organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[5-(2H-1,3-Benzodioxol-5-yl)-3-(4-methyl­phen­yl)-2-pyrazolin-1-yl]ethanone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of PG studies in Chemistry, Government Science College, Hassan 573 201, India
*Correspondence e-mail: arazaki@usm.my

(Received 13 March 2013; accepted 1 April 2013; online 13 April 2013)

In the title compound, C19H18N2O3, the pyrazoline ring is close to being planar (r.m.s. deviation = 0.035 Å) and subtends dihedral angles of 2.11 (8) and 82.63 (8)° with the p-tolyl and benzene rings, respectively. In the crystal, C—H⋯O and C—H⋯N hydrogen bonds link the mol­ecules, forming a three-dimensional network. A weak C—H⋯π inter­action involving the benzene ring is also observed.

Related literature

For background to pyrazoline derivatives, see: Mamolo et al. (2003[Mamolo, M. G., Zampieri, D., Falagiani, V., Vio, L. & Banfi, E. (2003). Il Farmaco, 58, 315-322.]); Bansal et al. (2001[Bansal, E., Srivastava, V. K. & Kumar, A. (2001). Eur. J. Med. Chem. 36, 81-92.]); Manna et al. (2005[Manna, F., Chimenti, F., Fioravanti, R., Bolasco, A., Seecci, D., Chimenti, P., Ferlini, C. & Scambia, G. (2005). Bioorg. Med. Chem. Lett. 15, 4632-4635.]); Ahn et al. (2004[Ahn, J. H., Kim, H. M., Jung, S. H., Kang, S. K., Kim, K. R., Rhee, S. D., Yang, S. D., Cheon, H. G. & Kim, S. S. (2004). Bioorg. Med. Chem. Lett. 14, 4461-4465.]); Rajendra Prasad et al. (2005[Rajendra Prasad, Y. R., Lakshamana Rao, A., Prasoona, L., Murali, K. & Ravi Kumar, P. (2005). Bioorg. Med. Lett. 15, 5030-5034.]). For a related structure, see: Du (2009[Du, C.-L. (2009). Acta Cryst. E65, o29.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18N2O3

  • Mr = 322.35

  • Monoclinic, P 21 /c

  • a = 7.9564 (1) Å

  • b = 24.1170 (4) Å

  • c = 8.4660 (1) Å

  • β = 105.380 (1)°

  • V = 1566.32 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.35 × 0.26 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.984

  • 18850 measured reflections

  • 4828 independent reflections

  • 3778 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.136

  • S = 1.09

  • 4828 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C3/C5–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O3i 0.95 2.42 3.229 (2) 142
C4—H4A⋯O3ii 0.99 2.38 3.225 (2) 143
C9—H9B⋯O2iii 0.99 2.59 3.371 (2) 136
C18—H18B⋯N2iv 0.98 2.56 3.526 (2) 169
C19—H19A⋯O3v 0.98 2.57 3.377 (2) 139
C19—H19ACg1vi 0.98 2.93 3.6013 (18) 127
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y, z+1; (iii) x+1, y, z; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (vi) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Considerable attention has been focused on pyrazoline derivatives due to their interesting biological activities. Some of the pyrazoline derivatives are reported to possess antifungal (Mamolo et al., 2003), anti-inflammatory (Bansal et al., 2001), anticancer (Manna et al., 2005), antidiabetic (Ahn et al., 2004) and antidepressant (Rajendra Prasad et al., 2005) properties.

In the title compound, Fig. 1, the benzodioxole ring system (C1–C7/O1/O2) and the pyrazole ring (C8–C10/N1/N2) are almost planar with maximum deviations of 0.081 (2) Å at atom C4 and 0.029 (2) Å at atom C8, respectively. They are almost perpendicular to each other with the dihedral angle of 82.08 (7)°. The pyrazole ring also forms dihedral angle of 2.11 (8)° with the benzene ring (C11–C16). Bond lengths and angles are almost comparable with the related structure (Du, 2009).

In the crystal, Fig. 2, C—H···O and C—H···N hydrogen bonds (Table 1) link the molecules to form three dimensional network and also feature C—H···π interactions (Table 1) involving the benzene ring (Cg1; C1–C3/C5–C7).

Related literature top

For background to pyrazoline derivatives, see: Mamolo et al. (2003); Bansal et al. (2001); Manna et al. (2005); Ahn et al. (2004); Rajendra Prasad et al. (2005). For a related structure, see: Du (2009). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

1-p-Tolyl-3(3',4'-methylene dioxyphenyl)-2-propen-1-one (0.005 mol) and hydrazine hydrate (0.005 mol) in acetic acid (15 ml) was refluxed for 6 h. The solid on cooling was collected and washed well with cold water and alcohol. It was dried and recrystallized from ethanol-dioxan. Colourless blocks were obtained by slow evaporation of a DMF/ethanol solution (1:2 v/v).

Refinement top

All the H atoms were located geometrically and were refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C) [C–H = 0.95 to 1.00 Å]. A rotating group model was applied to the methyl groups. In the final refinement, three outliners were omitted, 0 2 0, -7 13 4 and 9 13 1.

Structure description top

Considerable attention has been focused on pyrazoline derivatives due to their interesting biological activities. Some of the pyrazoline derivatives are reported to possess antifungal (Mamolo et al., 2003), anti-inflammatory (Bansal et al., 2001), anticancer (Manna et al., 2005), antidiabetic (Ahn et al., 2004) and antidepressant (Rajendra Prasad et al., 2005) properties.

In the title compound, Fig. 1, the benzodioxole ring system (C1–C7/O1/O2) and the pyrazole ring (C8–C10/N1/N2) are almost planar with maximum deviations of 0.081 (2) Å at atom C4 and 0.029 (2) Å at atom C8, respectively. They are almost perpendicular to each other with the dihedral angle of 82.08 (7)°. The pyrazole ring also forms dihedral angle of 2.11 (8)° with the benzene ring (C11–C16). Bond lengths and angles are almost comparable with the related structure (Du, 2009).

In the crystal, Fig. 2, C—H···O and C—H···N hydrogen bonds (Table 1) link the molecules to form three dimensional network and also feature C—H···π interactions (Table 1) involving the benzene ring (Cg1; C1–C3/C5–C7).

For background to pyrazoline derivatives, see: Mamolo et al. (2003); Bansal et al. (2001); Manna et al. (2005); Ahn et al. (2004); Rajendra Prasad et al. (2005). For a related structure, see: Du (2009). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
1-[5-(2H-1,3-Benzodioxol-5-yl)-3-(4-methylphenyl)-2-pyrazolin-1-yl]ethanone top
Crystal data top
C19H18N2O3F(000) = 680
Mr = 322.35Dx = 1.367 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6808 reflections
a = 7.9564 (1) Åθ = 2.6–30.6°
b = 24.1170 (4) ŵ = 0.09 mm1
c = 8.4660 (1) ÅT = 100 K
β = 105.380 (1)°Block, colourless
V = 1566.32 (4) Å30.35 × 0.26 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4828 independent reflections
Radiation source: fine-focus sealed tube3778 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 30.7°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 117
Tmin = 0.968, Tmax = 0.984k = 2834
18850 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0389P)2 + 1.3146P]
where P = (Fo2 + 2Fc2)/3
4828 reflections(Δ/σ)max = 0.001
219 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C19H18N2O3V = 1566.32 (4) Å3
Mr = 322.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.9564 (1) ŵ = 0.09 mm1
b = 24.1170 (4) ÅT = 100 K
c = 8.4660 (1) Å0.35 × 0.26 × 0.18 mm
β = 105.380 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4828 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3778 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.984Rint = 0.032
18850 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.09Δρmax = 0.39 e Å3
4828 reflectionsΔρmin = 0.29 e Å3
219 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20199 (17)0.52198 (5)0.40364 (15)0.0242 (3)
O20.18293 (16)0.61783 (5)0.38140 (14)0.0204 (3)
O30.40078 (16)0.60685 (5)0.20460 (14)0.0212 (3)
N10.54641 (18)0.67124 (5)0.03118 (16)0.0164 (3)
N20.59601 (18)0.72596 (5)0.00463 (16)0.0154 (3)
C10.5458 (2)0.54240 (7)0.1907 (2)0.0197 (3)
H1A0.62630.52320.14550.024*
C20.4417 (2)0.51184 (7)0.2695 (2)0.0212 (3)
H2A0.45040.47260.27960.025*
C30.3269 (2)0.54167 (7)0.33134 (18)0.0172 (3)
C40.1270 (2)0.57023 (7)0.4575 (2)0.0223 (4)
H4A0.16690.57350.57830.027*
H4B0.00180.56760.42500.027*
C50.3156 (2)0.59905 (6)0.31861 (18)0.0157 (3)
C60.4180 (2)0.62926 (6)0.24358 (18)0.0156 (3)
H6A0.41030.66850.23710.019*
C70.5353 (2)0.59965 (6)0.17627 (18)0.0163 (3)
C80.6489 (2)0.63082 (7)0.08798 (19)0.0172 (3)
H8A0.70850.60400.03060.021*
C90.7850 (2)0.66945 (7)0.19965 (19)0.0178 (3)
H9A0.78250.66600.31550.021*
H9B0.90410.66110.19100.021*
C100.7271 (2)0.72633 (7)0.13314 (18)0.0156 (3)
C110.8090 (2)0.77833 (7)0.20273 (18)0.0157 (3)
C120.9503 (2)0.77802 (7)0.34314 (19)0.0181 (3)
H12A0.99440.74380.39280.022*
C131.0259 (2)0.82764 (7)0.40982 (19)0.0197 (3)
H13A1.12100.82680.50530.024*
C140.9654 (2)0.87859 (7)0.34000 (19)0.0185 (3)
C150.8254 (2)0.87857 (7)0.19888 (19)0.0184 (3)
H15A0.78290.91280.14810.022*
C160.7481 (2)0.82948 (7)0.13228 (18)0.0174 (3)
H16A0.65230.83050.03730.021*
C170.4283 (2)0.65621 (7)0.17337 (18)0.0163 (3)
C180.3369 (2)0.70214 (7)0.28355 (19)0.0188 (3)
H18A0.23130.68750.36000.028*
H18B0.41470.71720.34530.028*
H18C0.30510.73160.21710.028*
C191.0460 (2)0.93221 (7)0.4153 (2)0.0246 (4)
H19A1.17290.93020.43520.037*
H19B1.01660.93830.51930.037*
H19C1.00080.96300.34040.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0277 (7)0.0191 (6)0.0290 (6)0.0026 (5)0.0129 (5)0.0007 (5)
O20.0195 (6)0.0193 (6)0.0251 (6)0.0014 (5)0.0105 (5)0.0008 (5)
O30.0242 (6)0.0163 (6)0.0221 (5)0.0015 (5)0.0045 (5)0.0032 (4)
N10.0187 (7)0.0131 (6)0.0164 (6)0.0010 (5)0.0030 (5)0.0003 (5)
N20.0162 (7)0.0136 (6)0.0172 (6)0.0019 (5)0.0061 (5)0.0016 (5)
C10.0212 (8)0.0160 (7)0.0217 (7)0.0044 (6)0.0055 (6)0.0013 (6)
C20.0261 (9)0.0128 (7)0.0242 (7)0.0008 (6)0.0059 (7)0.0023 (6)
C30.0175 (8)0.0174 (7)0.0162 (7)0.0035 (6)0.0031 (6)0.0011 (6)
C40.0223 (9)0.0236 (8)0.0221 (7)0.0027 (7)0.0078 (7)0.0021 (6)
C50.0140 (7)0.0167 (7)0.0148 (6)0.0017 (6)0.0010 (6)0.0023 (5)
C60.0164 (8)0.0116 (7)0.0173 (6)0.0016 (6)0.0017 (6)0.0012 (5)
C70.0170 (8)0.0157 (7)0.0146 (6)0.0005 (6)0.0016 (6)0.0006 (5)
C80.0172 (8)0.0163 (7)0.0177 (7)0.0025 (6)0.0042 (6)0.0012 (6)
C90.0151 (8)0.0182 (7)0.0193 (7)0.0003 (6)0.0032 (6)0.0011 (6)
C100.0152 (8)0.0179 (7)0.0155 (6)0.0006 (6)0.0072 (6)0.0000 (6)
C110.0139 (7)0.0191 (7)0.0156 (6)0.0018 (6)0.0067 (6)0.0009 (6)
C120.0156 (8)0.0199 (8)0.0192 (7)0.0012 (6)0.0053 (6)0.0003 (6)
C130.0154 (8)0.0241 (8)0.0185 (7)0.0011 (6)0.0023 (6)0.0031 (6)
C140.0170 (8)0.0200 (8)0.0197 (7)0.0015 (6)0.0068 (6)0.0041 (6)
C150.0190 (8)0.0178 (8)0.0190 (7)0.0019 (6)0.0060 (6)0.0005 (6)
C160.0163 (8)0.0208 (8)0.0152 (6)0.0011 (6)0.0042 (6)0.0005 (6)
C170.0169 (8)0.0175 (7)0.0165 (6)0.0001 (6)0.0080 (6)0.0017 (6)
C180.0188 (8)0.0189 (8)0.0177 (7)0.0010 (6)0.0028 (6)0.0003 (6)
C190.0242 (9)0.0218 (8)0.0263 (8)0.0016 (7)0.0041 (7)0.0060 (7)
Geometric parameters (Å, º) top
O1—C31.382 (2)C9—C101.508 (2)
O1—C41.436 (2)C9—H9A0.9900
O2—C51.378 (2)C9—H9B0.9900
O2—C41.443 (2)C10—C111.463 (2)
O3—C171.2265 (19)C11—C161.399 (2)
N1—C171.3651 (19)C11—C121.403 (2)
N1—N21.3877 (18)C12—C131.390 (2)
N1—C81.482 (2)C12—H12A0.9500
N2—C101.292 (2)C13—C141.393 (2)
C1—C71.387 (2)C13—H13A0.9500
C1—C21.403 (2)C14—C151.401 (2)
C1—H1A0.9500C14—C191.508 (2)
C2—C31.371 (2)C15—C161.383 (2)
C2—H2A0.9500C15—H15A0.9500
C3—C51.389 (2)C16—H16A0.9500
C4—H4A0.9900C17—C181.506 (2)
C4—H4B0.9900C18—H18A0.9800
C5—C61.369 (2)C18—H18B0.9800
C6—C71.410 (2)C18—H18C0.9800
C6—H6A0.9500C19—H19A0.9800
C7—C81.516 (2)C19—H19B0.9800
C8—C91.546 (2)C19—H19C0.9800
C8—H8A1.0000
C3—O1—C4105.69 (13)C10—C9—H9B111.2
C5—O2—C4105.61 (13)C8—C9—H9B111.2
C17—N1—N2122.31 (13)H9A—C9—H9B109.1
C17—N1—C8123.46 (13)N2—C10—C11121.24 (14)
N2—N1—C8113.80 (12)N2—C10—C9113.99 (14)
C10—N2—N1108.04 (13)C11—C10—C9124.76 (13)
C7—C1—C2122.41 (16)C16—C11—C12118.35 (14)
C7—C1—H1A118.8C16—C11—C10121.13 (14)
C2—C1—H1A118.8C12—C11—C10120.52 (14)
C3—C2—C1116.31 (15)C13—C12—C11120.18 (15)
C3—C2—H2A121.8C13—C12—H12A119.9
C1—C2—H2A121.8C11—C12—H12A119.9
C2—C3—O1128.25 (15)C12—C13—C14121.57 (14)
C2—C3—C5121.95 (16)C12—C13—H13A119.2
O1—C3—C5109.69 (15)C14—C13—H13A119.2
O1—C4—O2107.41 (13)C13—C14—C15117.95 (15)
O1—C4—H4A110.2C13—C14—C19121.13 (14)
O2—C4—H4A110.2C15—C14—C19120.92 (15)
O1—C4—H4B110.2C16—C15—C14120.99 (15)
O2—C4—H4B110.2C16—C15—H15A119.5
H4A—C4—H4B108.5C14—C15—H15A119.5
C6—C5—O2127.96 (14)C15—C16—C11120.96 (14)
C6—C5—C3122.14 (15)C15—C16—H16A119.5
O2—C5—C3109.77 (14)C11—C16—H16A119.5
C5—C6—C7117.22 (14)O3—C17—N1119.32 (14)
C5—C6—H6A121.4O3—C17—C18123.45 (14)
C7—C6—H6A121.4N1—C17—C18117.23 (14)
C1—C7—C6119.95 (15)C17—C18—H18A109.5
C1—C7—C8120.50 (15)C17—C18—H18B109.5
C6—C7—C8119.54 (14)H18A—C18—H18B109.5
N1—C8—C7111.69 (13)C17—C18—H18C109.5
N1—C8—C9100.92 (12)H18A—C18—H18C109.5
C7—C8—C9114.17 (13)H18B—C18—H18C109.5
N1—C8—H8A109.9C14—C19—H19A109.5
C7—C8—H8A109.9C14—C19—H19B109.5
C9—C8—H8A109.9H19A—C19—H19B109.5
C10—C9—C8102.99 (12)C14—C19—H19C109.5
C10—C9—H9A111.2H19A—C19—H19C109.5
C8—C9—H9A111.2H19B—C19—H19C109.5
C17—N1—N2—C10170.21 (15)C1—C7—C8—C9114.22 (16)
C8—N1—N2—C102.53 (18)C6—C7—C8—C966.00 (18)
C7—C1—C2—C30.5 (2)N1—C8—C9—C104.62 (16)
C1—C2—C3—O1175.04 (15)C7—C8—C9—C10115.32 (15)
C1—C2—C3—C50.8 (2)N1—N2—C10—C11179.57 (14)
C4—O1—C3—C2175.73 (16)N1—N2—C10—C91.01 (19)
C4—O1—C3—C58.00 (17)C8—C9—C10—N23.82 (19)
C3—O1—C4—O213.04 (16)C8—C9—C10—C11176.78 (15)
C5—O2—C4—O113.22 (16)N2—C10—C11—C160.0 (2)
C4—O2—C5—C6175.69 (15)C9—C10—C11—C16179.32 (16)
C4—O2—C5—C38.42 (16)N2—C10—C11—C12179.46 (16)
C2—C3—C5—C60.1 (2)C9—C10—C11—C121.2 (2)
O1—C3—C5—C6176.47 (13)C16—C11—C12—C130.4 (2)
C2—C3—C5—O2176.25 (14)C10—C11—C12—C13179.11 (15)
O1—C3—C5—O20.30 (17)C11—C12—C13—C140.4 (3)
O2—C5—C6—C7174.44 (14)C12—C13—C14—C150.3 (3)
C3—C5—C6—C71.0 (2)C12—C13—C14—C19178.74 (16)
C2—C1—C7—C60.6 (2)C13—C14—C15—C160.9 (3)
C2—C1—C7—C8179.21 (14)C19—C14—C15—C16178.14 (16)
C5—C6—C7—C11.3 (2)C14—C15—C16—C110.8 (3)
C5—C6—C7—C8178.49 (13)C12—C11—C16—C150.2 (2)
C17—N1—C8—C770.29 (19)C10—C11—C16—C15179.70 (15)
N2—N1—C8—C7117.07 (14)N2—N1—C17—O3173.77 (15)
C17—N1—C8—C9168.00 (15)C8—N1—C17—O31.7 (2)
N2—N1—C8—C94.64 (17)N2—N1—C17—C186.8 (2)
C1—C7—C8—N1132.07 (15)C8—N1—C17—C18178.84 (15)
C6—C7—C8—N147.70 (18)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C3/C5–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C2—H2A···O3i0.952.423.229 (2)142
C4—H4A···O3ii0.992.383.225 (2)143
C9—H9B···O2iii0.992.593.371 (2)136
C18—H18B···N2iv0.982.563.526 (2)169
C19—H19A···O3v0.982.573.377 (2)139
C19—H19A···Cg1vi0.982.933.6013 (18)127
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z+1; (iii) x+1, y, z; (iv) x, y+3/2, z1/2; (v) x+1, y+3/2, z+1/2; (vi) x+1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC19H18N2O3
Mr322.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.9564 (1), 24.1170 (4), 8.4660 (1)
β (°) 105.380 (1)
V3)1566.32 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.26 × 0.18
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.968, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
18850, 4828, 3778
Rint0.032
(sin θ/λ)max1)0.719
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.136, 1.09
No. of reflections4828
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.29

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C3/C5–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C2—H2A···O3i0.952.423.229 (2)142
C4—H4A···O3ii0.992.383.225 (2)143
C9—H9B···O2iii0.992.593.371 (2)136
C18—H18B···N2iv0.982.563.526 (2)169
C19—H19A···O3v0.982.573.377 (2)139
C19—H19A···Cg1vi0.982.933.6013 (18)127
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z+1; (iii) x+1, y, z; (iv) x, y+3/2, z1/2; (v) x+1, y+3/2, z+1/2; (vi) x+1, y+1/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: C-7581-2009.

§Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks Malaysian Government and USM for the award of the post of Research Officer under the Research University Grant (1001/PFIZIK/811160).

References

First citationAhn, J. H., Kim, H. M., Jung, S. H., Kang, S. K., Kim, K. R., Rhee, S. D., Yang, S. D., Cheon, H. G. & Kim, S. S. (2004). Bioorg. Med. Chem. Lett. 14, 4461–4465.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBansal, E., Srivastava, V. K. & Kumar, A. (2001). Eur. J. Med. Chem. 36, 81–92.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDu, C.-L. (2009). Acta Cryst. E65, o29.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMamolo, M. G., Zampieri, D., Falagiani, V., Vio, L. & Banfi, E. (2003). Il Farmaco, 58, 315–322.  CrossRef PubMed CAS Google Scholar
First citationManna, F., Chimenti, F., Fioravanti, R., Bolasco, A., Seecci, D., Chimenti, P., Ferlini, C. & Scambia, G. (2005). Bioorg. Med. Chem. Lett. 15, 4632–4635.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRajendra Prasad, Y. R., Lakshamana Rao, A., Prasoona, L., Murali, K. & Ravi Kumar, P. (2005). Bioorg. Med. Lett. 15, 5030–5034.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds