organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(Adamantan-1-yl)-4-[(E)-(2,6-di­fluoro­benzyl­­idene)amino]-1-[(4-ethyl­piperazin-1-yl)meth­yl]-4,5-di­hydro-1H-1,2,4-triazole-5-thione

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, Salman bin Abdulaziz University, Alkharj 11942, Saudi Arabia, bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 2 April 2013; accepted 5 April 2013; online 10 April 2013)

In the title compound, C26H34F2N6S, the triazole ring is linked to a benzene ring via an imine bond [N=C = 1.255 (2) Å; conformation: E], with a dihedral angle of 25.21 (11)° between the rings. The 4-ethyl­piperazinyl residue is folded away from the thione-S atom. In the crystal, helical supra­molecular chains propagating along [010] and sustained by weak C—S⋯π(triazole) inter­actions occur [S⋯centroid distance = 3.2872 (10) Å]. Links between these chains are of the type benzene-C—H⋯N(imine) and ππ [between centrosymmetrically related benzene rings with an inter-centroid distance of 3.9241 (15) Å] and result in a three-dimensional architecture.

Related literature

For background to the pharmacological properties of adamantane derivatives, see: Al-Omar et al. (2010[Al-Omar, M. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Molecules, 15, 2526-2550.]). For related structures, see: Almutairi et al. (2012[Almutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656.]); El-Emam et al. (2012[El-Emam, A. A., Al-Abdullah, E. S., El-Brollosy, N. R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2031.]).

[Scheme 1]

Experimental

Crystal data
  • C26H34F2N6S

  • Mr = 500.65

  • Monoclinic, P 21 /n

  • a = 17.0824 (11) Å

  • b = 7.8212 (6) Å

  • c = 19.6691 (14) Å

  • β = 92.249 (6)°

  • V = 2625.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 295 K

  • 0.40 × 0.30 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.656, Tmax = 1.000

  • 16764 measured reflections

  • 6063 independent reflections

  • 3908 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.138

  • S = 1.01

  • 6063 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1–N3,C1,C2 ring

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18A⋯N5i 0.93 2.58 3.451 (3) 157
C1—S1⋯Cg1ii 1.66 (1) 3.29 (1) 4.849 (2) 155 (1)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, (I), was synthesized as a potential chemotherapeutic agent (Al-Omar et al., 2010) in continuation of our interest in the chemical and pharmacological properties of adamantane derivatives and allied structural studies (El-Emam et al., 2012; Almutairi et al., 2012).

In (I), Fig. 1, the triazole ring is almost planar (r.m.s. deviation of the fitted atoms = 0.009 Å) and is linked to an inclined benzene ring via an imine bond [N4C13 = 1.255 (2) Å; E configuration] forming a dihedral angle of 25.21 (11)°. The twist occurs between the triazole ring and the imine bond as seen in the value of the C1—N3—N4—C13 torsion angle of -28.1 (3)°. The piperazinyl residue (chair conformation) is folded away from the thione-S1 atom.

Helical supramolecular chains along the b axis direction and sustained by C—S···π(triazole) interactions feature in the crystal structure. These are connected into a three-dimensional architecture by benzene-CH···N(imine), Table 1, and ππ interactions between centrosymmetrically related benzene rings [inter-centroid distance = 3.9241 (15) Å for symmetry operation: 1 - x, 2 - y, 1 - z], Fig. 2.

Related literature top

For background to the pharmacological properties of adamantane derivatives, see: Al-Omar et al. (2010). For related structures, see: Almutairi et al. (2012); El-Emam et al. (2012).

Experimental top

A mixture of the 5-(adamantan-1-yl)-4-(2,6-difluorobenzylideneamino)-4H-1,2,4-triazole-3-thiol (347 mg, 1 mmol), 1-ethylpiperazine (114 mg, 1 mmol) and 37% formaldehyde solution (0.5 ml), in ethanol (8 ml), was heated under reflux for 15 min. when a clear solution was obtained. Stirring was continued for 12 h at room temperature and the mixture was allowed to stand overnight. Cold water (5 ml) was added and the reaction mixture was stirred for 20 min. The precipitated crude product was filtered, washed with water, dried, and crystallized from ethanol to yield 445 mg (89%) of the title compound (C26H34F2N6S) as crystals. M.pt: 442–444 K. Yellow prisms were obtained by slow evaporation of its CHCl3:EtOH (1:1; 5 ml) solution at room temperature. 1H NMR (CDCl3, 500.13 MHz): δ 1.07 (t, 3H, CH3, J = 7.0 Hz), 1.78 (s, 6H, adamantane-H), 2.08 (s, 3H, adamantane-H), 2.16 (s, 6H, adamantane-H), 2.40 (q, 2H, CH2CH3, J = 7.0 Hz), 2.48–2.49 (m, 4H, piperazine-H), 2.92 (s, 4H, piperazine-H), 5.18 (s, 2H, CH2), 7.02 (t, 2H, Ar—H, J = 8.5 Hz), 7.44–7.48 (m, 1H, Ar—H), 10.62 (s, 1H, CH=N). 13C NMR (CDCl3, 125.76 MHz): δ 11.91 (CH3), 28.0, 35.50, 36.46, 38.33 (adamantane-C), 50.42, 52.80 (piperazine-C), 52.32 (CH2CH3), 68.79 (CH2), 110.89, 112.16, 133.20, 152.22 (Ar—C), 155.45, 161.0 (triazole C-5 & CH=N), 163.14 (C=S).

Refinement top

The H-atoms were placed in calculated positions [and C—H = 0.93 to 0.98 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Structure description top

The title compound, (I), was synthesized as a potential chemotherapeutic agent (Al-Omar et al., 2010) in continuation of our interest in the chemical and pharmacological properties of adamantane derivatives and allied structural studies (El-Emam et al., 2012; Almutairi et al., 2012).

In (I), Fig. 1, the triazole ring is almost planar (r.m.s. deviation of the fitted atoms = 0.009 Å) and is linked to an inclined benzene ring via an imine bond [N4C13 = 1.255 (2) Å; E configuration] forming a dihedral angle of 25.21 (11)°. The twist occurs between the triazole ring and the imine bond as seen in the value of the C1—N3—N4—C13 torsion angle of -28.1 (3)°. The piperazinyl residue (chair conformation) is folded away from the thione-S1 atom.

Helical supramolecular chains along the b axis direction and sustained by C—S···π(triazole) interactions feature in the crystal structure. These are connected into a three-dimensional architecture by benzene-CH···N(imine), Table 1, and ππ interactions between centrosymmetrically related benzene rings [inter-centroid distance = 3.9241 (15) Å for symmetry operation: 1 - x, 2 - y, 1 - z], Fig. 2.

For background to the pharmacological properties of adamantane derivatives, see: Al-Omar et al. (2010). For related structures, see: Almutairi et al. (2012); El-Emam et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view of the unit-cell contents in projection down the b axis of (I). The C—H···N, C—S···π and ππ interactions are shown as blue, orange and purple dashed lines, respectively.
3-(Adamantan-1-yl)-4-[(E)-(2,6-difluorobenzylidene)amino]-1-[(4-ethylpiperazin-1-yl)methyl]-4,5-dihydro-1H-1,2,4-triazole-5-thione top
Crystal data top
C26H34F2N6SF(000) = 1064
Mr = 500.65Dx = 1.266 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3864 reflections
a = 17.0824 (11) Åθ = 2.9–27.5°
b = 7.8212 (6) ŵ = 0.16 mm1
c = 19.6691 (14) ÅT = 295 K
β = 92.249 (6)°Prism, yellow
V = 2625.9 (3) Å30.40 × 0.30 × 0.10 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
6063 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3908 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.038
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.9°
ω scanh = 2220
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 910
Tmin = 0.656, Tmax = 1.000l = 2525
16764 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.6004P]
where P = (Fo2 + 2Fc2)/3
6063 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C26H34F2N6SV = 2625.9 (3) Å3
Mr = 500.65Z = 4
Monoclinic, P21/nMo Kα radiation
a = 17.0824 (11) ŵ = 0.16 mm1
b = 7.8212 (6) ÅT = 295 K
c = 19.6691 (14) Å0.40 × 0.30 × 0.10 mm
β = 92.249 (6)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
6063 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3908 reflections with I > 2σ(I)
Tmin = 0.656, Tmax = 1.000Rint = 0.038
16764 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.01Δρmax = 0.20 e Å3
6063 reflectionsΔρmin = 0.25 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.74938 (3)0.92905 (8)0.71719 (3)0.05854 (19)
F10.51929 (7)0.8699 (2)0.63956 (7)0.0759 (4)
F20.64752 (8)0.6197 (2)0.45778 (7)0.0901 (5)
N10.86739 (9)0.6995 (2)0.71058 (7)0.0417 (4)
N20.89390 (8)0.5649 (2)0.67246 (8)0.0419 (4)
N30.78219 (8)0.6639 (2)0.62927 (7)0.0382 (4)
N40.72072 (9)0.6716 (2)0.58085 (8)0.0447 (4)
N50.97927 (9)0.8412 (2)0.77067 (8)0.0483 (4)
N61.10661 (11)1.0150 (3)0.71147 (10)0.0668 (6)
C10.79839 (10)0.7645 (3)0.68619 (9)0.0408 (4)
C20.84230 (10)0.5462 (2)0.62267 (9)0.0370 (4)
C30.84653 (10)0.4095 (2)0.56948 (9)0.0382 (4)
C40.92160 (11)0.3045 (3)0.58368 (11)0.0501 (5)
H4A0.96700.37850.58160.060*
H4B0.92090.25590.62900.060*
C50.92751 (13)0.1613 (3)0.53147 (11)0.0568 (6)
H5A0.97550.09570.54130.068*
C60.93019 (13)0.2356 (3)0.46007 (12)0.0627 (6)
H6A0.93420.14410.42710.075*
H6B0.97570.30900.45680.075*
C70.85525 (13)0.3389 (3)0.44517 (11)0.0576 (6)
H7A0.85660.38720.39930.069*
C80.78406 (14)0.2228 (3)0.44952 (12)0.0661 (7)
H8A0.78680.13230.41600.079*
H8B0.73660.28810.43990.079*
C90.78190 (13)0.1457 (3)0.52052 (12)0.0594 (6)
H9A0.73640.06980.52290.071*
C100.77556 (11)0.2883 (3)0.57310 (11)0.0502 (5)
H10A0.77390.23910.61830.060*
H10B0.72750.35200.56430.060*
C110.85704 (14)0.0427 (3)0.53560 (13)0.0660 (6)
H11A0.85580.00720.58070.079*
H11B0.86100.04920.50280.079*
C120.84933 (12)0.4845 (3)0.49680 (9)0.0466 (5)
H12A0.80240.55100.48670.056*
H12B0.89430.55970.49390.056*
C130.65661 (11)0.7314 (3)0.59892 (10)0.0502 (5)
H13A0.65250.76970.64340.060*
C140.58792 (11)0.7427 (3)0.55192 (10)0.0464 (5)
C150.51815 (12)0.8099 (3)0.57474 (11)0.0533 (5)
C160.44989 (12)0.8209 (3)0.53597 (14)0.0657 (7)
H16A0.40480.86670.55380.079*
C170.44969 (14)0.7628 (4)0.47009 (14)0.0707 (7)
H17A0.40390.76860.44300.085*
C180.51624 (14)0.6963 (3)0.44379 (12)0.0681 (7)
H18A0.51620.65820.39900.082*
C190.58297 (12)0.6868 (3)0.48466 (11)0.0575 (6)
C200.90864 (11)0.7436 (3)0.77544 (9)0.0502 (5)
H20A0.87290.80740.80290.060*
H20B0.92130.63820.79950.060*
C210.96781 (13)1.0051 (3)0.73711 (14)0.0649 (6)
H21A0.92651.06800.75860.078*
H21B0.95190.98720.68980.078*
C221.04327 (14)1.1080 (3)0.74151 (15)0.0741 (7)
H22A1.03541.21600.71790.089*
H22B1.05711.13260.78880.089*
C231.11758 (13)0.8541 (4)0.74629 (13)0.0683 (7)
H23A1.13150.87490.79390.082*
H23B1.16020.79180.72660.082*
C241.04390 (12)0.7486 (3)0.74069 (12)0.0600 (6)
H24A1.03090.72440.69320.072*
H24B1.05210.64070.76420.072*
C251.17960 (16)1.1158 (4)0.71267 (15)0.0885 (9)
H25A1.22261.04200.70080.106*
H25B1.19051.15770.75850.106*
C261.1755 (2)1.2638 (5)0.6647 (2)0.1292 (15)
H26A1.22451.32380.66670.194*
H26B1.13431.33980.67740.194*
H26C1.16481.22310.61930.194*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0632 (3)0.0571 (4)0.0552 (3)0.0145 (3)0.0015 (3)0.0143 (3)
F10.0556 (7)0.0991 (12)0.0733 (9)0.0090 (7)0.0078 (6)0.0235 (8)
F20.0756 (9)0.1407 (15)0.0533 (8)0.0358 (9)0.0064 (6)0.0250 (9)
N10.0439 (8)0.0442 (10)0.0368 (8)0.0010 (7)0.0019 (6)0.0016 (8)
N20.0426 (8)0.0421 (10)0.0410 (8)0.0024 (7)0.0006 (7)0.0006 (8)
N30.0387 (8)0.0404 (9)0.0354 (8)0.0036 (7)0.0007 (6)0.0004 (7)
N40.0427 (9)0.0483 (11)0.0426 (9)0.0081 (8)0.0062 (7)0.0041 (8)
N50.0498 (9)0.0526 (11)0.0417 (9)0.0019 (8)0.0072 (7)0.0020 (8)
N60.0611 (12)0.0748 (15)0.0635 (12)0.0167 (11)0.0089 (9)0.0042 (11)
C10.0444 (10)0.0418 (11)0.0362 (9)0.0007 (9)0.0023 (8)0.0001 (9)
C20.0373 (9)0.0354 (11)0.0384 (9)0.0020 (8)0.0035 (7)0.0034 (8)
C30.0381 (9)0.0368 (11)0.0398 (10)0.0030 (8)0.0014 (7)0.0004 (9)
C40.0517 (11)0.0468 (13)0.0517 (12)0.0105 (10)0.0013 (9)0.0010 (10)
C50.0631 (13)0.0478 (14)0.0599 (13)0.0173 (11)0.0045 (10)0.0031 (11)
C60.0699 (14)0.0596 (16)0.0600 (14)0.0107 (12)0.0193 (11)0.0089 (12)
C70.0789 (15)0.0544 (14)0.0401 (11)0.0126 (12)0.0087 (10)0.0014 (10)
C80.0753 (15)0.0613 (16)0.0606 (14)0.0078 (13)0.0098 (11)0.0209 (13)
C90.0603 (13)0.0469 (14)0.0712 (15)0.0106 (11)0.0064 (11)0.0105 (12)
C100.0508 (11)0.0447 (13)0.0559 (12)0.0036 (10)0.0114 (9)0.0031 (10)
C110.0965 (18)0.0390 (13)0.0629 (14)0.0051 (12)0.0092 (13)0.0024 (12)
C120.0545 (11)0.0438 (12)0.0420 (10)0.0049 (9)0.0067 (8)0.0045 (9)
C130.0485 (11)0.0614 (14)0.0404 (10)0.0051 (10)0.0012 (8)0.0058 (10)
C140.0428 (10)0.0470 (13)0.0488 (11)0.0028 (9)0.0039 (8)0.0010 (10)
C150.0485 (12)0.0530 (14)0.0582 (13)0.0008 (10)0.0000 (9)0.0024 (11)
C160.0401 (11)0.0701 (17)0.0865 (18)0.0023 (11)0.0024 (11)0.0072 (15)
C170.0515 (14)0.0808 (19)0.0779 (17)0.0066 (13)0.0202 (12)0.0120 (15)
C180.0685 (15)0.0814 (18)0.0531 (13)0.0028 (14)0.0168 (11)0.0013 (13)
C190.0555 (12)0.0675 (16)0.0489 (12)0.0103 (12)0.0052 (10)0.0026 (12)
C200.0562 (12)0.0604 (14)0.0335 (10)0.0021 (11)0.0046 (8)0.0004 (10)
C210.0625 (14)0.0539 (15)0.0767 (16)0.0021 (12)0.0164 (11)0.0048 (13)
C220.0722 (16)0.0556 (16)0.0923 (19)0.0100 (13)0.0243 (14)0.0042 (15)
C230.0545 (13)0.0802 (19)0.0695 (16)0.0003 (13)0.0037 (11)0.0011 (14)
C240.0553 (13)0.0628 (16)0.0616 (14)0.0002 (11)0.0027 (10)0.0017 (12)
C250.0774 (17)0.105 (2)0.0817 (19)0.0353 (17)0.0109 (14)0.0082 (18)
C260.125 (3)0.132 (3)0.128 (3)0.066 (2)0.029 (2)0.055 (3)
Geometric parameters (Å, º) top
S1—C11.664 (2)C9—C111.534 (3)
F1—C151.358 (2)C9—H9A0.9800
F2—C191.348 (2)C10—H10A0.9700
N1—C11.354 (2)C10—H10B0.9700
N1—N21.379 (2)C11—H11A0.9700
N1—C201.474 (2)C11—H11B0.9700
N2—C21.300 (2)C12—H12A0.9700
N3—C11.387 (2)C12—H12B0.9700
N3—C21.389 (2)C13—C141.468 (3)
N3—N41.391 (2)C13—H13A0.9300
N4—C131.255 (2)C14—C191.393 (3)
N5—C201.434 (3)C14—C151.393 (3)
N5—C211.452 (3)C15—C161.371 (3)
N5—C241.464 (3)C16—C171.373 (3)
N6—C231.442 (3)C16—H16A0.9300
N6—C221.449 (3)C17—C181.370 (3)
N6—C251.474 (3)C17—H17A0.9300
C2—C31.500 (3)C18—C191.371 (3)
C3—C41.540 (3)C18—H18A0.9300
C3—C101.543 (3)C20—H20A0.9700
C3—C121.548 (3)C20—H20B0.9700
C4—C51.526 (3)C21—C221.519 (3)
C4—H4A0.9700C21—H21A0.9700
C4—H4B0.9700C21—H21B0.9700
C5—C111.524 (3)C22—H22A0.9700
C5—C61.522 (3)C22—H22B0.9700
C5—H5A0.9800C23—C241.505 (3)
C6—C71.532 (3)C23—H23A0.9700
C6—H6A0.9700C23—H23B0.9700
C6—H6B0.9700C24—H24A0.9700
C7—C81.523 (3)C24—H24B0.9700
C7—C121.532 (3)C25—C261.493 (4)
C7—H7A0.9800C25—H25A0.9700
C8—C91.523 (3)C25—H25B0.9700
C8—H8A0.9700C26—H26A0.9600
C8—H8B0.9700C26—H26B0.9600
C9—C101.528 (3)C26—H26C0.9600
C1—N1—N2113.17 (15)C9—C11—H11B109.9
C1—N1—C20126.80 (16)H11A—C11—H11B108.3
N2—N1—C20119.55 (15)C7—C12—C3109.61 (17)
C2—N2—N1105.55 (14)C7—C12—H12A109.7
C1—N3—C2109.05 (14)C3—C12—H12A109.7
C1—N3—N4130.48 (15)C7—C12—H12B109.7
C2—N3—N4120.39 (15)C3—C12—H12B109.7
C13—N4—N3117.78 (16)H12A—C12—H12B108.2
C20—N5—C21113.64 (16)N4—C13—C14121.94 (18)
C20—N5—C24114.37 (17)N4—C13—H13A119.0
C21—N5—C24110.13 (18)C14—C13—H13A119.0
C23—N6—C22109.3 (2)C19—C14—C15113.81 (18)
C23—N6—C25111.4 (2)C19—C14—C13126.64 (18)
C22—N6—C25111.7 (2)C15—C14—C13119.52 (18)
N1—C1—N3102.50 (15)F1—C15—C16118.7 (2)
N1—C1—S1127.14 (14)F1—C15—C14116.88 (18)
N3—C1—S1130.32 (14)C16—C15—C14124.4 (2)
N2—C2—N3109.69 (16)C15—C16—C17118.3 (2)
N2—C2—C3123.79 (16)C15—C16—H16A120.8
N3—C2—C3126.41 (15)C17—C16—H16A120.8
C2—C3—C4108.45 (15)C18—C17—C16120.7 (2)
C2—C3—C10110.28 (14)C18—C17—H17A119.6
C4—C3—C10108.29 (17)C16—C17—H17A119.6
C2—C3—C12112.22 (16)C17—C18—C19118.8 (2)
C4—C3—C12108.32 (15)C17—C18—H18A120.6
C10—C3—C12109.18 (16)C19—C18—H18A120.6
C5—C4—C3110.26 (17)F2—C19—C18117.7 (2)
C5—C4—H4A109.6F2—C19—C14118.34 (17)
C3—C4—H4A109.6C18—C19—C14123.9 (2)
C5—C4—H4B109.6N5—C20—N1116.29 (16)
C3—C4—H4B109.6N5—C20—H20A108.2
H4A—C4—H4B108.1N1—C20—H20A108.2
C11—C5—C6109.5 (2)N5—C20—H20B108.2
C11—C5—C4109.72 (18)N1—C20—H20B108.2
C6—C5—C4110.23 (19)H20A—C20—H20B107.4
C11—C5—H5A109.1N5—C21—C22110.05 (18)
C6—C5—H5A109.1N5—C21—H21A109.7
C4—C5—H5A109.1C22—C21—H21A109.7
C5—C6—C7108.82 (17)N5—C21—H21B109.7
C5—C6—H6A109.9C22—C21—H21B109.7
C7—C6—H6A109.9H21A—C21—H21B108.2
C5—C6—H6B109.9N6—C22—C21110.9 (2)
C7—C6—H6B109.9N6—C22—H22A109.5
H6A—C6—H6B108.3C21—C22—H22A109.5
C8—C7—C6109.7 (2)N6—C22—H22B109.5
C8—C7—C12109.42 (17)C21—C22—H22B109.5
C6—C7—C12109.98 (19)H22A—C22—H22B108.1
C8—C7—H7A109.2N6—C23—C24110.55 (19)
C6—C7—H7A109.2N6—C23—H23A109.5
C12—C7—H7A109.2C24—C23—H23A109.5
C7—C8—C9109.63 (18)N6—C23—H23B109.5
C7—C8—H8A109.7C24—C23—H23B109.5
C9—C8—H8A109.7H23A—C23—H23B108.1
C7—C8—H8B109.7N5—C24—C23109.9 (2)
C9—C8—H8B109.7N5—C24—H24A109.7
H8A—C8—H8B108.2C23—C24—H24A109.7
C8—C9—C10109.67 (19)N5—C24—H24B109.7
C8—C9—C11109.57 (19)C23—C24—H24B109.7
C10—C9—C11109.46 (19)H24A—C24—H24B108.2
C8—C9—H9A109.4N6—C25—C26112.6 (2)
C10—C9—H9A109.4N6—C25—H25A109.1
C11—C9—H9A109.4C26—C25—H25A109.1
C9—C10—C3109.92 (16)N6—C25—H25B109.1
C9—C10—H10A109.7C26—C25—H25B109.1
C3—C10—H10A109.7H25A—C25—H25B107.8
C9—C10—H10B109.7C25—C26—H26A109.5
C3—C10—H10B109.7C25—C26—H26B109.5
H10A—C10—H10B108.2H26A—C26—H26B109.5
C5—C11—C9109.09 (19)C25—C26—H26C109.5
C5—C11—H11A109.9H26A—C26—H26C109.5
C9—C11—H11A109.9H26B—C26—H26C109.5
C5—C11—H11B109.9
C1—N1—N2—C21.3 (2)C6—C5—C11—C960.9 (2)
C20—N1—N2—C2173.83 (16)C4—C5—C11—C960.2 (2)
C1—N3—N4—C1328.1 (3)C8—C9—C11—C559.9 (2)
C2—N3—N4—C13155.49 (19)C10—C9—C11—C560.4 (2)
N2—N1—C1—N30.5 (2)C8—C7—C12—C360.1 (2)
C20—N1—C1—N3172.39 (17)C6—C7—C12—C360.6 (2)
N2—N1—C1—S1178.51 (14)C2—C3—C12—C7178.87 (16)
C20—N1—C1—S19.6 (3)C4—C3—C12—C759.2 (2)
C2—N3—C1—N10.44 (19)C10—C3—C12—C758.5 (2)
N4—N3—C1—N1177.17 (17)N3—N4—C13—C14179.08 (18)
C2—N3—C1—S1177.48 (15)N4—C13—C14—C192.1 (4)
N4—N3—C1—S10.7 (3)N4—C13—C14—C15179.9 (2)
N1—N2—C2—N31.50 (19)C19—C14—C15—F1178.7 (2)
N1—N2—C2—C3178.02 (16)C13—C14—C15—F13.2 (3)
C1—N3—C2—N21.3 (2)C19—C14—C15—C160.3 (3)
N4—N3—C2—N2178.40 (15)C13—C14—C15—C16177.7 (2)
C1—N3—C2—C3177.68 (17)F1—C15—C16—C17178.8 (2)
N4—N3—C2—C35.2 (3)C14—C15—C16—C170.2 (4)
N2—C2—C3—C41.6 (2)C15—C16—C17—C180.4 (4)
N3—C2—C3—C4177.49 (17)C16—C17—C18—C190.8 (4)
N2—C2—C3—C10116.9 (2)C17—C18—C19—F2179.5 (2)
N3—C2—C3—C1059.1 (2)C17—C18—C19—C140.7 (4)
N2—C2—C3—C12121.18 (19)C15—C14—C19—F2179.9 (2)
N3—C2—C3—C1262.9 (2)C13—C14—C19—F22.2 (4)
C2—C3—C4—C5178.88 (16)C15—C14—C19—C180.1 (3)
C10—C3—C4—C559.2 (2)C13—C14—C19—C18178.0 (2)
C12—C3—C4—C559.1 (2)C21—N5—C20—N159.6 (3)
C3—C4—C5—C1160.4 (2)C24—N5—C20—N168.1 (2)
C3—C4—C5—C660.3 (2)C1—N1—C20—N5109.1 (2)
C11—C5—C6—C761.0 (2)N2—N1—C20—N579.5 (2)
C4—C5—C6—C759.8 (2)C20—N5—C21—C22173.51 (19)
C5—C6—C7—C860.3 (2)C24—N5—C21—C2256.7 (3)
C5—C6—C7—C1260.1 (2)C23—N6—C22—C2158.7 (3)
C6—C7—C8—C959.7 (2)C25—N6—C22—C21177.6 (2)
C12—C7—C8—C961.1 (2)N5—C21—C22—N657.6 (3)
C7—C8—C9—C1060.8 (2)C22—N6—C23—C2459.7 (3)
C7—C8—C9—C1159.3 (2)C25—N6—C23—C24176.4 (2)
C8—C9—C10—C359.6 (2)C20—N5—C24—C23172.79 (18)
C11—C9—C10—C360.6 (2)C21—N5—C24—C2357.8 (2)
C2—C3—C10—C9177.92 (17)N6—C23—C24—N559.5 (3)
C4—C3—C10—C959.4 (2)C23—N6—C25—C26167.4 (3)
C12—C3—C10—C958.3 (2)C22—N6—C25—C2670.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1–N3,C1,C2 ring
D—H···AD—HH···AD···AD—H···A
C18—H18A···N5i0.932.583.451 (3)157
C1—S1···Cg1ii1.66 (1)3.29 (1)4.849 (2)155 (1)
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC26H34F2N6S
Mr500.65
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)17.0824 (11), 7.8212 (6), 19.6691 (14)
β (°) 92.249 (6)
V3)2625.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.40 × 0.30 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.656, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
16764, 6063, 3908
Rint0.038
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.138, 1.01
No. of reflections6063
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.25

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1–N3,C1,C2 ring
D—H···AD—HH···AD···AD—H···A
C18—H18A···N5i0.932.583.451 (3)157
C1—S1···Cg1ii1.664 (2)3.2872 (10)4.849 (2)155.28 (7)
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+3/2, y+1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: elemam5@hotmail.com.

Acknowledgements

The financial support of the Deanship of Scientific Research, Salman bin Abdulaziz University, Alkharj, Saudi Arabia, is greatly appreciated. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAlmutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656.  CSD CrossRef IUCr Journals Google Scholar
First citationAl-Omar, M. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Molecules, 15, 2526–2550.  Web of Science CAS PubMed Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEl-Emam, A. A., Al-Abdullah, E. S., El-Brollosy, N. R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2031.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds