organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4,5-Trimeth­­oxy-4′-methyl­biphen­yl

aUniversity of Jyväskylä, Department of Chemistry, PO Box 35, FI-40014 JY, Finland, bVTT Technical Research Centre of Finland, Tampere, FIN-33101, Finland, and cMolecular Materials, Department of Applied Physics, School of Science, Aalto University, PO Box 15100, FI-00076 Aalto, Finland
*Correspondence e-mail: sami.nummelin@aalto.fi

(Received 22 April 2013; accepted 23 April 2013; online 30 April 2013)

In the title compound, C16H18O3, the dihedral angle between the benzene rings is 33.4 (2)°. In the crystal, mol­ecules are packed in a zigzag arrangement along the b-axis and are inter­connected via weak C—H⋯O hydrogen bonds, and C—H⋯π inter­actions involving the meth­oxy groups and the benzene rings of neighbouring molecules.

Related literature

For related single-crystal structures based on AB2– and AB3-branched bi­phenyls, see: Lahtinen et al. (2013a[Lahtinen, M., Nättinen, K. & Nummelin, S. (2013a). Acta Cryst. E69, o383.],b[Lahtinen, M., Nättinen, K. & Nummelin, S. (2013b). Acta Cryst. E69, o460.],c[Lahtinen, M., Nättinen, K. & Nummelin, S. (2013c). Acta Cryst. E69, o510-o511.]); Lahtinen & Nummelin (2013[Lahtinen, M. & Nummelin, S. (2013). Acta Cryst. E69, o681.]). For synthesis of the title compound, see: Percec et al. (2006[Percec, V., Holerca, M. N., Nummelin, S., Morrison, J. J., Glodde, M., Smidrkal, J., Peterca, M., Uchida, S., Balagurusamy, V. S. K., Sienkowska, M. J. & Heiney, P. A. (2006). Chem. Eur. J. 12, 6216-6241.], 2007[Percec, V., Smidrkal, J., Peterca, M., Mitchell, C. M., Nummelin, S., Dulcey, A. E., Sienkowska, M. J. & Heiney, P. A. (2007). Chem. Eur. J. 13, 3989-4007.]). For crystal structures of dendrimers, see: Mekelburger et al. (1993[Mekelburger, H.-B., Rissanen, K. & Vögtle, F. (1993). Chem. Ber. 126, 1161-1169.]); Nättinen & Rissanen (2003[Nättinen, K. & Rissanen, K. (2003). Cryst. Growth Des. 3, 339-353.]); Ropponen et al. (2004a[Ropponen, J., Nättinen, K., Lahtinen, M. & Rissanen, K. (2004a). CrystEngComm, 6, 559-566.]). For related Percec-type self-assembling supra­molecular dendrimers, see: Percec et al. (2006[Percec, V., Holerca, M. N., Nummelin, S., Morrison, J. J., Glodde, M., Smidrkal, J., Peterca, M., Uchida, S., Balagurusamy, V. S. K., Sienkowska, M. J. & Heiney, P. A. (2006). Chem. Eur. J. 12, 6216-6241.], 2007[Percec, V., Smidrkal, J., Peterca, M., Mitchell, C. M., Nummelin, S., Dulcey, A. E., Sienkowska, M. J. & Heiney, P. A. (2007). Chem. Eur. J. 13, 3989-4007.], 2008[Percec, V., Peterca, M., Dulcey, A. E., Imam, M. R., Hudson, S. D., Nummelin, S., Adelman, P. & Heiney, P. A. (2008). J. Am. Chem. Soc. 130, 13079-13094.]); Roche & Percec (2013[Roche, C. & Percec, V. (2013). Isr. J. Chem. 53, 30-44.]). For dendrimersomes, see: Percec et al. (2010[Percec, V., Wilson, D. A., Leowanawat, P., Wilson, C. J., Hughes, A. D., Kaucher, M. S., Hammer, D. A., Levine, D. H., Kim, A. J., Bates, F. S., Davis, K. P., Lodge, T. P., Klein, M. L., DeVane, R. H., Aqad, E., Rosen, B. R., Argintaru, A. O., Sienkowska, M. J., Rissanen, K., Nummelin, S. & Ropponen, J. (2010). Science, 328, 1009-1014.]). For aliphatic and aromatic polyester building blocks for dendrimersomes, see: Ropponen et al. (2004b[Ropponen, J., Nummelin, S. & Rissanen, K. (2004b). Org. Lett. 6, 2495-2497.],c[Ropponen, J., Tuuttila, T., Lahtinen, M., Nummelin, S. & Rissanen, K. (2004c). J. Polym. Sci. Part A Polym. Chem. 42, 5574-5586.]); Nummelin et al. (2000[Nummelin, S., Skrifvars, M. & Rissanen, K. (2000). Top. Curr. Chem. 210, 1-67.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18O3

  • Mr = 258.30

  • Orthorhombic, P b c a

  • a = 8.4669 (2) Å

  • b = 15.0636 (3) Å

  • c = 21.4516 (4) Å

  • V = 2735.98 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.3 × 0.25 × 0.2 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer equipped with an APEXII detector

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.983

  • 17856 measured reflections

  • 2589 independent reflections

  • 1984 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.117

  • S = 1.03

  • 2589 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C7 and C8–C10/C13/C16/C19 aromatic rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O11i 0.95 2.57 3.382 (2) 144
C12—H12B⋯O14i 0.98 2.56 3.465 (2) 154
C18—H18C⋯O17ii 0.98 2.63 3.488 (2) 146
C15—H15ACg1iii 0.98 2.84 3.692 (2) 139
C12—H12ACg2iv 0.98 3.19 4.061 (2) 132
C18—H18BCg1v 0.98 3.01 3.976 (2) 149
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (v) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

3,4,5-Trimethoxy-4'-methyl biphenyl was synthesized in a gram quantities by employing a metal catalyzed coupling reaction between an aryl bromide and p-tolylboronic acid (Percec et al. 2006, 2007). The title compound (I) was used as a building block for the construction of amphiphilic AB2– and AB3-branched biphenyl dendrons (Percec et al. 2006) and hybrid (phenyl–biphenyl) dendrons (Percec et al. 2007). With few exceptions (e.g. Mekelburger et al. 1993; Nättinen & Rissanen 2003; Ropponen et al. 2004a) most dendrimers are liquid or amorphous. However, Percec-type dendrons and dendrimers have the ability to self-assemble in the solid state and in selected solvents into supramolecular architectures, such as hollow or non-hollow columns or spheres, which, in turn, self-organize into periodic lattices or quasi-periodic arrays in the solid state (Percec et al. 2006, 2007, 2008). In addition, biphenyls (Percec et al. 2006, 2007) are key building blocks on expanding the scope of libraries of amphiphilic Janus-dendrimers (Ropponen et al. 2004b; Percec et al. 2010) based on hydrophobic Percec-type building blocks and hydrophilic aliphatic and aromatic polyester building blocks. (Ropponen et al. 2004b,c; Nummelin et al. 2000). Amphiphilic Janus-dendrimers self-assemble into uniform liposome-like structures denoted as dendrimersomes (Percec et al. 2010) and other complex adaptable systems (Roche & Percec 2013) in water and selected biological buffers. Herein, we report the title compound 3,4,5-trimethoxy-4'-methyl biphenyl (I) as a contribution to a structural study of biphenyl derivatives (Lahtinen et al. 2013a,b,c; Lahtinen & Nummelin 2013).

Compound (I) has a dihedral angle between the aromatic rings of 33.4 (2)°, and is analogous to various biphenyl structures (Lahtinen et al. 2103a,b). The methoxy groups in 3- and 5-positions (Fig. 1) are co-planar with the [C(8)>C(19)] ring with the dihedral angles of 0.2 (2)° and 0.7 (2)°, respectively, whereas the methoxy group in the 4-position is tilted out from the plane with angle 113.32 (13)°. The molecules are packed in a zigzag formation along b -axis. This formation origates from antiparallel rows of molecules running through c -axis (Figures 2 and 3). Three weak CH···O hydrogen bonds occur with donor-acceptor d(D···A) bond distances of 3.382 (2), 3.465 (2), and 3.488 (2) Å, respectively (Fig. 4). Moreover, a network of weak CH···π interactions is observable between methoxy groups and nearby phenyl groups having ring-centroid to methyl(C) distances of 3.692 (2) - 4.061 (2)Å.

Related literature top

For related single-crystal structures based on AB2– and AB3-branched biphenyls, see: Lahtinen et al. (2013a,b,c); Lahtinen & Nummelin (2013). For synthesis of the title compound, see Percec et al. (2006, 2007). For selected and sparse examples on single-crystal structures of dendrimers, see Mekelburger et al. (1993); Nättinen & Rissanen (2003); Ropponen et al. (2004a). For related Percec-type self-assembling supramolecular dendrimers, see: Percec et al. (2006, 2007, 2008); Roche & Percec (2013). For dendrimersomes, see Percec et al. (2010). For aliphatic and aromatic polyester building blocks for dendrimersomes, see Ropponen et al. (2004b,c); Nummelin et al. (2000).

Experimental top

A flame-dried Schlenk-tube was loaded with p-tolylboronic acid (3.3 g, 24.3 mmol), KF (2.8 g, 48.6 mmol), 3,4,5-trimethoxy bromobenzene (4.0 g, 16.2 mmol), Pd(OAc)2 (36 mg, 0.16 mmol, 1.0 mol%) and 2-(di-tert-butylphosphino)biphenyl (97 mg, 0.33 mmol, 2.0 mol%). The tube was sealed with a teflon screwcap and evacuated/backfilled with argon (5x). Then dry, degassed THF (30 ml) was added via syringe and the reaction mixture was stirred at RT until the aryl bromide had been completely consumed as judged by TLC analysis. The mixture was diluted with ether, filtered, and washed with 1M NaOH. The aqueous layer was extracted with ether, the combined organic layer was washed with brine and dried with MgSO4. After evaporation the pale yellow solid was chromatographed on silica gel using dichloromethane as eluent. Recrystallization from ethanol gave 3.9 g (93%) of the title compound (I) as a white crystalline solid. Crystals suitable for a single-crystal structure determination were obtained from a slow evaporation of the solvent.

Refinement top

Hydrogen atoms were calculated to their positions as riding atoms (C host) using isotropic displacement parameters that were fixed to be 1.2 or 1.5 times larger than those of the attached non-hydrogen atom.

Structure description top

3,4,5-Trimethoxy-4'-methyl biphenyl was synthesized in a gram quantities by employing a metal catalyzed coupling reaction between an aryl bromide and p-tolylboronic acid (Percec et al. 2006, 2007). The title compound (I) was used as a building block for the construction of amphiphilic AB2– and AB3-branched biphenyl dendrons (Percec et al. 2006) and hybrid (phenyl–biphenyl) dendrons (Percec et al. 2007). With few exceptions (e.g. Mekelburger et al. 1993; Nättinen & Rissanen 2003; Ropponen et al. 2004a) most dendrimers are liquid or amorphous. However, Percec-type dendrons and dendrimers have the ability to self-assemble in the solid state and in selected solvents into supramolecular architectures, such as hollow or non-hollow columns or spheres, which, in turn, self-organize into periodic lattices or quasi-periodic arrays in the solid state (Percec et al. 2006, 2007, 2008). In addition, biphenyls (Percec et al. 2006, 2007) are key building blocks on expanding the scope of libraries of amphiphilic Janus-dendrimers (Ropponen et al. 2004b; Percec et al. 2010) based on hydrophobic Percec-type building blocks and hydrophilic aliphatic and aromatic polyester building blocks. (Ropponen et al. 2004b,c; Nummelin et al. 2000). Amphiphilic Janus-dendrimers self-assemble into uniform liposome-like structures denoted as dendrimersomes (Percec et al. 2010) and other complex adaptable systems (Roche & Percec 2013) in water and selected biological buffers. Herein, we report the title compound 3,4,5-trimethoxy-4'-methyl biphenyl (I) as a contribution to a structural study of biphenyl derivatives (Lahtinen et al. 2013a,b,c; Lahtinen & Nummelin 2013).

Compound (I) has a dihedral angle between the aromatic rings of 33.4 (2)°, and is analogous to various biphenyl structures (Lahtinen et al. 2103a,b). The methoxy groups in 3- and 5-positions (Fig. 1) are co-planar with the [C(8)>C(19)] ring with the dihedral angles of 0.2 (2)° and 0.7 (2)°, respectively, whereas the methoxy group in the 4-position is tilted out from the plane with angle 113.32 (13)°. The molecules are packed in a zigzag formation along b -axis. This formation origates from antiparallel rows of molecules running through c -axis (Figures 2 and 3). Three weak CH···O hydrogen bonds occur with donor-acceptor d(D···A) bond distances of 3.382 (2), 3.465 (2), and 3.488 (2) Å, respectively (Fig. 4). Moreover, a network of weak CH···π interactions is observable between methoxy groups and nearby phenyl groups having ring-centroid to methyl(C) distances of 3.692 (2) - 4.061 (2)Å.

For related single-crystal structures based on AB2– and AB3-branched biphenyls, see: Lahtinen et al. (2013a,b,c); Lahtinen & Nummelin (2013). For synthesis of the title compound, see Percec et al. (2006, 2007). For selected and sparse examples on single-crystal structures of dendrimers, see Mekelburger et al. (1993); Nättinen & Rissanen (2003); Ropponen et al. (2004a). For related Percec-type self-assembling supramolecular dendrimers, see: Percec et al. (2006, 2007, 2008); Roche & Percec (2013). For dendrimersomes, see Percec et al. (2010). For aliphatic and aromatic polyester building blocks for dendrimersomes, see Ropponen et al. (2004b,c); Nummelin et al. (2000).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure and atomic numbering of the title compound showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Antiparallel rows of molecules viewed along a-axis.
[Figure 3] Fig. 3. The zigzag arrangement of the molecules viewed along c-axis.
[Figure 4] Fig. 4. CH···O and CH···π interactions shown by blue and black contact lines, respectively.
3,4,5-Trimethoxy-4'-methylbiphenyl top
Crystal data top
C16H18O3Dx = 1.254 Mg m3
Mr = 258.30Mo Kα radiation, λ = 0.71069 Å
Orthorhombic, PbcaCell parameters from 9816 reflections
a = 8.4669 (2) Åθ = 2.9–25.7°
b = 15.0636 (3) ŵ = 0.09 mm1
c = 21.4516 (4) ÅT = 173 K
V = 2735.98 (10) Å3Plate, colourless
Z = 80.3 × 0.25 × 0.2 mm
F(000) = 1104
Data collection top
Bruker–Nonius KappaCCD
diffractometer equipped with an APEXII detector
2589 independent reflections
Radiation source: sealed tube1984 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 8 pixels mm-1θmax = 25.7°, θmin = 2.9°
ω and φ scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1618
Tmin = 0.975, Tmax = 0.983l = 2526
17856 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0571P)2 + 1.2608P]
where P = (Fo2 + 2Fc2)/3
2589 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.20 e Å3
0 constraints
Crystal data top
C16H18O3V = 2735.98 (10) Å3
Mr = 258.30Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.4669 (2) ŵ = 0.09 mm1
b = 15.0636 (3) ÅT = 173 K
c = 21.4516 (4) Å0.3 × 0.25 × 0.2 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer equipped with an APEXII detector
2589 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1984 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.983Rint = 0.052
17856 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.03Δρmax = 0.28 e Å3
2589 reflectionsΔρmin = 0.20 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5594 (2)0.00288 (14)0.14685 (10)0.0423 (5)
H1A0.64000.04320.15210.063*
H1B0.56190.04320.18270.063*
H1C0.58070.03640.10860.063*
C20.3984 (2)0.03996 (12)0.14242 (9)0.0324 (4)
C30.3444 (2)0.07517 (12)0.08647 (9)0.0333 (4)
H30.40950.07150.05050.040*
C40.1974 (2)0.11563 (11)0.08190 (8)0.0305 (4)
H40.16300.13870.04300.037*
C50.10199 (19)0.12239 (10)0.13322 (7)0.0230 (4)
C60.1534 (2)0.08818 (12)0.18971 (8)0.0284 (4)
H60.08810.09290.22560.034*
C70.2995 (2)0.04713 (11)0.19405 (8)0.0311 (4)
H70.33270.02350.23290.037*
C80.0553 (2)0.17020 (11)0.12955 (8)0.0245 (4)
C90.1441 (2)0.16780 (11)0.07478 (7)0.0248 (4)
H90.10840.13370.04030.030*
C100.28466 (19)0.21507 (11)0.07052 (7)0.0229 (4)
C120.3296 (2)0.16804 (13)0.03432 (8)0.0356 (5)
H12A0.40710.17480.06790.053*
H12B0.22680.19040.04830.053*
H12C0.32010.10520.02320.053*
C130.33806 (19)0.26545 (11)0.12094 (7)0.0233 (4)
C150.4574 (2)0.40464 (12)0.10715 (9)0.0347 (4)
H15A0.56090.43350.10400.052*
H15B0.39930.42940.14260.052*
H15C0.39770.41500.06870.052*
C160.2514 (2)0.26602 (11)0.17617 (7)0.0244 (4)
C180.2258 (2)0.31828 (12)0.28086 (7)0.0294 (4)
H18A0.28160.35560.31120.044*
H18B0.21480.25810.29760.044*
H18C0.12090.34330.27280.044*
C190.1099 (2)0.21951 (11)0.18045 (8)0.0251 (4)
H190.05020.22120.21790.030*
O110.38021 (14)0.21736 (8)0.01893 (5)0.0286 (3)
O140.47847 (13)0.31138 (8)0.11607 (5)0.0270 (3)
O170.31410 (14)0.31530 (8)0.22369 (5)0.0309 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0279 (10)0.0437 (12)0.0554 (13)0.0092 (9)0.0020 (9)0.0026 (10)
C20.0239 (9)0.0260 (9)0.0473 (11)0.0003 (8)0.0001 (8)0.0004 (8)
C30.0298 (10)0.0290 (10)0.0413 (10)0.0032 (8)0.0080 (8)0.0006 (8)
C40.0309 (10)0.0260 (9)0.0347 (9)0.0022 (8)0.0003 (8)0.0020 (8)
C50.0222 (9)0.0167 (8)0.0302 (8)0.0055 (7)0.0031 (7)0.0009 (6)
C60.0242 (9)0.0265 (9)0.0346 (9)0.0002 (7)0.0020 (7)0.0013 (7)
C70.0294 (10)0.0273 (10)0.0366 (10)0.0011 (8)0.0050 (8)0.0009 (8)
C80.0201 (9)0.0225 (8)0.0307 (9)0.0008 (7)0.0023 (7)0.0020 (7)
C90.0251 (9)0.0242 (9)0.0252 (8)0.0010 (7)0.0038 (7)0.0020 (7)
C100.0218 (9)0.0241 (9)0.0229 (8)0.0025 (7)0.0009 (6)0.0027 (6)
C120.0410 (11)0.0395 (11)0.0262 (9)0.0062 (9)0.0034 (8)0.0062 (8)
C130.0173 (8)0.0243 (9)0.0283 (9)0.0003 (7)0.0006 (6)0.0013 (7)
C150.0336 (11)0.0278 (10)0.0426 (11)0.0050 (8)0.0047 (9)0.0012 (8)
C160.0213 (8)0.0259 (9)0.0259 (8)0.0011 (7)0.0029 (7)0.0034 (7)
C180.0287 (10)0.0335 (10)0.0259 (9)0.0017 (8)0.0027 (7)0.0037 (7)
C190.0219 (9)0.0272 (9)0.0261 (9)0.0001 (7)0.0018 (7)0.0002 (7)
O110.0276 (7)0.0353 (7)0.0229 (6)0.0037 (5)0.0021 (5)0.0031 (5)
O140.0191 (6)0.0283 (7)0.0335 (7)0.0037 (5)0.0015 (5)0.0025 (5)
O170.0247 (6)0.0421 (8)0.0259 (6)0.0074 (6)0.0028 (5)0.0094 (5)
Geometric parameters (Å, º) top
C1—H1A0.9800C10—C131.396 (2)
C1—H1B0.9800C10—O111.3713 (19)
C1—H1C0.9800C12—H12A0.9800
C1—C21.511 (3)C12—H12B0.9800
C2—C31.389 (3)C12—H12C0.9800
C2—C71.393 (3)C12—O111.429 (2)
C3—H30.9500C13—C161.394 (2)
C3—C41.389 (3)C13—O141.3795 (19)
C4—H40.9500C15—H15A0.9800
C4—C51.370 (2)C15—H15B0.9800
C5—C61.387 (2)C15—H15C0.9800
C5—C81.516 (2)C15—O141.429 (2)
C6—H60.9500C16—C191.391 (2)
C6—C71.386 (3)C16—O171.3683 (19)
C7—H70.9500C18—H18A0.9800
C8—C91.396 (2)C18—H18B0.9800
C8—C191.399 (2)C18—H18C0.9800
C9—H90.9500C18—O171.4370 (19)
C9—C101.389 (2)C19—H190.9500
H1A—C1—H1B109.5O11—C10—C13114.86 (14)
H1A—C1—H1C109.5H12A—C12—H12B109.5
H1B—C1—H1C109.5H12A—C12—H12C109.5
C2—C1—H1A109.5H12B—C12—H12C109.5
C2—C1—H1B109.5O11—C12—H12A109.5
C2—C1—H1C109.5O11—C12—H12B109.5
C3—C2—C1120.94 (17)O11—C12—H12C109.5
C3—C2—C7117.35 (16)C16—C13—C10119.42 (15)
C7—C2—C1121.70 (17)O14—C13—C10119.53 (14)
C2—C3—H3119.2O14—C13—C16121.01 (14)
C4—C3—C2121.55 (17)H15A—C15—H15B109.5
C4—C3—H3119.2H15A—C15—H15C109.5
C3—C4—H4119.9H15B—C15—H15C109.5
C5—C4—C3120.30 (17)O14—C15—H15A109.5
C5—C4—H4119.9O14—C15—H15B109.5
C4—C5—C6119.32 (16)O14—C15—H15C109.5
C4—C5—C8120.80 (15)C19—C16—C13120.44 (15)
C6—C5—C8119.83 (15)O17—C16—C13115.61 (15)
C5—C6—H6119.9O17—C16—C19123.95 (15)
C7—C6—C5120.29 (16)H18A—C18—H18B109.5
C7—C6—H6119.9H18A—C18—H18C109.5
C2—C7—H7119.4H18B—C18—H18C109.5
C6—C7—C2121.19 (17)O17—C18—H18A109.5
C6—C7—H7119.4O17—C18—H18B109.5
C9—C8—C5120.31 (14)O17—C18—H18C109.5
C9—C8—C19119.55 (15)C8—C19—H19120.0
C19—C8—C5120.11 (15)C16—C19—C8120.02 (15)
C8—C9—H9119.9C16—C19—H19120.0
C10—C9—C8120.22 (15)C10—O11—C12117.08 (13)
C10—C9—H9119.9C13—O14—C15113.32 (13)
C9—C10—C13120.32 (15)C16—O17—C18116.80 (13)
O11—C10—C9124.82 (14)
C1—C2—C3—C4179.25 (17)C9—C8—C19—C160.3 (2)
C1—C2—C7—C6178.67 (17)C9—C10—C13—C161.7 (2)
C2—C3—C4—C50.5 (3)C9—C10—C13—O14179.48 (14)
C3—C2—C7—C60.3 (3)C9—C10—O11—C120.7 (2)
C3—C4—C5—C60.2 (3)C10—C13—C16—C192.3 (2)
C3—C4—C5—C8177.12 (16)C10—C13—C16—O17178.43 (15)
C4—C5—C6—C70.4 (3)C10—C13—O14—C15104.14 (17)
C4—C5—C8—C933.4 (2)C13—C10—O11—C12179.01 (15)
C4—C5—C8—C19144.48 (17)C13—C16—C19—C81.4 (3)
C5—C6—C7—C20.6 (3)C13—C16—O17—C18178.99 (15)
C5—C8—C9—C10176.97 (15)C16—C13—O14—C1578.13 (19)
C5—C8—C19—C16177.60 (15)C19—C8—C9—C100.9 (2)
C6—C5—C8—C9149.32 (16)C19—C16—O17—C180.2 (2)
C6—C5—C8—C1932.8 (2)O11—C10—C13—C16178.55 (14)
C7—C2—C3—C40.3 (3)O11—C10—C13—O140.8 (2)
C8—C5—C6—C7177.71 (15)O14—C13—C16—C19179.92 (15)
C8—C9—C10—C130.1 (2)O14—C13—C16—O170.7 (2)
C8—C9—C10—O11179.81 (15)O17—C16—C19—C8179.47 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C8–C10/C13/C16/C19 aromatic rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···O11i0.952.573.382 (2)144
C12—H12B···O14i0.982.563.465 (2)154
C18—H18C···O17ii0.982.633.488 (2)146
C15—H15A···Cg1iii0.982.843.692 (2)139
C12—H12A···Cg2iv0.983.194.061 (2)132
C18—H18B···Cg1v0.983.013.976 (2)149
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x1/2, y, z+1/2; (iii) x1/2, y+3/2, z+1; (iv) x+1/2, y+1/2, z; (v) x+3/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC16H18O3
Mr258.30
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)8.4669 (2), 15.0636 (3), 21.4516 (4)
V3)2735.98 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.3 × 0.25 × 0.2
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer equipped with an APEXII detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.975, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
17856, 2589, 1984
Rint0.052
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.117, 1.03
No. of reflections2589
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.20

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C8–C10/C13/C16/C19 aromatic rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···O11i0.952.573.382 (2)143.8
C12—H12B···O14i0.982.563.465 (2)154.3
C18—H18C···O17ii0.982.633.488 (2)145.9
C15—H15A···Cg1iii0.982.843.692 (2)138.8
C12—H12A···Cg2iv0.983.194.061 (2)131.7
C18—H18B···Cg1v0.983.013.976 (2)149.1
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x1/2, y, z+1/2; (iii) x1/2, y+3/2, z+1; (iv) x+1/2, y+1/2, z; (v) x+3/2, y+1, z1/2.
 

Acknowledgements

SN acknowledges the Academy of Finland for financial support (No. 138850).

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLahtinen, M., Nättinen, K. & Nummelin, S. (2013a). Acta Cryst. E69, o383.  CSD CrossRef IUCr Journals Google Scholar
First citationLahtinen, M., Nättinen, K. & Nummelin, S. (2013b). Acta Cryst. E69, o460.  CSD CrossRef IUCr Journals Google Scholar
First citationLahtinen, M., Nättinen, K. & Nummelin, S. (2013c). Acta Cryst. E69, o510–o511.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationLahtinen, M. & Nummelin, S. (2013). Acta Cryst. E69, o681.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMekelburger, H.-B., Rissanen, K. & Vögtle, F. (1993). Chem. Ber. 126, 1161–1169.  CrossRef CAS Web of Science Google Scholar
First citationNättinen, K. & Rissanen, K. (2003). Cryst. Growth Des. 3, 339–353.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationNummelin, S., Skrifvars, M. & Rissanen, K. (2000). Top. Curr. Chem. 210, 1–67.  CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPercec, V., Holerca, M. N., Nummelin, S., Morrison, J. J., Glodde, M., Smidrkal, J., Peterca, M., Uchida, S., Balagurusamy, V. S. K., Sienkowska, M. J. & Heiney, P. A. (2006). Chem. Eur. J. 12, 6216–6241.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPercec, V., Peterca, M., Dulcey, A. E., Imam, M. R., Hudson, S. D., Nummelin, S., Adelman, P. & Heiney, P. A. (2008). J. Am. Chem. Soc. 130, 13079–13094.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPercec, V., Smidrkal, J., Peterca, M., Mitchell, C. M., Nummelin, S., Dulcey, A. E., Sienkowska, M. J. & Heiney, P. A. (2007). Chem. Eur. J. 13, 3989–4007.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPercec, V., Wilson, D. A., Leowanawat, P., Wilson, C. J., Hughes, A. D., Kaucher, M. S., Hammer, D. A., Levine, D. H., Kim, A. J., Bates, F. S., Davis, K. P., Lodge, T. P., Klein, M. L., DeVane, R. H., Aqad, E., Rosen, B. R., Argintaru, A. O., Sienkowska, M. J., Rissanen, K., Nummelin, S. & Ropponen, J. (2010). Science, 328, 1009–1014.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRoche, C. & Percec, V. (2013). Isr. J. Chem. 53, 30–44.  Web of Science CrossRef CAS Google Scholar
First citationRopponen, J., Nättinen, K., Lahtinen, M. & Rissanen, K. (2004a). CrystEngComm, 6, 559–566.  Web of Science CSD CrossRef CAS Google Scholar
First citationRopponen, J., Nummelin, S. & Rissanen, K. (2004b). Org. Lett. 6, 2495–2497.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRopponen, J., Tuuttila, T., Lahtinen, M., Nummelin, S. & Rissanen, K. (2004c). J. Polym. Sci. Part A Polym. Chem. 42, 5574–5586.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds