organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-3-(4-Fluoro­phen­yl)-1-[5-methyl-1-(4-methyl­phen­yl)-1H-1,2,3-triazol-4-yl]prop-2-en-1-one1

aApplied Organic Chemistry Department, National Research Centre, Dokki, 12622 Giza, Egypt, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 25 March 2013; accepted 25 March 2013; online 5 April 2013)

With respect to the triazole ring in the title compound, C19H16FN3O, the p-tolyl ring is inclined [dihedral angle = 51.79 (11)°], whereas the chalcone residue is almost coplanar [O—C—C—N and C—C—C—C torsion angles = −178.71 (19) and 178.42 (18)°, respectively]. The conformation about the C=C bond [1.328 (3) Å] is E, and the triazole methyl group and the carbonyl O atom are syn. In the crystal, centrosymmetrically related mol­ecules are connected by ππ inter­actions between the triazole and p-tolyl rings [centroid–centroid distance = 3.6599 (12) Å] and these are linked into a three-dimensional architecture by C—H⋯N and C—H⋯π inter­actions.

Related literature

For the biological activities of chalcone derivatives, see: Abdel-Wahab et al. (2012[Abdel-Wahab, B. F., Abdel-Latif, E., Mohamed, H. A. & Awad, G. E. A. (2012). Eur. J. Med. Chem. 52, 263-268.]); Singh et al. (2012[Singh, P., Raj, R., Kumar, V., Mahajan, M. P., Bedi, P. M., Kaur, T. & Saxena, A. K. (2012). Eur. J. Med. Chem. 47, 594-600.]). For a related structure, see: Abdel-Wahab et al. (2013[Abdel-Wahab, B. F., Abdel-Latif, E., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o639-o640.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16FN3O

  • Mr = 321.35

  • Triclinic, [P \overline 1]

  • a = 6.2890 (5) Å

  • b = 10.8874 (8) Å

  • c = 11.9691 (9) Å

  • α = 101.144 (7)°

  • β = 92.634 (6)°

  • γ = 91.634 (6)°

  • V = 802.65 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.35 × 0.35 × 0.35 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.887, Tmax = 1.000

  • 6854 measured reflections

  • 3697 independent reflections

  • 2308 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.139

  • S = 1.03

  • 3697 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C13–C18 benzene

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12C⋯N3i 0.96 2.49 3.399 (3) 158
C2—H2⋯Cg1ii 0.93 2.91 3.650 (2) 138
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Chalcone derivatives exhibit a range of biological activities (Abdel-Wahab et al., 2012; Singh et al., 2012) and in this connection, the title compound was synthesized and characterized crystallographically.

In (I), the p-tolyl ring attached to the triazole ring is inclined, forming a dihedral angle of 51.79 (11)°. By contrast, the chalcone residue is co-planar as seen in the values of the O1—C9—C10—N3 and C7—C8—C9—C10 torsion angles of -178.71 (19) and 178.42 (18)°, respectively. This co-planarity extends to include the terminal fluorobenzene ring [C6—C1—C7—C8 = 4.2 (3)°]. The conformation about the C7C8 bond [1.328 (3) Å] is E, and the triazole-methyl and carbonyl-O1 substituents are syn. The conformation with respect to the triazole ring and chalcone residue resembles that found in a related compound (Abdel-Wahab et al., 2013).

In the crystal structure, centrosymmetrically related molecules are connected by ππ interactions between the triazole and p-tolyl rings [inter-centroid distance = 3.6599 (12) Å, angle of inclination = 2.30 (11)° for symmetry operation: 1 - x, 1 - y, 2 - z]. The dimeric aggregates are connected into a three-dimensional architecture by C—H···N and C—H···π interactions, Fig. 2 and Table 1.

Related literature top

For the biological activities of chalcone derivatives, see: Abdel-Wahab et al. (2012); Singh et al. (2012). For a related structure, see: Abdel-Wahab et al. (2013).

Experimental top

The title compound was prepared following the reported method (Abdel-Wahab et al., 2012). Colourless blocks were obtained from its DMF solution by slow evaporation at room temperature.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 to 0.96 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2–1.5Uequiv(C).

Structure description top

Chalcone derivatives exhibit a range of biological activities (Abdel-Wahab et al., 2012; Singh et al., 2012) and in this connection, the title compound was synthesized and characterized crystallographically.

In (I), the p-tolyl ring attached to the triazole ring is inclined, forming a dihedral angle of 51.79 (11)°. By contrast, the chalcone residue is co-planar as seen in the values of the O1—C9—C10—N3 and C7—C8—C9—C10 torsion angles of -178.71 (19) and 178.42 (18)°, respectively. This co-planarity extends to include the terminal fluorobenzene ring [C6—C1—C7—C8 = 4.2 (3)°]. The conformation about the C7C8 bond [1.328 (3) Å] is E, and the triazole-methyl and carbonyl-O1 substituents are syn. The conformation with respect to the triazole ring and chalcone residue resembles that found in a related compound (Abdel-Wahab et al., 2013).

In the crystal structure, centrosymmetrically related molecules are connected by ππ interactions between the triazole and p-tolyl rings [inter-centroid distance = 3.6599 (12) Å, angle of inclination = 2.30 (11)° for symmetry operation: 1 - x, 1 - y, 2 - z]. The dimeric aggregates are connected into a three-dimensional architecture by C—H···N and C—H···π interactions, Fig. 2 and Table 1.

For the biological activities of chalcone derivatives, see: Abdel-Wahab et al. (2012); Singh et al. (2012). For a related structure, see: Abdel-Wahab et al. (2013).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view of the crystal packing in projection down the c axis. The C—H···N, C—H···π and ππ interactions are shown as blue, orange and purple dashed lines, respectively.
(2E)-3-(4-Fluorophenyl)-1-[5-methyl-1-(4-methylphenyl)-1H-1,2,3-triazol-4-yl]prop-2-en-1-one top
Crystal data top
C19H16FN3OZ = 2
Mr = 321.35F(000) = 336
Triclinic, P1Dx = 1.330 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.2890 (5) ÅCell parameters from 1657 reflections
b = 10.8874 (8) Åθ = 3.2–27.5°
c = 11.9691 (9) ŵ = 0.09 mm1
α = 101.144 (7)°T = 295 K
β = 92.634 (6)°Block, colourless
γ = 91.634 (6)°0.35 × 0.35 × 0.35 mm
V = 802.65 (11) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3697 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2308 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 3.3°
ω scanh = 86
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1214
Tmin = 0.887, Tmax = 1.000l = 1515
6854 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0416P)2 + 0.2071P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3697 reflectionsΔρmax = 0.18 e Å3
220 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (2)
Crystal data top
C19H16FN3Oγ = 91.634 (6)°
Mr = 321.35V = 802.65 (11) Å3
Triclinic, P1Z = 2
a = 6.2890 (5) ÅMo Kα radiation
b = 10.8874 (8) ŵ = 0.09 mm1
c = 11.9691 (9) ÅT = 295 K
α = 101.144 (7)°0.35 × 0.35 × 0.35 mm
β = 92.634 (6)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3697 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2308 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 1.000Rint = 0.027
6854 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.03Δρmax = 0.18 e Å3
3697 reflectionsΔρmin = 0.16 e Å3
220 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.0563 (2)0.53130 (13)1.39178 (11)0.0761 (4)
N10.6205 (2)0.22322 (14)0.56828 (13)0.0432 (4)
N20.4313 (3)0.27912 (17)0.59390 (14)0.0540 (5)
N30.4258 (3)0.30257 (16)0.70426 (14)0.0520 (4)
O10.8127 (3)0.23574 (16)0.91088 (12)0.0704 (5)
C10.3444 (3)0.37835 (17)1.14542 (15)0.0457 (5)
C20.4017 (3)0.38896 (19)1.26083 (16)0.0498 (5)
H20.53330.36131.28210.060*
C30.2675 (4)0.43951 (19)1.34448 (16)0.0529 (5)
H30.30670.44561.42130.064*
C40.0766 (4)0.48017 (19)1.31138 (17)0.0515 (5)
C50.0113 (4)0.4712 (2)1.19918 (17)0.0558 (6)
H50.12060.49951.17930.067*
C60.1452 (3)0.4193 (2)1.11674 (17)0.0533 (5)
H60.10180.41141.04030.064*
C70.4949 (3)0.32849 (18)1.06035 (17)0.0501 (5)
H70.61960.29851.08810.060*
C80.4757 (4)0.32071 (19)0.94822 (16)0.0521 (5)
H80.35220.34740.91610.063*
C90.6455 (3)0.27077 (18)0.87383 (16)0.0483 (5)
C100.6071 (3)0.26277 (17)0.75028 (16)0.0429 (5)
C110.7336 (3)0.21146 (17)0.66377 (15)0.0415 (4)
C120.9405 (3)0.1506 (2)0.66496 (19)0.0604 (6)
H12A0.95070.09080.59520.091*
H12B0.95110.10850.72840.091*
H12C1.05400.21280.67210.091*
C130.6637 (3)0.17915 (17)0.45098 (16)0.0441 (5)
C140.8548 (3)0.21016 (19)0.40945 (17)0.0512 (5)
H140.95610.26200.45650.061*
C150.8934 (4)0.1630 (2)0.29706 (18)0.0574 (6)
H151.02250.18350.26900.069*
C160.7455 (4)0.08618 (19)0.22491 (17)0.0562 (6)
C170.5531 (4)0.0601 (2)0.26836 (18)0.0601 (6)
H170.44920.01110.22070.072*
C180.5117 (4)0.10497 (19)0.38069 (17)0.0543 (5)
H180.38220.08530.40870.065*
C190.7960 (5)0.0318 (2)0.10330 (19)0.0821 (8)
H19A0.66580.00680.05850.123*
H19B0.88200.03990.10220.123*
H19C0.87220.09380.07200.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0828 (10)0.0924 (10)0.0550 (8)0.0284 (8)0.0226 (7)0.0114 (7)
N10.0393 (9)0.0511 (9)0.0388 (9)0.0029 (7)0.0042 (7)0.0068 (7)
N20.0441 (10)0.0750 (12)0.0431 (9)0.0127 (9)0.0055 (8)0.0093 (9)
N30.0472 (10)0.0665 (11)0.0428 (9)0.0104 (8)0.0077 (8)0.0095 (8)
O10.0638 (11)0.1007 (13)0.0487 (9)0.0244 (9)0.0017 (8)0.0170 (9)
C10.0545 (13)0.0444 (11)0.0382 (10)0.0018 (9)0.0039 (9)0.0078 (9)
C20.0528 (13)0.0565 (12)0.0416 (11)0.0052 (10)0.0002 (9)0.0138 (9)
C30.0643 (15)0.0604 (13)0.0334 (10)0.0001 (11)0.0014 (10)0.0080 (9)
C40.0610 (14)0.0514 (12)0.0432 (11)0.0070 (10)0.0123 (10)0.0085 (9)
C50.0539 (14)0.0654 (14)0.0494 (12)0.0118 (11)0.0015 (10)0.0135 (11)
C60.0592 (14)0.0644 (13)0.0356 (10)0.0053 (11)0.0031 (10)0.0090 (10)
C70.0556 (13)0.0509 (11)0.0444 (11)0.0054 (10)0.0038 (10)0.0098 (9)
C80.0594 (14)0.0567 (12)0.0412 (11)0.0093 (10)0.0060 (10)0.0099 (9)
C90.0554 (14)0.0474 (11)0.0418 (11)0.0031 (10)0.0043 (10)0.0076 (9)
C100.0426 (11)0.0441 (10)0.0415 (10)0.0001 (8)0.0038 (9)0.0074 (9)
C110.0404 (11)0.0436 (10)0.0410 (10)0.0005 (8)0.0018 (9)0.0101 (8)
C120.0488 (13)0.0772 (15)0.0562 (13)0.0137 (11)0.0039 (10)0.0139 (12)
C130.0495 (12)0.0443 (10)0.0382 (10)0.0024 (9)0.0065 (9)0.0065 (8)
C140.0504 (13)0.0537 (12)0.0479 (11)0.0015 (10)0.0074 (10)0.0053 (10)
C150.0613 (15)0.0612 (13)0.0529 (13)0.0061 (11)0.0198 (11)0.0145 (11)
C160.0801 (17)0.0473 (12)0.0438 (11)0.0160 (11)0.0120 (11)0.0112 (10)
C170.0747 (17)0.0545 (13)0.0479 (12)0.0054 (11)0.0024 (11)0.0042 (10)
C180.0556 (14)0.0586 (13)0.0475 (12)0.0072 (10)0.0049 (10)0.0085 (10)
C190.122 (2)0.0779 (17)0.0474 (13)0.0249 (16)0.0189 (15)0.0076 (12)
Geometric parameters (Å, º) top
F1—C41.352 (2)C8—H80.9300
N1—C111.348 (2)C9—C101.473 (3)
N1—N21.372 (2)C10—C111.376 (2)
N1—C131.434 (2)C11—C121.478 (3)
N2—N31.298 (2)C12—H12A0.9600
N3—C101.362 (3)C12—H12B0.9600
O1—C91.222 (2)C12—H12C0.9600
C1—C61.392 (3)C13—C181.376 (3)
C1—C21.393 (3)C13—C141.380 (3)
C1—C71.460 (3)C14—C151.379 (3)
C2—C31.381 (3)C14—H140.9300
C2—H20.9300C15—C161.384 (3)
C3—C41.360 (3)C15—H150.9300
C3—H30.9300C16—C171.382 (3)
C4—C51.370 (3)C16—C191.513 (3)
C5—C61.374 (3)C17—C181.378 (3)
C5—H50.9300C17—H170.9300
C6—H60.9300C18—H180.9300
C7—C81.328 (3)C19—H19A0.9600
C7—H70.9300C19—H19B0.9600
C8—C91.471 (3)C19—H19C0.9600
C11—N1—N2111.07 (15)C11—C10—C9128.12 (19)
C11—N1—C13129.77 (16)N1—C11—C10103.79 (17)
N2—N1—C13118.99 (15)N1—C11—C12124.33 (17)
N3—N2—N1106.75 (15)C10—C11—C12131.83 (18)
N2—N3—C10109.28 (15)C11—C12—H12A109.5
C6—C1—C2117.65 (18)C11—C12—H12B109.5
C6—C1—C7122.83 (18)H12A—C12—H12B109.5
C2—C1—C7119.50 (19)C11—C12—H12C109.5
C3—C2—C1121.6 (2)H12A—C12—H12C109.5
C3—C2—H2119.2H12B—C12—H12C109.5
C1—C2—H2119.2C18—C13—C14120.54 (18)
C4—C3—C2118.14 (19)C18—C13—N1118.91 (17)
C4—C3—H3120.9C14—C13—N1120.55 (18)
C2—C3—H3120.9C15—C14—C13118.9 (2)
F1—C4—C3119.19 (19)C15—C14—H14120.5
F1—C4—C5118.0 (2)C13—C14—H14120.5
C3—C4—C5122.79 (19)C14—C15—C16121.8 (2)
C4—C5—C6118.5 (2)C14—C15—H15119.1
C4—C5—H5120.7C16—C15—H15119.1
C6—C5—H5120.7C17—C16—C15117.70 (19)
C5—C6—C1121.32 (19)C17—C16—C19121.7 (2)
C5—C6—H6119.3C15—C16—C19120.6 (2)
C1—C6—H6119.3C18—C17—C16121.5 (2)
C8—C7—C1128.0 (2)C18—C17—H17119.2
C8—C7—H7116.0C16—C17—H17119.2
C1—C7—H7116.0C13—C18—C17119.4 (2)
C7—C8—C9121.4 (2)C13—C18—H18120.3
C7—C8—H8119.3C17—C18—H18120.3
C9—C8—H8119.3C16—C19—H19A109.5
O1—C9—C8122.50 (19)C16—C19—H19B109.5
O1—C9—C10120.09 (18)H19A—C19—H19B109.5
C8—C9—C10117.41 (19)C16—C19—H19C109.5
N3—C10—C11109.11 (17)H19A—C19—H19C109.5
N3—C10—C9122.71 (17)H19B—C19—H19C109.5
C11—N1—N2—N30.2 (2)C8—C9—C10—C11174.80 (18)
C13—N1—N2—N3175.93 (15)N2—N1—C11—C100.2 (2)
N1—N2—N3—C100.1 (2)C13—N1—C11—C10175.33 (17)
C6—C1—C2—C30.7 (3)N2—N1—C11—C12177.50 (18)
C7—C1—C2—C3177.77 (18)C13—N1—C11—C122.3 (3)
C1—C2—C3—C40.5 (3)N3—C10—C11—N10.1 (2)
C2—C3—C4—F1179.26 (18)C9—C10—C11—N1177.11 (18)
C2—C3—C4—C51.1 (3)N3—C10—C11—C12177.3 (2)
F1—C4—C5—C6179.99 (18)C9—C10—C11—C120.3 (3)
C3—C4—C5—C60.3 (3)C11—N1—C13—C18125.1 (2)
C4—C5—C6—C11.0 (3)N2—N1—C13—C1849.8 (2)
C2—C1—C6—C51.5 (3)C11—N1—C13—C1454.7 (3)
C7—C1—C6—C5176.93 (19)N2—N1—C13—C14130.5 (2)
C6—C1—C7—C84.2 (3)C18—C13—C14—C151.6 (3)
C2—C1—C7—C8174.2 (2)N1—C13—C14—C15178.08 (18)
C1—C7—C8—C9178.30 (18)C13—C14—C15—C160.3 (3)
C7—C8—C9—O11.0 (3)C14—C15—C16—C171.6 (3)
C7—C8—C9—C10178.42 (18)C14—C15—C16—C19177.6 (2)
N2—N3—C10—C110.0 (2)C15—C16—C17—C182.3 (3)
N2—N3—C10—C9177.20 (17)C19—C16—C17—C18176.8 (2)
O1—C9—C10—N3178.71 (19)C14—C13—C18—C170.9 (3)
C8—C9—C10—N31.9 (3)N1—C13—C18—C17178.76 (18)
O1—C9—C10—C114.6 (3)C16—C17—C18—C131.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 benzene
D—H···AD—HH···AD···AD—H···A
C12—H12C···N3i0.962.493.399 (3)158
C2—H2···Cg1ii0.932.913.650 (2)138
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC19H16FN3O
Mr321.35
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)6.2890 (5), 10.8874 (8), 11.9691 (9)
α, β, γ (°)101.144 (7), 92.634 (6), 91.634 (6)
V3)802.65 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.35 × 0.35
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.887, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6854, 3697, 2308
Rint0.027
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.139, 1.03
No. of reflections3697
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.16

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 benzene
D—H···AD—HH···AD···AD—H···A
C12—H12C···N3i0.962.493.399 (3)158
C2—H2···Cg1ii0.932.913.650 (2)138
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1.
 

Footnotes

1Additional correspondence author, e-mail: bakrfatehy@yahoo.com.

Acknowledgements

We thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR–MOHE/SC/03).

References

First citationAbdel-Wahab, B. F., Abdel-Latif, E., Mohamed, H. A. & Awad, G. E. A. (2012). Eur. J. Med. Chem. 52, 263–268.  Web of Science CAS PubMed Google Scholar
First citationAbdel-Wahab, B. F., Abdel-Latif, E., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o639–o640.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, P., Raj, R., Kumar, V., Mahajan, M. P., Bedi, P. M., Kaur, T. & Saxena, A. K. (2012). Eur. J. Med. Chem. 47, 594–600.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds