organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[(4-Phenyl­piperazin-1-yl)meth­yl]-5-(thio­phen-2-yl)-2,3-di­hydro-1,3,4-oxa­diazole-2-thione

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 2 April 2013; accepted 5 April 2013; online 10 April 2013)

In the title compound, C17H18N4OS2, the 2-thienyl ring is disordered over two co-planar, opposite orientations in a 0.684 (2): 0.316 ratio. The 1,3,4-oxa­diazole ring is almost co-planar with the attached 2-thienyl ring [dihedral angles of 5.34 (19) and 4.8 (5)° for the major and minor components, respectively]. The relative disposition of the thione- and ring-S atoms is anti for the major orientation of the 2-thienyl residue. Overall, the shape of the mol­ecule approximates the letter V. In the crystal, a three-dimensional architecture is consolidated by a combination of weak C—H⋯S and C—H⋯π contacts.

Related literature

For background to the biological properties of 1,3,4-oxa­diazole derivatives, see: Al-Omar (2010[Al-Omar, M. A. (2010). Molecules, 15, 502-514.]). For a related structure, see: El-Emam et al. (2012[El-Emam, A. A., Al-Omar, M. A., Ghabbour, H. A., Fun, H.-K. & Chia, T. S. (2012). Acta Cryst. E68, o1345-o1346.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N4OS2

  • Mr = 358.47

  • Monoclinic, C 2/c

  • a = 26.1721 (17) Å

  • b = 5.7253 (3) Å

  • c = 23.7008 (18) Å

  • β = 97.802 (6)°

  • V = 3518.5 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 295 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.887, Tmax = 1.000

  • 9546 measured reflections

  • 4083 independent reflections

  • 2797 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.123

  • S = 1.06

  • 4083 reflections

  • 230 parameters

  • 33 restraints

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the O1,N1,N2,C5,C6 ring

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯S2i 0.97 2.77 3.618 (3) 146
C1—H1⋯Cg1ii 0.93 2.72 3.545 (6) 148
C11—H11ACg1iii 0.97 2.98 3.600 (2) 123
C15—H15⋯Cg2iii 0.93 2.95 3.743 (3) 144
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, (I), was synthesized among a series of 2-thienyl-1,3,4-oxadiazoles and related derivatives as potential anti-microbial agents (Al-Omar, 2010). Herein, the crystal structure of (I) is reported.

In (I), Fig. 1, the 1,3,4-oxadiazole ring is almost planar (r.m.s. deviation = 0.005 Å) and almost co-planar with the attached 2-thienyl ring, forming a dihedral angle of 5.34 (19)° [the equivalent dihedral for the minor component of the disordered 2-thienyl ring is 4.8 (5)°]. The relative disposition of the two S atoms is anti for the major component of the 2-thienyl residue. The 4-phenylpiperazinyl residue, in which both N-bound substituents occupy equatorial positions in a chair conformation, is linked to the five-membered ring at the methylene-C7 atom so that, overall, the shape of the molecule approximates the letter V. The relative orientations of the 2-thienyl and terminal phenyl rings in (I) are also found in the structure where the 4-phenylpiperazinyl group of (I) is replaced by a N-methylanilino residue (El-Emam et al., 2012).

In the crystal, C—H···S interactions combine with phenyl-C—H···π(thienyl), thienyl-C—H···π(phenyl) and piperazinyl-C—H···π(phenyl) contacts to consolidate a three-dimensional architecture, Table 1 and Fig. 2.

Related literature top

For background to the biological properties of 1,3,4-oxadiazole derivatives, see: Al-Omar (2010). For a related structure, see: El-Emam et al. (2012).

Experimental top

1-Phenylpiperazine (324 mg, 2 mmol) and 37% formaldehyde solution (0.5 ml) were added to a solution of 5-(thiophen-2-yl)-1,3,4-oxadiazole-2-thiol (369 mg, 2 mmol) in ethanol (8 ml), and the mixture was stirred at room temperature for 2 h and allowed to stand overnight. The precipitated crude product was filtered, washed with cold ethanol, dried, and crystallized from ethanol to yield 502 mg (70%) of the title compound (I) as crystals. M.pt: 404–406 K. Light brown prisms were obtained by slow evaporation of its CHCl3:EtOH (1:1; 5 ml) solution at room temperature. 1H NMR (CDCl3, 500.13 MHz): δ 3.0–3.08 (m, 4H, piperazine-H), 3.18–3.26 (m, 4H, piperazine-H), 5.14 (s, 2H, CH2), 6.87–6.96 (m, 3H, Ar—H), 7.18 (t, 1H, thiophene-H, J = 4.3 Hz), 7.22–7.32 (m. 2H, Ar—H), 7.59 (d, 1H, thiophene-H, J = 4.5 Hz), 7.75 (d, 1H, thiophene-H, J = 4.5 Hz). 13C NMR (CDCl3, 125.76 MHz): δ 49.37, 50.30 (piperazine-C), 70.40 (CH2), 116.45, 120.06, 123.67, 128.33, 129.14, 130.77, 130.98, 151.26 (Ar—C & thiophene-C), 155.47 (C N), 177.76 (CS).

Refinement top

The H-atoms were placed in calculated positions [C—H = 0.93 to 0.97 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The thienyl ring is disordered over two positions in a 0.684 (2): 0.316 ratio in respect of four of the five atoms; that connected to the diazoxole ring is ordered. The anisotropic displacement parameters of the primed atoms were set to those of the unprimed ones, and were restrained to be nearly isotropic. Pairs of 1,2-related bond distances were restrained to within 0.01 Å of each other. The thienyl rings were restrained to lie within 0.01 Å of a plane.

Structure description top

The title compound, (I), was synthesized among a series of 2-thienyl-1,3,4-oxadiazoles and related derivatives as potential anti-microbial agents (Al-Omar, 2010). Herein, the crystal structure of (I) is reported.

In (I), Fig. 1, the 1,3,4-oxadiazole ring is almost planar (r.m.s. deviation = 0.005 Å) and almost co-planar with the attached 2-thienyl ring, forming a dihedral angle of 5.34 (19)° [the equivalent dihedral for the minor component of the disordered 2-thienyl ring is 4.8 (5)°]. The relative disposition of the two S atoms is anti for the major component of the 2-thienyl residue. The 4-phenylpiperazinyl residue, in which both N-bound substituents occupy equatorial positions in a chair conformation, is linked to the five-membered ring at the methylene-C7 atom so that, overall, the shape of the molecule approximates the letter V. The relative orientations of the 2-thienyl and terminal phenyl rings in (I) are also found in the structure where the 4-phenylpiperazinyl group of (I) is replaced by a N-methylanilino residue (El-Emam et al., 2012).

In the crystal, C—H···S interactions combine with phenyl-C—H···π(thienyl), thienyl-C—H···π(phenyl) and piperazinyl-C—H···π(phenyl) contacts to consolidate a three-dimensional architecture, Table 1 and Fig. 2.

For background to the biological properties of 1,3,4-oxadiazole derivatives, see: Al-Omar (2010). For a related structure, see: El-Emam et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 35% probability level. Only the major component of the disordered 2-thienyl ring is shown for reasons of clarity.
[Figure 2] Fig. 2. A view of the unit contents in projection down the b axis in (I). The C—H···S and C—H···π contacts are shown as orange and purple dashed lines, respectively.
3-[(4-Phenylpiperazin-1-yl)methyl]-5-(thiophen-2-yl)-2,3-dihydro-1,3,4-oxadiazole-2-thione top
Crystal data top
C17H18N4OS2F(000) = 1504
Mr = 358.47Dx = 1.353 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2605 reflections
a = 26.1721 (17) Åθ = 3.1–27.5°
b = 5.7253 (3) ŵ = 0.31 mm1
c = 23.7008 (18) ÅT = 295 K
β = 97.802 (6)°Prism, light-brown
V = 3518.5 (4) Å30.40 × 0.30 × 0.20 mm
Z = 8
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
4083 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2797 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 3.1°
ω scanh = 3234
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 75
Tmin = 0.887, Tmax = 1.000l = 1630
9546 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0496P)2 + 0.9031P]
where P = (Fo2 + 2Fc2)/3
4083 reflections(Δ/σ)max = 0.001
230 parametersΔρmax = 0.25 e Å3
33 restraintsΔρmin = 0.26 e Å3
Crystal data top
C17H18N4OS2V = 3518.5 (4) Å3
Mr = 358.47Z = 8
Monoclinic, C2/cMo Kα radiation
a = 26.1721 (17) ŵ = 0.31 mm1
b = 5.7253 (3) ÅT = 295 K
c = 23.7008 (18) Å0.40 × 0.30 × 0.20 mm
β = 97.802 (6)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
4083 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2797 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 1.000Rint = 0.025
9546 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04733 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.06Δρmax = 0.25 e Å3
4083 reflectionsΔρmin = 0.26 e Å3
230 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.51012 (6)0.4713 (3)0.35472 (6)0.0619 (3)0.684 (2)
S1'0.51936 (13)0.8668 (6)0.43201 (16)0.0619 (3)0.316
S20.35703 (2)0.65396 (10)0.54603 (3)0.0727 (2)
O10.43151 (5)0.6708 (2)0.47998 (5)0.0534 (3)
N10.41826 (6)0.3583 (3)0.42460 (7)0.0522 (4)
N20.38163 (6)0.3737 (3)0.46156 (7)0.0509 (4)
N30.29660 (6)0.2250 (3)0.41864 (7)0.0556 (4)
N40.22283 (6)0.3760 (2)0.32601 (6)0.0489 (4)
C10.55629 (17)0.6849 (7)0.3488 (3)0.0629 (13)0.684 (2)
H10.57860.67990.32150.076*0.684 (2)
C20.5569 (3)0.8585 (13)0.3874 (2)0.0655 (13)0.684 (2)
H20.57830.98890.38990.079*0.684 (2)
C30.5214 (2)0.8105 (7)0.4216 (2)0.0673 (14)0.684 (2)
H30.51800.90640.45260.081*0.684 (2)
C1'0.5583 (6)0.821 (3)0.3787 (6)0.0629 (13)0.316 (2)
H1'0.58440.92500.37260.076*0.316 (2)
C2'0.5483 (5)0.627 (2)0.3469 (7)0.0655 (13)0.316 (2)
H2'0.56490.58260.31630.079*0.316 (2)
C3'0.5102 (5)0.509 (2)0.3670 (6)0.0673 (14)0.316 (2)
H3'0.49840.36490.35240.081*0.316 (2)
C40.49000 (7)0.6179 (3)0.41049 (8)0.0506 (4)
C50.44667 (7)0.5396 (3)0.43703 (8)0.0481 (4)
C60.38888 (7)0.5603 (3)0.49568 (8)0.0524 (5)
C70.34040 (8)0.1950 (3)0.46076 (10)0.0613 (5)
H7A0.35540.04310.45520.074*
H7B0.32870.19340.49790.074*
C80.26756 (8)0.4377 (4)0.42299 (9)0.0685 (6)
H8A0.28690.56980.41150.082*
H8B0.26190.46160.46220.082*
C90.21648 (8)0.4220 (5)0.38539 (9)0.0721 (6)
H9A0.19610.29800.39910.086*
H9B0.19780.56750.38760.086*
C100.25448 (8)0.1688 (3)0.32178 (10)0.0628 (5)
H10A0.26080.14900.28270.075*
H10B0.23620.03200.33250.075*
C110.30534 (8)0.1901 (4)0.36017 (9)0.0632 (6)
H11A0.32550.04930.35750.076*
H11B0.32470.32090.34800.076*
C120.17704 (7)0.3921 (3)0.28724 (8)0.0473 (4)
C130.14489 (8)0.5860 (3)0.28800 (9)0.0573 (5)
H130.15360.70330.31470.069*
C140.10056 (9)0.6071 (4)0.25001 (10)0.0654 (6)
H140.07990.73840.25150.078*
C150.08620 (9)0.4380 (4)0.20978 (10)0.0670 (6)
H150.05600.45280.18430.080*
C160.11754 (9)0.2471 (4)0.20823 (9)0.0658 (6)
H160.10850.13140.18120.079*
C170.16222 (8)0.2226 (3)0.24588 (9)0.0579 (5)
H170.18280.09130.24370.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0542 (5)0.0638 (7)0.0700 (7)0.0048 (4)0.0171 (5)0.0069 (5)
S1'0.0542 (5)0.0638 (7)0.0700 (7)0.0048 (4)0.0171 (5)0.0069 (5)
S20.0815 (4)0.0786 (4)0.0626 (4)0.0100 (3)0.0265 (3)0.0018 (3)
O10.0542 (8)0.0540 (7)0.0521 (8)0.0023 (6)0.0082 (6)0.0000 (6)
N10.0470 (9)0.0554 (9)0.0546 (10)0.0002 (7)0.0086 (7)0.0011 (7)
N20.0456 (9)0.0535 (8)0.0541 (9)0.0008 (7)0.0089 (7)0.0064 (7)
N30.0471 (9)0.0608 (9)0.0604 (10)0.0044 (8)0.0124 (8)0.0048 (8)
N40.0457 (8)0.0541 (8)0.0491 (9)0.0023 (7)0.0142 (7)0.0106 (7)
C10.052 (2)0.058 (3)0.083 (3)0.0088 (18)0.025 (2)0.003 (2)
C20.061 (2)0.062 (3)0.075 (3)0.0087 (19)0.015 (2)0.0010 (19)
C30.078 (3)0.056 (3)0.068 (3)0.006 (2)0.011 (2)0.0046 (19)
C1'0.052 (2)0.058 (3)0.083 (3)0.0088 (18)0.025 (2)0.003 (2)
C2'0.061 (2)0.062 (3)0.075 (3)0.0087 (19)0.015 (2)0.0010 (19)
C3'0.078 (3)0.056 (3)0.068 (3)0.006 (2)0.011 (2)0.0046 (19)
C40.0448 (10)0.0544 (10)0.0516 (11)0.0005 (8)0.0032 (8)0.0050 (8)
C50.0453 (10)0.0513 (10)0.0464 (10)0.0046 (8)0.0018 (8)0.0041 (8)
C60.0522 (11)0.0542 (10)0.0505 (11)0.0052 (9)0.0065 (9)0.0097 (9)
C70.0594 (13)0.0566 (11)0.0689 (14)0.0061 (10)0.0121 (10)0.0156 (10)
C80.0593 (13)0.0951 (15)0.0518 (12)0.0152 (12)0.0097 (10)0.0165 (11)
C90.0537 (12)0.1097 (17)0.0543 (13)0.0173 (12)0.0127 (10)0.0143 (12)
C100.0535 (12)0.0641 (12)0.0714 (14)0.0021 (10)0.0102 (10)0.0198 (10)
C110.0507 (12)0.0677 (12)0.0729 (15)0.0054 (10)0.0142 (10)0.0162 (10)
C120.0469 (10)0.0488 (9)0.0491 (10)0.0100 (8)0.0165 (8)0.0018 (8)
C130.0612 (12)0.0507 (10)0.0609 (13)0.0047 (10)0.0120 (10)0.0051 (9)
C140.0651 (14)0.0591 (12)0.0713 (15)0.0052 (10)0.0072 (11)0.0040 (11)
C150.0656 (14)0.0697 (13)0.0628 (14)0.0044 (11)0.0026 (11)0.0052 (11)
C160.0708 (14)0.0665 (13)0.0575 (13)0.0078 (11)0.0003 (11)0.0100 (10)
C170.0606 (12)0.0551 (10)0.0585 (12)0.0020 (9)0.0098 (10)0.0077 (9)
Geometric parameters (Å, º) top
S1—C41.708 (2)C3'—C41.371 (9)
S1—C11.738 (3)C3'—H3'0.9300
S1'—C41.666 (3)C4—C51.441 (3)
S1'—C1'1.748 (9)C7—H7A0.9700
S2—C61.636 (2)C7—H7B0.9700
O1—C51.367 (2)C8—C91.505 (3)
O1—C61.377 (2)C8—H8A0.9700
N1—C51.288 (2)C8—H8B0.9700
N1—N21.386 (2)C9—H9A0.9700
N2—C61.338 (2)C9—H9B0.9700
N2—C71.485 (2)C10—C111.512 (3)
N3—C71.425 (3)C10—H10A0.9700
N3—C81.447 (3)C10—H10B0.9700
N3—C111.449 (3)C11—H11A0.9700
N4—C121.411 (2)C11—H11B0.9700
N4—C101.458 (2)C12—C131.395 (3)
N4—C91.463 (2)C12—C171.396 (3)
C1—C21.349 (5)C13—C141.374 (3)
C1—H10.9300C13—H130.9300
C2—C31.342 (7)C14—C151.375 (3)
C2—H20.9300C14—H140.9300
C3—C41.379 (5)C15—C161.370 (3)
C3—H30.9300C15—H150.9300
C1'—C2'1.349 (8)C16—C171.379 (3)
C1'—H1'0.9300C16—H160.9300
C2'—C3'1.344 (10)C17—H170.9300
C2'—H2'0.9300
C4—S1—C190.4 (2)N2—C7—H7A108.3
C4—S1'—C1'86.7 (6)N3—C7—H7B108.3
C5—O1—C6106.05 (14)N2—C7—H7B108.3
C5—N1—N2103.39 (14)H7A—C7—H7B107.4
C6—N2—N1112.28 (15)N3—C8—C9109.90 (18)
C6—N2—C7126.94 (16)N3—C8—H8A109.7
N1—N2—C7120.78 (15)C9—C8—H8A109.7
C7—N3—C8115.60 (17)N3—C8—H8B109.7
C7—N3—C11115.92 (16)C9—C8—H8B109.7
C8—N3—C11109.70 (16)H8A—C8—H8B108.2
C12—N4—C10116.68 (15)N4—C9—C8111.87 (16)
C12—N4—C9114.66 (14)N4—C9—H9A109.2
C10—N4—C9110.64 (17)C8—C9—H9A109.2
C2—C1—S1114.1 (6)N4—C9—H9B109.2
C2—C1—H1122.9C8—C9—H9B109.2
S1—C1—H1122.9H9A—C9—H9B107.9
C3—C2—C1108.2 (7)N4—C10—C11110.80 (16)
C3—C2—H2125.9N4—C10—H10A109.5
C1—C2—H2125.9C11—C10—H10A109.5
C2—C3—C4119.4 (5)N4—C10—H10B109.5
C2—C3—H3120.3C11—C10—H10B109.5
C4—C3—H3120.3H10A—C10—H10B108.1
C2'—C1'—S1'115.9 (14)N3—C11—C10110.26 (16)
C2'—C1'—H1'122.0N3—C11—H11A109.6
S1'—C1'—H1'122.0C10—C11—H11A109.6
C3'—C2'—C1'108.4 (16)N3—C11—H11B109.6
C3'—C2'—H2'125.8C10—C11—H11B109.6
C1'—C2'—H2'125.8H11A—C11—H11B108.1
C2'—C3'—C4114.7 (12)C13—C12—C17116.86 (19)
C2'—C3'—H3'122.7C13—C12—N4120.30 (16)
C4—C3'—H3'122.7C17—C12—N4122.82 (17)
C3'—C4—C3103.2 (6)C14—C13—C12121.24 (19)
C3'—C4—C5126.4 (6)C14—C13—H13119.4
C3—C4—C5130.4 (2)C12—C13—H13119.4
C3'—C4—S1'114.2 (6)C13—C14—C15121.3 (2)
C5—C4—S1'119.33 (17)C13—C14—H14119.3
C3—C4—S1107.6 (2)C15—C14—H14119.3
C5—C4—S1121.91 (15)C16—C15—C14118.2 (2)
S1'—C4—S1118.65 (15)C16—C15—H15120.9
N1—C5—O1113.36 (16)C14—C15—H15120.9
N1—C5—C4127.95 (17)C15—C16—C17121.5 (2)
O1—C5—C4118.66 (16)C15—C16—H16119.3
N2—C6—O1104.91 (15)C17—C16—H16119.3
N2—C6—S2131.15 (15)C16—C17—C12120.94 (19)
O1—C6—S2123.94 (15)C16—C17—H17119.5
N3—C7—N2116.10 (15)C12—C17—H17119.5
N3—C7—H7A108.3
C5—N1—N2—C60.7 (2)S1'—C4—C5—O11.2 (3)
C5—N1—N2—C7179.54 (16)S1—C4—C5—O1177.46 (15)
C4—S1—C1—C20.5 (3)N1—N2—C6—O10.5 (2)
S1—C1—C2—C31.9 (5)C7—N2—C6—O1179.85 (16)
C1—C2—C3—C44.4 (7)N1—N2—C6—S2179.55 (15)
C4—S1'—C1'—C2'0.4 (9)C7—N2—C6—S20.1 (3)
S1'—C1'—C2'—C3'2.3 (13)C5—O1—C6—N20.01 (18)
C1'—C2'—C3'—C43.5 (16)C5—O1—C6—S2179.99 (14)
C2'—C3'—C4—C35.5 (13)C8—N3—C7—N261.8 (2)
C2'—C3'—C4—C5175.2 (9)C11—N3—C7—N268.7 (2)
C2'—C3'—C4—S1'3.4 (17)C6—N2—C7—N397.8 (2)
C2'—C3'—C4—S1152 (10)N1—N2—C7—N382.5 (2)
C2—C3—C4—C3'6.7 (7)C7—N3—C8—C9166.94 (17)
C2—C3—C4—C5174.1 (4)C11—N3—C8—C959.7 (2)
C2—C3—C4—S1'164 (2)C12—N4—C9—C8171.40 (17)
C2—C3—C4—S14.7 (7)C10—N4—C9—C854.1 (2)
C1'—S1'—C4—C3'1.7 (11)N3—C8—C9—N456.9 (3)
C1'—S1'—C4—C312 (2)C12—N4—C10—C11172.40 (16)
C1'—S1'—C4—C5177.1 (6)C9—N4—C10—C1154.1 (2)
C1'—S1'—C4—S10.7 (6)C7—N3—C11—C10166.26 (16)
C1—S1—C4—C3'26 (9)C8—N3—C11—C1060.6 (2)
C1—S1—C4—C32.6 (4)N4—C10—C11—N357.9 (2)
C1—S1—C4—C5176.2 (2)C10—N4—C12—C13179.25 (17)
C1—S1—C4—S1'0.1 (3)C9—N4—C12—C1349.1 (2)
N2—N1—C5—O10.74 (19)C10—N4—C12—C171.0 (2)
N2—N1—C5—C4177.59 (17)C9—N4—C12—C17132.6 (2)
C6—O1—C5—N10.5 (2)C17—C12—C13—C140.5 (3)
C6—O1—C5—C4178.00 (15)N4—C12—C13—C14178.91 (17)
C3'—C4—C5—N11.5 (9)C12—C13—C14—C150.0 (3)
C3—C4—C5—N1179.4 (4)C13—C14—C15—C160.4 (3)
S1'—C4—C5—N1177.1 (2)C14—C15—C16—C170.3 (3)
S1—C4—C5—N10.8 (3)C15—C16—C17—C120.2 (3)
C3'—C4—C5—O1179.8 (9)C13—C12—C17—C160.6 (3)
C3—C4—C5—O11.1 (4)N4—C12—C17—C16178.96 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the O1,N1,N2,C5,C6 ring
D—H···AD—HH···AD···AD—H···A
C9—H9B···S2i0.972.773.618 (3)146
C1—H1···Cg1ii0.932.723.545 (6)148
C11—H11A···Cg1iii0.972.983.600 (2)123
C15—H15···Cg2iii0.932.953.743 (3)144
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H18N4OS2
Mr358.47
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)26.1721 (17), 5.7253 (3), 23.7008 (18)
β (°) 97.802 (6)
V3)3518.5 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.887, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9546, 4083, 2797
Rint0.025
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.123, 1.06
No. of reflections4083
No. of parameters230
No. of restraints33
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.26

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the O1,N1,N2,C5,C6 ring
D—H···AD—HH···AD···AD—H···A
C9—H9B···S2i0.972.773.618 (3)146
C1—H1···Cg1ii0.932.723.545 (6)148
C11—H11A···Cg1iii0.972.983.600 (2)123
C15—H15···Cg2iii0.932.953.743 (3)144
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y1/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: elemam5@hotmail.com.

Acknowledgements

The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, is greatly appreciated. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/03).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAl-Omar, M. A. (2010). Molecules, 15, 502–514.  Web of Science CAS PubMed Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEl-Emam, A. A., Al-Omar, M. A., Ghabbour, H. A., Fun, H.-K. & Chia, T. S. (2012). Acta Cryst. E68, o1345–o1346.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds