organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-1-[5-Methyl-1-(4-methyl­phen­yl)-1H-1,2,3-triazol-4-yl]-3-[4-(piperidin-1-yl)phen­yl]prop-2-en-1-one1

aApplied Organic Chemistry Department, National Research Centre, Dokki, 12622 Giza, Egypt, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 25 March 2013; accepted 25 March 2013; online 5 April 2013)

Two independent mol­ecules comprise the asymmetric unit of the title compound, C24H26N4O. The major difference between them is found in the relative orientation of the triazole-bound p-tolyl group which have the opposite sense of twist [N—N—C—C torsion angles = 55.8 (3) and −49.8 (3)°]. The chalcone residue is almost coplanar with the triazole ring [N—C—C—O and C—C—C—C torsion angles = −178.9 (2) and −178.5 (2)°, respectively; cf. 177.9 (3) and 168.5 (3)°, respectively, in the second mol­ecule]. The conformation about each C=C double bond is E and in each case the triazole methyl group is syn to the carbonyl O atom. In the crystal, mol­ecules aggregate into layers parallel to (-113). The first independent mol­ecule self-associates into a layer via C—H⋯O and C—H⋯π inter­actions. By contrast, layers comprising the second independent mol­ecule do not feature specific inter­actions between mol­ecules. The global crystal packing comprises alternating layers.

Related literature

For the biological activities of triazole-based chalcone derivatives, see: Abdel-Wahab et al. (2012[Abdel-Wahab, B. F., Abdel-Latif, E., Mohamed, H. A. & Awad, G. E. A. (2012). Eur. J. Med. Chem. 52, 263-268.]); Guantai et al. (2010[Guantai, E. M., Ncokazi, K., Egan, T. J., Gut, J., Rosenthal, P. J., Smith, P. J. & Chibale, K. (2010). Bioorg. Med. Chem. 18, 8243-8256.]). For a related structure, see: Abdel-Wahab et al. (2013[Abdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o638.]).

[Scheme 1]

Experimental

Crystal data
  • C24H26N4O

  • Mr = 386.49

  • Triclinic, [P \overline 1]

  • a = 12.9514 (16) Å

  • b = 13.1000 (13) Å

  • c = 13.3735 (14) Å

  • α = 77.666 (9)°

  • β = 74.123 (10)°

  • γ = 81.044 (9)°

  • V = 2120.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.50 × 0.40 × 0.30 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.955, Tmax = 1.000

  • 17797 measured reflections

  • 7458 independent reflections

  • 4585 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.174

  • S = 1.03

  • 7458 reflections

  • 528 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C14–C19 benzene

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.93 2.51 3.415 (3) 165
C3—H3⋯Cg1ii 0.93 2.73 3.469 (3) 137
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Qmol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Triazole-based chalcone derivatives exhibit a range of biological activities (Abdel-Wahab et al., 2012; Guantai et al., 2010) and in this connection, the title compound was synthesized and characterized crystallographically.

In (I), Fig. 1, two independent molecules comprise the asymmetric unit. As illustrated in the overlay diagram, Fig. 2, variations exist in the relative orientations of the terminal substituents. In the central region of the molecule, the triazole-bound p-tolyl residue is twisted with respect to the five-membered ring, forming a dihedral angle of 56.88 (14)° [the comparable angle for the second independent molecule is 51.92 (16)°]. By contrast, the chalcone residue is co-planar as seen in the values of the N3—C11—C12—O1 and C11—C12—C13—C14 torsion angles of -178.9 (2) and -178.5 (2)°, respectively [cf. 177.9 (3) and 168.5 (3)°]. The conformation about each of C12C13 and C36C37 double bonds [1.329 (4) and 1.330 (4) Å] is E, and in each case the triazole-methyl is syn to the carbonyl-O atom. In these respects, the structure of (I) resembles closely that of a recently described derivative (Abdel-Wahab et al., 2013). The major difference between the two molecules in (I) is found in the relative orientation of the triazole-bound p-tolyl groups. Although having similar dihedral angles, see above, the orientations of the rings have the opposite sense as seen in the value of the N2—N1—C1—C2 torsion angle of 55.8 (3)° cf. -49.8 (3)° for N6—N5—C25—C26. Each of the piperidinyl rings has a chair conformation.

In the crystal structure, centrosymmetrically related O1-containing molecules associate into dimers via C—H···O interactions and these are connected into a supramolecular layer, parallel to (-1 1 3), via C—H···π interactions, Fig. 3 and Table 1. The O2-containing molecules also assemble into a layer but without specific interactions between them. The global crystal packing comprises alternating layers of O1- and O2-containing layers with no specific interactions between them, Fig. 4.

Related literature top

For the biological activities of triazole-based chalcone derivatives, see: Abdel-Wahab et al. (2012); Guantai et al. (2010). For a related structure, see: Abdel-Wahab et al. (2013).

Experimental top

The title compound was prepared following a reported method (Abdel-Wahab et al., 2012). Yellow prisms were obtained from its DMF solution by slow evaporation at room temperature.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2–1.5Uequiv(C).

Structure description top

Triazole-based chalcone derivatives exhibit a range of biological activities (Abdel-Wahab et al., 2012; Guantai et al., 2010) and in this connection, the title compound was synthesized and characterized crystallographically.

In (I), Fig. 1, two independent molecules comprise the asymmetric unit. As illustrated in the overlay diagram, Fig. 2, variations exist in the relative orientations of the terminal substituents. In the central region of the molecule, the triazole-bound p-tolyl residue is twisted with respect to the five-membered ring, forming a dihedral angle of 56.88 (14)° [the comparable angle for the second independent molecule is 51.92 (16)°]. By contrast, the chalcone residue is co-planar as seen in the values of the N3—C11—C12—O1 and C11—C12—C13—C14 torsion angles of -178.9 (2) and -178.5 (2)°, respectively [cf. 177.9 (3) and 168.5 (3)°]. The conformation about each of C12C13 and C36C37 double bonds [1.329 (4) and 1.330 (4) Å] is E, and in each case the triazole-methyl is syn to the carbonyl-O atom. In these respects, the structure of (I) resembles closely that of a recently described derivative (Abdel-Wahab et al., 2013). The major difference between the two molecules in (I) is found in the relative orientation of the triazole-bound p-tolyl groups. Although having similar dihedral angles, see above, the orientations of the rings have the opposite sense as seen in the value of the N2—N1—C1—C2 torsion angle of 55.8 (3)° cf. -49.8 (3)° for N6—N5—C25—C26. Each of the piperidinyl rings has a chair conformation.

In the crystal structure, centrosymmetrically related O1-containing molecules associate into dimers via C—H···O interactions and these are connected into a supramolecular layer, parallel to (-1 1 3), via C—H···π interactions, Fig. 3 and Table 1. The O2-containing molecules also assemble into a layer but without specific interactions between them. The global crystal packing comprises alternating layers of O1- and O2-containing layers with no specific interactions between them, Fig. 4.

For the biological activities of triazole-based chalcone derivatives, see: Abdel-Wahab et al. (2012); Guantai et al. (2010). For a related structure, see: Abdel-Wahab et al. (2013).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMOL (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. Overlay diagram of the two independent molecules comprising the asymmetric unit of (I). The O1- (red image) and O2-containing (blue) molecules have been superimposed so that the five-membered rings are coincident.
[Figure 3] Fig. 3. A view of the supramolecular layer in (I) comprising O1-containing molecules only, and sustained by C—H···O and C—H···π interactions, shown as orange and purple dashed lines, respectively.
[Figure 4] Fig. 4. A view of the crystal packing in projection down the a axis, highlighting the alternating layers of O1- and O2-containing molecules. The C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively.
(2E)-1-[5-Methyl-1-(4-methylphenyl)-1H-1,2,3-triazol-4-yl]-3-[4-(piperidin-1-yl)phenyl]prop-2-en-1-one top
Crystal data top
C24H26N4OZ = 4
Mr = 386.49F(000) = 824
Triclinic, P1Dx = 1.211 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.9514 (16) ÅCell parameters from 3652 reflections
b = 13.1000 (13) Åθ = 3.0–27.5°
c = 13.3735 (14) ŵ = 0.08 mm1
α = 77.666 (9)°T = 295 K
β = 74.123 (10)°Prism, yellow
γ = 81.044 (9)°0.50 × 0.40 × 0.30 mm
V = 2120.6 (4) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
7458 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4585 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.034
Detector resolution: 10.4041 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scanh = 1415
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1515
Tmin = 0.955, Tmax = 1.000l = 1515
17797 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.174 w = 1/[σ2(Fo2) + (0.0637P)2 + 0.5896P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
7458 reflectionsΔρmax = 0.19 e Å3
528 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0048 (8)
Crystal data top
C24H26N4Oγ = 81.044 (9)°
Mr = 386.49V = 2120.6 (4) Å3
Triclinic, P1Z = 4
a = 12.9514 (16) ÅMo Kα radiation
b = 13.1000 (13) ŵ = 0.08 mm1
c = 13.3735 (14) ÅT = 295 K
α = 77.666 (9)°0.50 × 0.40 × 0.30 mm
β = 74.123 (10)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
7458 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
4585 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 1.000Rint = 0.034
17797 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.03Δρmax = 0.19 e Å3
7458 reflectionsΔρmin = 0.19 e Å3
528 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.44643 (15)0.32264 (15)0.48227 (14)0.0724 (5)
O20.04267 (17)0.20058 (17)0.10647 (15)0.0886 (6)
N10.64525 (16)0.39564 (16)0.65410 (15)0.0563 (5)
N20.5765 (2)0.3624 (2)0.74989 (16)0.0758 (7)
N30.49501 (19)0.33089 (19)0.73114 (16)0.0716 (6)
N40.14649 (16)0.10222 (17)0.86378 (15)0.0592 (6)
N50.14790 (18)0.11974 (17)0.41775 (16)0.0632 (6)
N60.0748 (2)0.1474 (2)0.46206 (18)0.0782 (7)
N70.0042 (2)0.1822 (2)0.38478 (18)0.0754 (7)
N80.6530 (2)0.3801 (2)0.09660 (18)0.0793 (7)
C10.74396 (19)0.43353 (19)0.65210 (18)0.0533 (6)
C20.8143 (2)0.3704 (2)0.7049 (2)0.0764 (8)
H20.79790.30380.74160.092*
C30.9086 (2)0.4059 (2)0.7033 (3)0.0794 (9)
H30.95560.36280.73970.095*
C40.9361 (2)0.5039 (2)0.6493 (2)0.0625 (7)
C50.8635 (2)0.5658 (2)0.5981 (2)0.0708 (8)
H50.87960.63240.56130.085*
C60.7680 (2)0.5322 (2)0.5997 (2)0.0651 (7)
H60.71980.57610.56530.078*
C71.0401 (2)0.5407 (3)0.6491 (3)0.0925 (10)
H7A1.09500.48230.64860.139*
H7B1.03040.57020.71130.139*
H7C1.06140.59320.58740.139*
C80.6648 (2)0.4071 (2)0.46175 (19)0.0723 (8)
H8A0.68010.47910.44370.108*
H8B0.62110.39540.41850.108*
H8C0.73120.36200.45000.108*
C90.60606 (19)0.38366 (19)0.57457 (17)0.0530 (6)
C100.5096 (2)0.34268 (19)0.62391 (18)0.0561 (6)
C110.4303 (2)0.3127 (2)0.5790 (2)0.0582 (7)
C120.3326 (2)0.2737 (2)0.6525 (2)0.0613 (7)
H120.32180.27450.72400.074*
C130.2582 (2)0.23702 (19)0.6219 (2)0.0585 (7)
H130.27280.23590.55010.070*
C140.15793 (19)0.19881 (18)0.68588 (18)0.0531 (6)
C150.1231 (2)0.19481 (19)0.79543 (19)0.0576 (6)
H150.16760.21540.82990.069*
C160.0259 (2)0.16163 (19)0.85315 (19)0.0576 (6)
H160.00590.16090.92560.069*
C170.04496 (19)0.12836 (18)0.80569 (17)0.0513 (6)
C180.0095 (2)0.13069 (19)0.69667 (18)0.0571 (6)
H180.05280.10820.66220.069*
C190.0881 (2)0.16548 (19)0.63936 (19)0.0586 (7)
H190.10820.16680.56680.070*
C200.1592 (2)0.0469 (3)0.97295 (19)0.0757 (8)
H20A0.11400.07451.00570.091*
H20B0.13490.02700.97300.091*
C210.2732 (2)0.0575 (3)1.0365 (2)0.0845 (9)
H21A0.29430.13021.04490.101*
H21B0.27820.01511.10630.101*
C220.3501 (3)0.0239 (3)0.9860 (2)0.0910 (10)
H22A0.42390.03951.02520.109*
H22B0.33670.05130.98720.109*
C230.3339 (2)0.0817 (3)0.8733 (2)0.0828 (9)
H23A0.37800.05470.83880.099*
H23B0.35830.15560.87340.099*
C240.2181 (2)0.0711 (2)0.8111 (2)0.0673 (7)
H24A0.19660.00140.80200.081*
H24B0.21120.11450.74160.081*
C250.2421 (2)0.0763 (2)0.4871 (2)0.0623 (7)
C260.2301 (2)0.0049 (2)0.5683 (2)0.0728 (8)
H260.16170.03350.57590.087*
C270.3209 (3)0.0434 (3)0.6385 (2)0.0871 (9)
H270.31280.09830.69370.105*
C280.4233 (3)0.0031 (3)0.6294 (2)0.0863 (9)
C290.4326 (3)0.0774 (3)0.5458 (3)0.0850 (9)
H290.50090.10460.53690.102*
C300.3432 (2)0.1182 (2)0.4754 (2)0.0743 (8)
H300.35100.17350.42050.089*
C310.5221 (3)0.0425 (4)0.7095 (3)0.1369 (17)
H31A0.51790.03790.77900.205*
H31B0.52580.11430.70630.205*
H31C0.58540.00030.69430.205*
C320.1717 (2)0.1099 (2)0.2409 (2)0.0773 (8)
H32A0.20680.04770.27490.116*
H32B0.12150.09770.17590.116*
H32C0.22480.16700.22610.116*
C330.1133 (2)0.1368 (2)0.3113 (2)0.0603 (7)
C340.0161 (2)0.1772 (2)0.2913 (2)0.0625 (7)
C350.0615 (2)0.2088 (2)0.1895 (2)0.0678 (7)
C360.1605 (2)0.2454 (2)0.1946 (2)0.0746 (8)
H360.16450.25920.25880.089*
C370.2453 (3)0.2599 (2)0.1124 (2)0.0728 (8)
H370.23720.24840.04880.087*
C380.3481 (2)0.2913 (2)0.1093 (2)0.0696 (8)
C390.3716 (3)0.3167 (3)0.1962 (2)0.0944 (11)
H390.31830.31340.25920.113*
C400.4691 (3)0.3462 (3)0.1931 (2)0.0935 (10)
H400.48080.36130.25370.112*
C410.5526 (2)0.3539 (2)0.0993 (2)0.0685 (8)
C420.5291 (3)0.3297 (2)0.0129 (2)0.0785 (9)
H420.58150.33470.05080.094*
C430.4311 (3)0.2986 (2)0.0178 (2)0.0778 (9)
H430.42000.28190.04240.093*
C440.6601 (3)0.4424 (3)0.1705 (3)0.0968 (10)
H44A0.61820.41310.23990.116*
H44B0.62680.51280.15090.116*
C450.7688 (3)0.4503 (4)0.1784 (3)0.1224 (14)
H45A0.79380.38470.21850.147*
H45B0.76510.50540.21790.147*
C460.8496 (3)0.4727 (3)0.0757 (3)0.1112 (12)
H46A0.83760.54600.04400.133*
H46B0.92150.46020.08740.133*
C470.8415 (3)0.4057 (4)0.0032 (3)0.1300 (15)
H47A0.88330.43280.06710.156*
H47B0.87460.33570.02490.156*
C480.7316 (3)0.3969 (3)0.0033 (3)0.1035 (12)
H48A0.70730.46070.04630.124*
H48B0.73460.33920.03930.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0622 (12)0.0989 (14)0.0584 (11)0.0187 (10)0.0194 (9)0.0062 (10)
O20.0927 (16)0.1176 (17)0.0638 (12)0.0174 (12)0.0295 (11)0.0160 (11)
N10.0479 (13)0.0748 (14)0.0471 (11)0.0125 (10)0.0108 (10)0.0096 (10)
N20.0639 (16)0.1163 (19)0.0481 (12)0.0275 (14)0.0069 (11)0.0129 (12)
N30.0569 (15)0.1061 (18)0.0527 (13)0.0247 (13)0.0074 (11)0.0127 (12)
N40.0518 (13)0.0839 (14)0.0482 (11)0.0194 (11)0.0175 (10)0.0100 (10)
N50.0628 (15)0.0776 (14)0.0587 (13)0.0101 (11)0.0239 (11)0.0189 (11)
N60.0723 (17)0.1110 (19)0.0635 (14)0.0238 (14)0.0235 (13)0.0232 (13)
N70.0757 (17)0.0997 (18)0.0625 (14)0.0223 (13)0.0232 (13)0.0221 (13)
N80.0688 (18)0.1040 (19)0.0600 (14)0.0185 (14)0.0037 (12)0.0223 (13)
C10.0469 (15)0.0683 (16)0.0485 (13)0.0071 (12)0.0140 (11)0.0153 (12)
C20.067 (2)0.0680 (17)0.098 (2)0.0094 (14)0.0361 (17)0.0012 (15)
C30.064 (2)0.079 (2)0.106 (2)0.0007 (15)0.0438 (17)0.0145 (17)
C40.0486 (16)0.0721 (17)0.0746 (17)0.0040 (13)0.0175 (13)0.0288 (14)
C50.0681 (19)0.0701 (17)0.0785 (18)0.0174 (14)0.0256 (15)0.0055 (14)
C60.0594 (18)0.0719 (17)0.0664 (16)0.0079 (13)0.0261 (14)0.0033 (14)
C70.065 (2)0.106 (2)0.123 (3)0.0109 (17)0.0322 (19)0.045 (2)
C80.0708 (19)0.098 (2)0.0507 (15)0.0301 (16)0.0099 (13)0.0102 (14)
C90.0489 (15)0.0654 (15)0.0455 (13)0.0068 (12)0.0126 (11)0.0099 (11)
C100.0470 (15)0.0700 (16)0.0492 (14)0.0074 (12)0.0093 (12)0.0087 (11)
C110.0496 (16)0.0676 (16)0.0551 (15)0.0038 (12)0.0129 (12)0.0078 (12)
C120.0469 (16)0.0779 (17)0.0584 (15)0.0111 (13)0.0115 (13)0.0098 (13)
C130.0519 (16)0.0645 (15)0.0586 (14)0.0072 (12)0.0136 (12)0.0092 (12)
C140.0478 (15)0.0574 (14)0.0547 (14)0.0057 (11)0.0149 (12)0.0088 (11)
C150.0520 (16)0.0717 (16)0.0551 (14)0.0122 (12)0.0230 (12)0.0077 (12)
C160.0545 (16)0.0766 (17)0.0461 (13)0.0120 (13)0.0179 (12)0.0098 (12)
C170.0494 (15)0.0590 (14)0.0490 (13)0.0096 (11)0.0172 (12)0.0078 (11)
C180.0572 (17)0.0695 (16)0.0523 (14)0.0158 (13)0.0197 (13)0.0127 (12)
C190.0604 (17)0.0702 (16)0.0479 (13)0.0135 (13)0.0139 (13)0.0111 (12)
C200.0629 (19)0.110 (2)0.0531 (15)0.0232 (16)0.0166 (14)0.0003 (15)
C210.062 (2)0.132 (3)0.0629 (17)0.0335 (18)0.0085 (15)0.0159 (17)
C220.066 (2)0.133 (3)0.078 (2)0.0405 (19)0.0055 (16)0.0238 (19)
C230.0576 (19)0.121 (3)0.083 (2)0.0231 (17)0.0222 (16)0.0300 (18)
C240.0605 (18)0.0876 (19)0.0635 (16)0.0224 (14)0.0226 (14)0.0143 (14)
C250.0587 (18)0.0760 (17)0.0607 (15)0.0068 (14)0.0169 (14)0.0279 (14)
C260.071 (2)0.095 (2)0.0564 (16)0.0062 (16)0.0221 (15)0.0162 (15)
C270.085 (2)0.116 (3)0.0623 (18)0.025 (2)0.0186 (17)0.0103 (17)
C280.069 (2)0.128 (3)0.0697 (19)0.0224 (19)0.0068 (17)0.0401 (19)
C290.061 (2)0.104 (2)0.101 (2)0.0009 (17)0.0214 (19)0.047 (2)
C300.067 (2)0.0739 (18)0.089 (2)0.0024 (15)0.0246 (17)0.0250 (15)
C310.090 (3)0.230 (5)0.090 (3)0.059 (3)0.001 (2)0.029 (3)
C320.082 (2)0.092 (2)0.0730 (18)0.0178 (16)0.0350 (16)0.0202 (15)
C330.0640 (18)0.0640 (16)0.0604 (16)0.0001 (13)0.0261 (13)0.0185 (12)
C340.0636 (18)0.0677 (16)0.0620 (16)0.0058 (13)0.0230 (14)0.0154 (13)
C350.074 (2)0.0694 (17)0.0645 (17)0.0038 (14)0.0247 (15)0.0140 (14)
C360.076 (2)0.086 (2)0.0659 (17)0.0157 (16)0.0156 (16)0.0179 (15)
C370.083 (2)0.0752 (18)0.0606 (17)0.0128 (16)0.0164 (16)0.0121 (14)
C380.079 (2)0.0726 (18)0.0556 (16)0.0137 (15)0.0100 (15)0.0130 (13)
C390.084 (3)0.133 (3)0.0667 (19)0.045 (2)0.0155 (17)0.0390 (18)
C400.090 (3)0.134 (3)0.0633 (18)0.045 (2)0.0076 (17)0.0426 (18)
C410.071 (2)0.0749 (18)0.0531 (15)0.0131 (15)0.0015 (14)0.0151 (13)
C420.072 (2)0.106 (2)0.0505 (16)0.0104 (17)0.0015 (15)0.0159 (15)
C430.084 (2)0.095 (2)0.0521 (16)0.0065 (17)0.0126 (15)0.0154 (14)
C440.083 (3)0.134 (3)0.080 (2)0.023 (2)0.0102 (18)0.037 (2)
C450.078 (3)0.207 (5)0.087 (2)0.044 (3)0.007 (2)0.033 (3)
C460.088 (3)0.153 (3)0.090 (2)0.039 (2)0.008 (2)0.016 (2)
C470.086 (3)0.201 (5)0.099 (3)0.044 (3)0.019 (2)0.053 (3)
C480.091 (3)0.139 (3)0.077 (2)0.042 (2)0.0142 (19)0.034 (2)
Geometric parameters (Å, º) top
O1—C111.234 (3)C21—H21B0.9700
O2—C351.230 (3)C22—C231.510 (4)
N1—C91.343 (3)C22—H22A0.9700
N1—N21.372 (3)C22—H22B0.9700
N1—C11.433 (3)C23—C241.505 (4)
N2—N31.293 (3)C23—H23A0.9700
N3—C101.372 (3)C23—H23B0.9700
N4—C171.385 (3)C24—H24A0.9700
N4—C241.456 (3)C24—H24B0.9700
N4—C201.462 (3)C25—C261.373 (4)
N5—C331.350 (3)C25—C301.375 (4)
N5—N61.372 (3)C26—C271.377 (4)
N5—C251.429 (3)C26—H260.9300
N6—N71.300 (3)C27—C281.377 (4)
N7—C341.363 (3)C27—H270.9300
N8—C411.386 (4)C28—C291.380 (4)
N8—C481.439 (4)C28—C311.507 (4)
N8—C441.438 (4)C29—C301.377 (4)
C1—C61.371 (3)C29—H290.9300
C1—C21.371 (3)C30—H300.9300
C2—C31.366 (4)C31—H31A0.9600
C2—H20.9300C31—H31B0.9600
C3—C41.379 (4)C31—H31C0.9600
C3—H30.9300C32—C331.484 (4)
C4—C51.374 (4)C32—H32A0.9600
C4—C71.499 (4)C32—H32B0.9600
C5—C61.368 (4)C32—H32C0.9600
C5—H50.9300C33—C341.377 (4)
C6—H60.9300C34—C351.474 (4)
C7—H7A0.9600C35—C361.460 (4)
C7—H7B0.9600C36—C371.329 (4)
C7—H7C0.9600C36—H360.9300
C8—C91.482 (3)C37—C381.441 (4)
C8—H8A0.9600C37—H370.9300
C8—H8B0.9600C38—C431.387 (4)
C8—H8C0.9600C38—C391.395 (4)
C9—C101.375 (3)C39—C401.365 (4)
C10—C111.461 (4)C39—H390.9300
C11—C121.462 (3)C40—C411.411 (4)
C12—C131.330 (4)C40—H400.9300
C12—H120.9300C41—C421.380 (4)
C13—C141.443 (3)C42—C431.374 (4)
C13—H130.9300C42—H420.9300
C14—C191.394 (3)C43—H430.9300
C14—C151.402 (3)C44—C451.460 (4)
C15—C161.365 (3)C44—H44A0.9700
C15—H150.9300C44—H44B0.9700
C16—C171.413 (3)C45—C461.485 (4)
C16—H160.9300C45—H45A0.9700
C17—C181.399 (3)C45—H45B0.9700
C18—C191.376 (3)C46—C471.474 (5)
C18—H180.9300C46—H46A0.9700
C19—H190.9300C46—H46B0.9700
C20—C211.490 (4)C47—C481.472 (5)
C20—H20A0.9700C47—H47A0.9700
C20—H20B0.9700C47—H47B0.9700
C21—C221.508 (4)C48—H48A0.9700
C21—H21A0.9700C48—H48B0.9700
C9—N1—N2110.6 (2)C22—C23—H23B109.1
C9—N1—C1130.4 (2)H23A—C23—H23B107.8
N2—N1—C1118.9 (2)N4—C24—C23111.7 (2)
N3—N2—N1107.3 (2)N4—C24—H24A109.3
N2—N3—C10109.0 (2)C23—C24—H24A109.3
C17—N4—C24119.2 (2)N4—C24—H24B109.3
C17—N4—C20118.6 (2)C23—C24—H24B109.3
C24—N4—C20112.7 (2)H24A—C24—H24B107.9
C33—N5—N6110.8 (2)C26—C25—C30120.5 (3)
C33—N5—C25131.2 (2)C26—C25—N5118.8 (2)
N6—N5—C25118.0 (2)C30—C25—N5120.6 (3)
N7—N6—N5107.0 (2)C25—C26—C27119.0 (3)
N6—N7—C34109.1 (2)C25—C26—H26120.5
C41—N8—C48118.8 (3)C27—C26—H26120.5
C41—N8—C44118.5 (2)C28—C27—C26122.0 (3)
C48—N8—C44114.6 (3)C28—C27—H27119.0
C6—C1—C2119.7 (2)C26—C27—H27119.0
C6—C1—N1121.0 (2)C27—C28—C29117.6 (3)
C2—C1—N1119.3 (2)C27—C28—C31121.5 (3)
C3—C2—C1119.6 (3)C29—C28—C31120.9 (3)
C3—C2—H2120.2C30—C29—C28121.5 (3)
C1—C2—H2120.2C30—C29—H29119.2
C2—C3—C4121.9 (3)C28—C29—H29119.2
C2—C3—H3119.0C25—C30—C29119.3 (3)
C4—C3—H3119.0C25—C30—H30120.3
C5—C4—C3117.1 (3)C29—C30—H30120.3
C5—C4—C7122.2 (3)C28—C31—H31A109.5
C3—C4—C7120.7 (3)C28—C31—H31B109.5
C6—C5—C4121.9 (3)H31A—C31—H31B109.5
C6—C5—H5119.0C28—C31—H31C109.5
C4—C5—H5119.0H31A—C31—H31C109.5
C5—C6—C1119.6 (2)H31B—C31—H31C109.5
C5—C6—H6120.2C33—C32—H32A109.5
C1—C6—H6120.2C33—C32—H32B109.5
C4—C7—H7A109.5H32A—C32—H32B109.5
C4—C7—H7B109.5C33—C32—H32C109.5
H7A—C7—H7B109.5H32A—C32—H32C109.5
C4—C7—H7C109.5H32B—C32—H32C109.5
H7A—C7—H7C109.5N5—C33—C34104.0 (2)
H7B—C7—H7C109.5N5—C33—C32123.7 (3)
C9—C8—H8A109.5C34—C33—C32132.2 (3)
C9—C8—H8B109.5N7—C34—C33109.1 (2)
H8A—C8—H8B109.5N7—C34—C35121.3 (3)
C9—C8—H8C109.5C33—C34—C35129.6 (3)
H8A—C8—H8C109.5O2—C35—C36123.5 (3)
H8B—C8—H8C109.5O2—C35—C34120.0 (3)
N1—C9—C10104.5 (2)C36—C35—C34116.5 (3)
N1—C9—C8123.4 (2)C37—C36—C35123.4 (3)
C10—C9—C8132.0 (2)C37—C36—H36118.3
N3—C10—C9108.6 (2)C35—C36—H36118.3
N3—C10—C11121.3 (2)C36—C37—C38128.2 (3)
C9—C10—C11130.1 (2)C36—C37—H37115.9
O1—C11—C10119.9 (2)C38—C37—H37115.9
O1—C11—C12122.6 (2)C43—C38—C39115.2 (3)
C10—C11—C12117.5 (2)C43—C38—C37121.5 (3)
C13—C12—C11123.0 (2)C39—C38—C37123.3 (3)
C13—C12—H12118.5C40—C39—C38123.1 (3)
C11—C12—H12118.5C40—C39—H39118.4
C12—C13—C14128.3 (2)C38—C39—H39118.4
C12—C13—H13115.9C39—C40—C41121.0 (3)
C14—C13—H13115.9C39—C40—H40119.5
C19—C14—C15116.0 (2)C41—C40—H40119.5
C19—C14—C13120.4 (2)C42—C41—N8122.7 (3)
C15—C14—C13123.6 (2)C42—C41—C40116.0 (3)
C16—C15—C14122.1 (2)N8—C41—C40121.3 (3)
C16—C15—H15118.9C43—C42—C41122.3 (3)
C14—C15—H15118.9C43—C42—H42118.8
C15—C16—C17121.7 (2)C41—C42—H42118.8
C15—C16—H16119.1C42—C43—C38122.4 (3)
C17—C16—H16119.1C42—C43—H43118.8
N4—C17—C18122.6 (2)C38—C43—H43118.8
N4—C17—C16121.0 (2)N8—C44—C45116.0 (3)
C18—C17—C16116.2 (2)N8—C44—H44A108.3
C19—C18—C17121.4 (2)C45—C44—H44A108.3
C19—C18—H18119.3N8—C44—H44B108.3
C17—C18—H18119.3C45—C44—H44B108.3
C18—C19—C14122.5 (2)H44A—C44—H44B107.4
C18—C19—H19118.8C44—C45—C46115.0 (3)
C14—C19—H19118.8C44—C45—H45A108.5
N4—C20—C21112.4 (2)C46—C45—H45A108.5
N4—C20—H20A109.1C44—C45—H45B108.5
C21—C20—H20A109.1C46—C45—H45B108.5
N4—C20—H20B109.1H45A—C45—H45B107.5
C21—C20—H20B109.1C47—C46—C45110.7 (3)
H20A—C20—H20B107.9C47—C46—H46A109.5
C20—C21—C22112.3 (3)C45—C46—H46A109.5
C20—C21—H21A109.1C47—C46—H46B109.5
C22—C21—H21A109.1C45—C46—H46B109.5
C20—C21—H21B109.1H46A—C46—H46B108.1
C22—C21—H21B109.1C48—C47—C46116.0 (3)
H21A—C21—H21B107.9C48—C47—H47A108.3
C21—C22—C23109.2 (2)C46—C47—H47A108.3
C21—C22—H22A109.8C48—C47—H47B108.3
C23—C22—H22A109.8C46—C47—H47B108.3
C21—C22—H22B109.8H47A—C47—H47B107.4
C23—C22—H22B109.8N8—C48—C47115.1 (3)
H22A—C22—H22B108.3N8—C48—H48A108.5
C24—C23—C22112.7 (3)C47—C48—H48A108.5
C24—C23—H23A109.1N8—C48—H48B108.5
C22—C23—H23A109.1C47—C48—H48B108.5
C24—C23—H23B109.1H48A—C48—H48B107.5
C9—N1—N2—N30.5 (3)C17—N4—C24—C23160.3 (2)
C1—N1—N2—N3179.1 (2)C20—N4—C24—C2353.7 (3)
N1—N2—N3—C100.2 (3)C22—C23—C24—N454.0 (3)
C33—N5—N6—N70.6 (3)C33—N5—C25—C26127.7 (3)
C25—N5—N6—N7178.6 (2)N6—N5—C25—C2649.8 (3)
N5—N6—N7—C340.3 (3)C33—N5—C25—C3055.1 (4)
C9—N1—C1—C658.6 (4)N6—N5—C25—C30127.4 (3)
N2—N1—C1—C6123.2 (3)C30—C25—C26—C270.5 (4)
C9—N1—C1—C2122.4 (3)N5—C25—C26—C27176.7 (3)
N2—N1—C1—C255.8 (3)C25—C26—C27—C280.2 (5)
C6—C1—C2—C31.0 (4)C26—C27—C28—C290.8 (5)
N1—C1—C2—C3180.0 (3)C26—C27—C28—C31177.1 (3)
C1—C2—C3—C40.4 (5)C27—C28—C29—C301.7 (5)
C2—C3—C4—C51.1 (5)C31—C28—C29—C30176.3 (3)
C2—C3—C4—C7179.9 (3)C26—C25—C30—C290.4 (4)
C3—C4—C5—C60.4 (4)N5—C25—C30—C29177.5 (3)
C7—C4—C5—C6179.2 (3)C28—C29—C30—C251.5 (5)
C4—C5—C6—C11.1 (4)N6—N5—C33—C340.6 (3)
C2—C1—C6—C51.8 (4)C25—N5—C33—C34178.2 (2)
N1—C1—C6—C5179.2 (2)N6—N5—C33—C32176.9 (2)
N2—N1—C9—C100.6 (3)C25—N5—C33—C320.8 (4)
C1—N1—C9—C10178.9 (2)N6—N7—C34—C330.1 (3)
N2—N1—C9—C8176.6 (2)N6—N7—C34—C35178.2 (2)
C1—N1—C9—C81.8 (4)N5—C33—C34—N70.4 (3)
N2—N3—C10—C90.2 (3)C32—C33—C34—N7176.8 (3)
N2—N3—C10—C11179.6 (2)N5—C33—C34—C35178.3 (3)
N1—C9—C10—N30.4 (3)C32—C33—C34—C351.1 (5)
C8—C9—C10—N3176.4 (3)N7—C34—C35—O2177.9 (3)
N1—C9—C10—C11179.8 (2)C33—C34—C35—O20.2 (4)
C8—C9—C10—C113.0 (5)N7—C34—C35—C360.0 (4)
N3—C10—C11—O1178.9 (2)C33—C34—C35—C36177.6 (3)
C9—C10—C11—O10.4 (4)O2—C35—C36—C379.2 (5)
N3—C10—C11—C122.5 (4)C34—C35—C36—C37168.5 (3)
C9—C10—C11—C12178.2 (2)C35—C36—C37—C38177.2 (3)
O1—C11—C12—C136.3 (4)C36—C37—C38—C43177.0 (3)
C10—C11—C12—C13175.1 (2)C36—C37—C38—C393.3 (5)
C11—C12—C13—C14178.5 (2)C43—C38—C39—C400.4 (5)
C12—C13—C14—C19178.4 (2)C37—C38—C39—C40179.8 (3)
C12—C13—C14—C150.0 (4)C38—C39—C40—C410.8 (6)
C19—C14—C15—C160.9 (4)C48—N8—C41—C428.7 (4)
C13—C14—C15—C16177.7 (2)C44—N8—C41—C42155.8 (3)
C14—C15—C16—C170.6 (4)C48—N8—C41—C40174.0 (3)
C24—N4—C17—C182.9 (4)C44—N8—C41—C4027.0 (4)
C20—N4—C17—C18146.9 (2)C39—C40—C41—C420.2 (5)
C24—N4—C17—C16178.4 (2)C39—C40—C41—N8177.6 (3)
C20—N4—C17—C1637.7 (3)N8—C41—C42—C43176.6 (3)
C15—C16—C17—N4175.2 (2)C40—C41—C42—C430.8 (5)
C15—C16—C17—C180.5 (4)C41—C42—C43—C381.3 (5)
N4—C17—C18—C19174.4 (2)C39—C38—C43—C420.7 (4)
C16—C17—C18—C191.2 (3)C37—C38—C43—C42179.1 (3)
C17—C18—C19—C141.0 (4)C41—N8—C44—C45168.4 (3)
C15—C14—C19—C180.1 (4)C48—N8—C44—C4543.2 (4)
C13—C14—C19—C18178.5 (2)N8—C44—C45—C4646.0 (5)
C17—N4—C20—C21159.5 (3)C44—C45—C46—C4745.7 (5)
C24—N4—C20—C2154.4 (3)C45—C46—C47—C4845.5 (5)
N4—C20—C21—C2254.4 (4)C41—N8—C48—C47169.6 (3)
C20—C21—C22—C2352.9 (4)C44—N8—C48—C4742.2 (5)
C21—C22—C23—C2452.9 (4)C46—C47—C48—N844.9 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C14–C19 benzene
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.513.415 (3)165
C3—H3···Cg1ii0.932.733.469 (3)137
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC24H26N4O
Mr386.49
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)12.9514 (16), 13.1000 (13), 13.3735 (14)
α, β, γ (°)77.666 (9), 74.123 (10), 81.044 (9)
V3)2120.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.40 × 0.30
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.955, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
17797, 7458, 4585
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.174, 1.03
No. of reflections7458
No. of parameters528
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.19

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), QMOL (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C14–C19 benzene
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.513.415 (3)165
C3—H3···Cg1ii0.932.733.469 (3)137
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.
 

Footnotes

1Additional correspondence author, e-mail: bakrfatehy@yahoo.com.

Acknowledgements

We thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM·C/HIR-MOHE/SC/03).

References

First citationAbdel-Wahab, B. F., Abdel-Latif, E., Mohamed, H. A. & Awad, G. E. A. (2012). Eur. J. Med. Chem. 52, 263–268.  Web of Science CAS PubMed Google Scholar
First citationAbdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o638.  CSD CrossRef IUCr Journals Google Scholar
First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGuantai, E. M., Ncokazi, K., Egan, T. J., Gut, J., Rosenthal, P. J., Smith, P. J. & Chibale, K. (2010). Bioorg. Med. Chem. 18, 8243-8256.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds