Cg2iv | 0.98 | 3.19 | 4.061 (2) | 132 |
C18—H18B···Cg1v | 0.98 | 3.01 | 3.976 (2) | 149 |
Symmetry codes: (i) x−1/2, −y+1/2, −z; (ii) x−1/2, y, −z+1/2; (iii) x−1/2, −y+3/2, −z+1; (iv) x+1/2, −y+1/2, −z; (v) −x+3/2, −y+1, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C16H18O3 |
Mr | 258.30 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 173 |
a, b, c (Å) | 8.4669 (2), 15.0636 (3), 21.4516 (4) |
V (Å3) | 2735.98 (10) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.3 × 0.25 × 0.2 |
Data collection | |
Diffractometer | Bruker–Nonius KappaCCD diffractometer equipped with an APEXII detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.975, 0.983 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17856, 2589, 1984 |
Rint | 0.052 |
(sin θ/λ)max (Å−1) | 0.610 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.117, 1.03 |
No. of reflections | 2589 |
No. of parameters | 173 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.28, −0.20 |
Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006), OLEX2 (Dolomanov et al., 2009).
Cg1 and Cg2 are the centroids of the C2–C7 and C8–C10/C13/C16/C19 aromatic rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O11i | 0.95 | 2.57 | 3.382 (2) | 143.8 |
C12—H12B···O14i | 0.98 | 2.56 | 3.465 (2) | 154.3 |
C18—H18C···O17ii | 0.98 | 2.63 | 3.488 (2) | 145.9 |
C15—H15A···Cg1iii | 0.98 | 2.84 | 3.692 (2) | 138.8 |
C12—H12A···Cg2iv | 0.98 | 3.19 | 4.061 (2) | 131.7 |
C18—H18B···Cg1v | 0.98 | 3.01 | 3.976 (2) | 149.1 |
Symmetry codes: (i) x−1/2, −y+1/2, −z; (ii) x−1/2, y, −z+1/2; (iii) x−1/2, −y+3/2, −z+1; (iv) x+1/2, −y+1/2, −z; (v) −x+3/2, −y+1, z−1/2. |
Acknowledgements
SN acknowledges the Academy of Finland for financial support (No. 138850).
References
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Lahtinen, M., Nättinen, K. & Nummelin, S. (2013a). Acta Cryst. E69, o383. CSD CrossRef IUCr Journals Google Scholar
Lahtinen, M., Nättinen, K. & Nummelin, S. (2013b). Acta Cryst. E69, o460. CSD CrossRef IUCr Journals Google Scholar
Lahtinen, M., Nättinen, K. & Nummelin, S. (2013c). Acta Cryst. E69, o510–o511. CSD CrossRef CAS IUCr Journals Google Scholar
Lahtinen, M. & Nummelin, S. (2013). Acta Cryst. E69, o681. CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mekelburger, H.-B., Rissanen, K. & Vögtle, F. (1993). Chem. Ber. 126, 1161–1169. CrossRef CAS Web of Science Google Scholar
Nättinen, K. & Rissanen, K. (2003). Cryst. Growth Des. 3, 339–353. Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Nummelin, S., Skrifvars, M. & Rissanen, K. (2000). Top. Curr. Chem. 210, 1–67. CrossRef CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Percec, V., Holerca, M. N., Nummelin, S., Morrison, J. J., Glodde, M., Smidrkal, J., Peterca, M., Uchida, S., Balagurusamy, V. S. K., Sienkowska, M. J. & Heiney, P. A. (2006). Chem. Eur. J. 12, 6216–6241. Web of Science CrossRef PubMed CAS Google Scholar
Percec, V., Peterca, M., Dulcey, A. E., Imam, M. R., Hudson, S. D., Nummelin, S., Adelman, P. & Heiney, P. A. (2008). J. Am. Chem. Soc. 130, 13079–13094. Web of Science CrossRef PubMed CAS Google Scholar
Percec, V., Smidrkal, J., Peterca, M., Mitchell, C. M., Nummelin, S., Dulcey, A. E., Sienkowska, M. J. & Heiney, P. A. (2007). Chem. Eur. J. 13, 3989–4007. Web of Science CrossRef PubMed CAS Google Scholar
Percec, V., Wilson, D. A., Leowanawat, P., Wilson, C. J., Hughes, A. D., Kaucher, M. S., Hammer, D. A., Levine, D. H., Kim, A. J., Bates, F. S., Davis, K. P., Lodge, T. P., Klein, M. L., DeVane, R. H., Aqad, E., Rosen, B. R., Argintaru, A. O., Sienkowska, M. J., Rissanen, K., Nummelin, S. & Ropponen, J. (2010). Science, 328, 1009–1014. Web of Science CrossRef CAS PubMed Google Scholar
Roche, C. & Percec, V. (2013). Isr. J. Chem. 53, 30–44. Web of Science CrossRef CAS Google Scholar
Ropponen, J., Nättinen, K., Lahtinen, M. & Rissanen, K. (2004a). CrystEngComm, 6, 559–566. Web of Science CSD CrossRef CAS Google Scholar
Ropponen, J., Nummelin, S. & Rissanen, K. (2004b). Org. Lett. 6, 2495–2497. Web of Science CrossRef PubMed CAS Google Scholar
Ropponen, J., Tuuttila, T., Lahtinen, M., Nummelin, S. & Rissanen, K. (2004c). J. Polym. Sci. Part A Polym. Chem. 42, 5574–5586. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
3,4,5-Trimethoxy-4'-methyl biphenyl was synthesized in a gram quantities by employing a metal catalyzed coupling reaction between an aryl bromide and p-tolylboronic acid (Percec et al. 2006, 2007). The title compound (I) was used as a building block for the construction of amphiphilic AB2– and AB3-branched biphenyl dendrons (Percec et al. 2006) and hybrid (phenyl–biphenyl) dendrons (Percec et al. 2007). With few exceptions (e.g. Mekelburger et al. 1993; Nättinen & Rissanen 2003; Ropponen et al. 2004a) most dendrimers are liquid or amorphous. However, Percec-type dendrons and dendrimers have the ability to self-assemble in the solid state and in selected solvents into supramolecular architectures, such as hollow or non-hollow columns or spheres, which, in turn, self-organize into periodic lattices or quasi-periodic arrays in the solid state (Percec et al. 2006, 2007, 2008). In addition, biphenyls (Percec et al. 2006, 2007) are key building blocks on expanding the scope of libraries of amphiphilic Janus-dendrimers (Ropponen et al. 2004b; Percec et al. 2010) based on hydrophobic Percec-type building blocks and hydrophilic aliphatic and aromatic polyester building blocks. (Ropponen et al. 2004b,c; Nummelin et al. 2000). Amphiphilic Janus-dendrimers self-assemble into uniform liposome-like structures denoted as dendrimersomes (Percec et al. 2010) and other complex adaptable systems (Roche & Percec 2013) in water and selected biological buffers. Herein, we report the title compound 3,4,5-trimethoxy-4'-methyl biphenyl (I) as a contribution to a structural study of biphenyl derivatives (Lahtinen et al. 2013a,b,c; Lahtinen & Nummelin 2013).
Compound (I) has a dihedral angle between the aromatic rings of 33.4 (2)°, and is analogous to various biphenyl structures (Lahtinen et al. 2103a,b). The methoxy groups in 3- and 5-positions (Fig. 1) are co-planar with the [C(8)>C(19)] ring with the dihedral angles of 0.2 (2)° and 0.7 (2)°, respectively, whereas the methoxy group in the 4-position is tilted out from the plane with angle 113.32 (13)°. The molecules are packed in a zigzag formation along b -axis. This formation origates from antiparallel rows of molecules running through c -axis (Figures 2 and 3). Three weak CH···O hydrogen bonds occur with donor-acceptor d(D···A) bond distances of 3.382 (2), 3.465 (2), and 3.488 (2) Å, respectively (Fig. 4). Moreover, a network of weak CH···π interactions is observable between methoxy groups and nearby phenyl groups having ring-centroid to methyl(C) distances of 3.692 (2) - 4.061 (2)Å.