metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[silver(I)-bis­­[μ-4-methyl-1H-1,2,4-triazole-3(4H)-thione-κ2S:S]-silver(I)-di-μ-thio­cyanato-κ2S:N;κ2N:S]

aDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
*Correspondence e-mail: saowanit.sa@psu.ac.th

(Received 5 April 2013; accepted 7 April 2013; online 13 April 2013)

In the title one-dimensional coordination polymer, [Ag2(NCS)2(C3H5N3S)2]n, the AgI atom adopts a distorted tetra­hedral AgNS3 geometry. Adjacent AgI atoms in the [001] chain are alternately linked by pairs of bridging 4-methyl-1H-1,2,4-triazole-3(4H)-thione (Hmptrz) ligands (via their S atoms) and double thio­cyanate bridges linking through both S and N atoms (μ-1,3-SCN). An intra­chain N—H⋯N hydrogen bond occurs between the NH group of the triazole ring and the N atom of the thio­cyanate bridging ligand. A (101) sheet structure arises from inter­chain S⋯N short contacts [3.239 (3) Å] involving the thio­cyanate S atom and the triazole-ring N atom and possible very weak ππ stacking [centroid–centroid separation = 4.0762 (18) Å] between the triazole rings.

Related literature

For examples of complexes with multifunctional ligand donors, see: Zhang et al.(2009[Zhang, W., Ye, H.-Y. & Xiong, R.-G. (2009). Coord. Chem. Rev. 253, 2980-2997.]); Wang et al. (2011[Wang, Y.-L., Zhang, N., Liu, Q.-Y., Shan, Z.-M., Cao, R., Wang, M.-S., Luo, J.-J. & Yang, E.-L. (2011). Cryst. Growth Des. 11, 130-138.]). For background to complexes containing derivatives of the 1,2,4-triazole ligand, see: Zhang et al. (1999[Zhang, H., Wang, X., Zhang, K. & Teo, B. K. (1999). Coord. Chem. Rev. 183, 157-195.]); Jiang et al. (2011[Jiang, Y.-L., Wang, Y.-L., Lin, J.-X., Liu, Q.-Y., Lu, Z.-H., Zhang, N., Wei, J.-J. & Li, L.-Q. (2011). CrystEngComm, 13, 1697-1706.]). For the thio­cyanate bridging ligand, end-to-end mode, see: Vicente et al. (1997[Vicente, R., Escuer, A., Penalba, E., Solans, X. & Bardia, M. F. (1997). Inorg. Chim. Acta, 255 :, 7-12.]); Chen et al. (1999[Chen, H.-J., Yang, G. & Chen, X.-M. (1999). Acta Cryst. C55, 2012-2014.]); Diaz et al. (1999[Diaz, C., Ribas, J., Sanz, N., Solans, X. & Font-Bardı'a, M. (1999). Inorg. Chim. Acta, 286, 169-174.]); Goher et al. (2000[Goher, M. A. S., Yang, Q.-C. & Mak, T. C. W. (2000). Polyhedron, 19, 615-621.]); Song et al. (2000[Song, Y., Zhu, D.-R., Zhang, K.-L., Xu, Y., Duan, C.-Y. & You, X.-Z. (2000). Polyhedron, 19, 1461-1464.]); Cai et al. (2007[Cai, H., Guo, Y., Li, Y. & Li, J.-G. (2007). Acta Cryst. E63, m936-m938.]); Saithong et al. (2007[Saithong, S., Pakawatchai, C. & Charmant, J. P. H. (2007). Acta Cryst. E63, m857-m858.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(NCS)2(C3H5N3S)2]

  • Mr = 562.22

  • Triclinic, [P \overline 1]

  • a = 7.4842 (6) Å

  • b = 7.5420 (6) Å

  • c = 8.4262 (7) Å

  • α = 79.985 (2)°

  • β = 84.329 (2)°

  • γ = 64.508 (1)°

  • V = 422.62 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.82 mm−1

  • T = 293 K

  • 0.31 × 0.12 × 0.05 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.682, Tmax = 0.879

  • 5887 measured reflections

  • 2083 independent reflections

  • 1904 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.070

  • S = 1.05

  • 2083 reflections

  • 104 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Selected bond lengths (Å)

Ag1—N4i 2.354 (3)
Ag1—S2 2.4987 (8)
Ag1—S1 2.5554 (8)
Ag1—S1ii 2.6688 (8)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N4i 0.86 (2) 2.10 (2) 2.954 (4) 171 (3)
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

One of the active areas of meterial research is the coordination compounds of the metal ions with the multifunctional ligands leading to the structural diversities and properties (Zhang et al., 2009; Wang et al., 2011). For this work, we report the mixed ligands Ag(I) complex containg multidonor atoms, 4-methyl-1,2,4-triazole-3-thiol (Hmptrz) and thiocyanate ligands. The Hmptrz is one of 1,2,4-triazole derivative ligands - based heterocyclic thioamide containing thiol group which has three potential donor atoms. Both Hmptrz and thiocyanate group are amphidentate ligands, which can bind to the metal center with either the N or S atom or both of them (Zhang et al., 1999; Jiang et al., 2011).

The title complex exhibits a one-dimensional chain polymeric structure and the asymmetric unit consists of one Ag(I) atom, one Hmptrz molecule and one SCN- anion. The chemical structure of this complex is shown in Scheme I and the crystal structure is depicted in Figure 1.

The Ag atom features a distorted tetrahedral environment with the range of angles from 101.00 (2) to 124.52 (3)o. Each Ag is bonded by two µ2-S-bridging atoms of two Hmptrz molecules with the distances of 2.5554 (8) and 2.6688 (8) Å. The other two coordination sites are occupied by S and N atoms from the different µ2-1,3-SCN bridges coordinated as a pair alternating bidentate end to end fashion similar to those complexes of the same thiocyanate bridges (Chen et al., 1999; Diaz et al., 1999; Goher et al., 2000; Song et al., 2000; Cai et al., 2007; Saithong et al. 2007). The Cu—Sthiocyanato and Cu—Nthiocyanato bond distances are 2.4987 (8) and 2.2354 (4) Å, respectively. The SCN bond angle is almost perfectly linear [178.6 (3)°] as compare with the same µ2-1,3-SCN configuration mode of those complexes (Vicente et al.,1997; Song et al., 2000). The S2—C4 and C4—N4 distances [1.646 (3) and 1.150 (4) Å] refer to thiocyanate resonance form which indicate to a π-delocalized system along the metal-thiocyanate chain (Zhang et al., 1999).

An infintite one-dimensional structure of this complex is based on [Ag(µ2-Hmptrz)(µ2-1,3-SCN)] double-bridges, in which both Hmptrz and SCN- ligands adopt the µ2-end-on and µ2-end-to-end bridging mode, respectively. As illustated in Figure 2, the Hmptrz and thiocyanato ligands interconnect the Ag(I) ions into an infinite chain generated by the unit c translation runing parallel to c axis, which consist of four-membered ring [—Ag—S—Ag—S—] and eight-membered ring [—Ag—SCN—Ag—SCN—]. In addition, The Ag···Ag separation with the distances of 3.3241 (5) Å in the four-membered ring is slighty shorter than the sum of the van der Waals radii of Ag atoms (3.44 Å), which indicates that there is the Ag···Ag interaction.

The weak intra-molecular hydrogen bonding interaction [N1—H1···N4i, (i) = -x + 1, -y, -z + 1] is found between N(1) of triazole ring and N(4) of thiocyanate bridging ligand at 2.954 (4) Å. The inter-short contact at 3.239 (3) Å arises from S2 donor of triazole ring with N2 acceptor from the thiocyanate bridge of the neighbouring adjacent chain which is smaller than the sum of S and N van der Waals radii (1.80 + 1.55 Å). In addition, the π···π stacking between the triazole rings of the neighbouring chain is observed with the centroid-centriod distance of 4.0762 (18) Å. Both of these interactions generate the supramolecular layer interactions related by ac-plane. A view of intra-molecular hydrogen bonding is depected in Figure 3 and The layered network interactions in crystal packing are shown in Figure 4.

Related literature top

For examples of complexes with multifunctional ligand donors, see: Zhang et al.(2009); Wang et al. (2011). For background to complexes containing derivatives of the 1,2,4-triazole ligand, see: Zhang et al. (1999); Jiang et al. (2011). For the thiocyanate bridging ligand, end-to-end mode, see: Vicente et al. (1997); Chen et al. (1999); Diaz et al. (1999); Goher et al. (2000); Song et al. (2000); Cai et al. (2007); Saithong et al. (2007).

Experimental top

A mixture of AgNO3 (0.15 g, 0.88 mmol), KSCN (0.09 g, 0.87 mmol) in EtOH 30 ml was heated and stirred to 75 °C for 1 h. After that, the Hmptrz ligand (0.1 g, 0.087 mmol was added to the mixture and further continuous stirring for 12 h. The colorless crystals of the complex were obtained after the colorless filtrate was kept to stand at room temperature for a day. The complex melts at 130–132°C.

Refinement top

All carbon H-atom of the triazole ring and the methyl group were placed in calculated positions (C-sp2—H = 0.93 and C-sp3= 0.96 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(C), respectively. The H atom of triazole ring N atom is located in a difference map and restrained, N—H = 0.86 Å with Uiso(H) = 1.2Ueq(N).

Structure description top

One of the active areas of meterial research is the coordination compounds of the metal ions with the multifunctional ligands leading to the structural diversities and properties (Zhang et al., 2009; Wang et al., 2011). For this work, we report the mixed ligands Ag(I) complex containg multidonor atoms, 4-methyl-1,2,4-triazole-3-thiol (Hmptrz) and thiocyanate ligands. The Hmptrz is one of 1,2,4-triazole derivative ligands - based heterocyclic thioamide containing thiol group which has three potential donor atoms. Both Hmptrz and thiocyanate group are amphidentate ligands, which can bind to the metal center with either the N or S atom or both of them (Zhang et al., 1999; Jiang et al., 2011).

The title complex exhibits a one-dimensional chain polymeric structure and the asymmetric unit consists of one Ag(I) atom, one Hmptrz molecule and one SCN- anion. The chemical structure of this complex is shown in Scheme I and the crystal structure is depicted in Figure 1.

The Ag atom features a distorted tetrahedral environment with the range of angles from 101.00 (2) to 124.52 (3)o. Each Ag is bonded by two µ2-S-bridging atoms of two Hmptrz molecules with the distances of 2.5554 (8) and 2.6688 (8) Å. The other two coordination sites are occupied by S and N atoms from the different µ2-1,3-SCN bridges coordinated as a pair alternating bidentate end to end fashion similar to those complexes of the same thiocyanate bridges (Chen et al., 1999; Diaz et al., 1999; Goher et al., 2000; Song et al., 2000; Cai et al., 2007; Saithong et al. 2007). The Cu—Sthiocyanato and Cu—Nthiocyanato bond distances are 2.4987 (8) and 2.2354 (4) Å, respectively. The SCN bond angle is almost perfectly linear [178.6 (3)°] as compare with the same µ2-1,3-SCN configuration mode of those complexes (Vicente et al.,1997; Song et al., 2000). The S2—C4 and C4—N4 distances [1.646 (3) and 1.150 (4) Å] refer to thiocyanate resonance form which indicate to a π-delocalized system along the metal-thiocyanate chain (Zhang et al., 1999).

An infintite one-dimensional structure of this complex is based on [Ag(µ2-Hmptrz)(µ2-1,3-SCN)] double-bridges, in which both Hmptrz and SCN- ligands adopt the µ2-end-on and µ2-end-to-end bridging mode, respectively. As illustated in Figure 2, the Hmptrz and thiocyanato ligands interconnect the Ag(I) ions into an infinite chain generated by the unit c translation runing parallel to c axis, which consist of four-membered ring [—Ag—S—Ag—S—] and eight-membered ring [—Ag—SCN—Ag—SCN—]. In addition, The Ag···Ag separation with the distances of 3.3241 (5) Å in the four-membered ring is slighty shorter than the sum of the van der Waals radii of Ag atoms (3.44 Å), which indicates that there is the Ag···Ag interaction.

The weak intra-molecular hydrogen bonding interaction [N1—H1···N4i, (i) = -x + 1, -y, -z + 1] is found between N(1) of triazole ring and N(4) of thiocyanate bridging ligand at 2.954 (4) Å. The inter-short contact at 3.239 (3) Å arises from S2 donor of triazole ring with N2 acceptor from the thiocyanate bridge of the neighbouring adjacent chain which is smaller than the sum of S and N van der Waals radii (1.80 + 1.55 Å). In addition, the π···π stacking between the triazole rings of the neighbouring chain is observed with the centroid-centriod distance of 4.0762 (18) Å. Both of these interactions generate the supramolecular layer interactions related by ac-plane. A view of intra-molecular hydrogen bonding is depected in Figure 3 and The layered network interactions in crystal packing are shown in Figure 4.

For examples of complexes with multifunctional ligand donors, see: Zhang et al.(2009); Wang et al. (2011). For background to complexes containing derivatives of the 1,2,4-triazole ligand, see: Zhang et al. (1999); Jiang et al. (2011). For the thiocyanate bridging ligand, end-to-end mode, see: Vicente et al. (1997); Chen et al. (1999); Diaz et al. (1999); Goher et al. (2000); Song et al. (2000); Cai et al. (2007); Saithong et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of the title complex with displacement ellipsoids plotted at the 30% probability level.
[Figure 2] Fig. 2. The one-dimensional chain of the title complex.
[Figure 3] Fig. 3. The intra-chain hydrogen-bonding interactions of the title complex.
[Figure 4] Fig. 4. The two-dimensional-layer inter-interactions of the title complex. All H atoms not involving the interactions are omitted.
catena-Poly[silver(I)-bis[µ-4-methyl-1H-1,2,4-triazole-3(4H)-thione-κ2S:S]-silver(I)-di-µ-thiocyanato-κ2S:N;κ2N:S] top
Crystal data top
[Ag2(NCS)2(C3H5N3S)2]Z = 1
Mr = 562.22F(000) = 272
Triclinic, P1Dx = 2.209 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4842 (6) ÅCell parameters from 3160 reflections
b = 7.5420 (6) Åθ = 2.5–28.1°
c = 8.4262 (7) ŵ = 2.82 mm1
α = 79.985 (2)°T = 293 K
β = 84.329 (2)°Block, colourless
γ = 64.508 (1)°0.31 × 0.12 × 0.05 mm
V = 422.62 (6) Å3
Data collection top
Bruker APEX CCD
diffractometer
2083 independent reflections
Radiation source: fine-focus sealed tube1904 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Frames, each covering 0.3 ° in ω scansθmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 99
Tmin = 0.682, Tmax = 0.879k = 1010
5887 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0262P)2 + 0.3652P]
where P = (Fo2 + 2Fc2)/3
2083 reflections(Δ/σ)max < 0.001
104 parametersΔρmax = 0.79 e Å3
1 restraintΔρmin = 0.63 e Å3
Crystal data top
[Ag2(NCS)2(C3H5N3S)2]γ = 64.508 (1)°
Mr = 562.22V = 422.62 (6) Å3
Triclinic, P1Z = 1
a = 7.4842 (6) ÅMo Kα radiation
b = 7.5420 (6) ŵ = 2.82 mm1
c = 8.4262 (7) ÅT = 293 K
α = 79.985 (2)°0.31 × 0.12 × 0.05 mm
β = 84.329 (2)°
Data collection top
Bruker APEX CCD
diffractometer
2083 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
1904 reflections with I > 2σ(I)
Tmin = 0.682, Tmax = 0.879Rint = 0.026
5887 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0291 restraint
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.79 e Å3
2083 reflectionsΔρmin = 0.63 e Å3
104 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.43439 (4)0.06942 (4)0.18148 (3)0.06373 (11)
S10.45768 (10)0.28186 (11)0.08435 (10)0.04902 (17)
N10.8089 (4)0.2218 (4)0.0367 (3)0.0471 (5)
H10.784 (5)0.168 (5)0.130 (3)0.057*
N20.9737 (4)0.2569 (4)0.0040 (3)0.0580 (7)
N30.7724 (3)0.3598 (3)0.2066 (3)0.0443 (5)
C10.6839 (4)0.2840 (4)0.0829 (3)0.0399 (5)
C20.9452 (4)0.3410 (5)0.1505 (4)0.0548 (7)
H21.03290.38440.21200.066*
C30.6939 (6)0.4444 (6)0.3672 (4)0.0614 (8)
H3A0.66770.34930.41160.092*
H3B0.78890.47790.43520.092*
H3C0.57330.56190.36080.092*
S20.13129 (11)0.14847 (14)0.36025 (10)0.0576 (2)
C40.2341 (4)0.0469 (5)0.5367 (4)0.0479 (6)
N40.3024 (4)0.0245 (5)0.6610 (3)0.0661 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.06481 (18)0.0881 (2)0.05807 (16)0.04888 (16)0.01183 (12)0.02344 (13)
S10.0410 (4)0.0516 (4)0.0602 (4)0.0237 (3)0.0010 (3)0.0116 (3)
N10.0437 (12)0.0499 (13)0.0494 (13)0.0240 (11)0.0036 (10)0.0014 (10)
N20.0431 (13)0.0646 (16)0.0680 (17)0.0281 (12)0.0086 (12)0.0049 (13)
N30.0451 (12)0.0457 (12)0.0454 (12)0.0225 (10)0.0004 (9)0.0069 (10)
C10.0400 (13)0.0357 (12)0.0466 (13)0.0172 (10)0.0015 (10)0.0107 (10)
C20.0427 (15)0.0599 (18)0.0645 (19)0.0275 (14)0.0007 (13)0.0007 (15)
C30.073 (2)0.072 (2)0.0447 (15)0.0374 (18)0.0050 (15)0.0028 (14)
S20.0427 (4)0.0772 (5)0.0541 (4)0.0308 (4)0.0013 (3)0.0023 (4)
C40.0431 (14)0.0621 (17)0.0496 (15)0.0326 (13)0.0082 (12)0.0135 (13)
N40.0619 (17)0.100 (2)0.0501 (15)0.0486 (17)0.0010 (13)0.0081 (15)
Geometric parameters (Å, º) top
Ag1—N4i2.354 (3)N3—C11.354 (3)
Ag1—S22.4987 (8)N3—C21.363 (4)
Ag1—S12.5554 (8)N3—C31.455 (4)
Ag1—S1ii2.6688 (8)C2—H20.9300
Ag1—Ag1ii3.3241 (5)C3—H3A0.9600
S1—C11.701 (3)C3—H3B0.9600
S1—Ag1ii2.6688 (8)C3—H3C0.9600
N1—C11.325 (3)S2—C41.646 (3)
N1—N21.369 (3)C4—N41.150 (4)
N1—H10.860 (18)N4—Ag1i2.354 (3)
N2—C21.278 (4)
N4i—Ag1—S2107.73 (7)C1—N3—C3125.5 (2)
N4i—Ag1—S1106.91 (7)C2—N3—C3127.7 (3)
S2—Ag1—S1124.52 (3)N1—C1—N3104.4 (2)
N4i—Ag1—S1ii104.55 (9)N1—C1—S1129.2 (2)
S2—Ag1—S1ii110.41 (3)N3—C1—S1126.3 (2)
S1—Ag1—S1ii101.00 (2)N2—C2—N3112.6 (3)
N4i—Ag1—Ag1ii115.17 (8)N2—C2—H2123.7
S2—Ag1—Ag1ii135.70 (2)N3—C2—H2123.7
S1—Ag1—Ag1ii52.010 (19)N3—C3—H3A109.5
S1ii—Ag1—Ag1ii48.991 (18)N3—C3—H3B109.5
C1—S1—Ag1104.45 (10)H3A—C3—H3B109.5
C1—S1—Ag1ii99.55 (9)N3—C3—H3C109.5
Ag1—S1—Ag1ii79.00 (2)H3A—C3—H3C109.5
C1—N1—N2113.0 (2)H3B—C3—H3C109.5
C1—N1—H1122 (2)C4—S2—Ag1100.04 (10)
N2—N1—H1125 (2)N4—C4—S2178.6 (3)
C2—N2—N1103.3 (2)C4—N4—Ag1i142.0 (2)
C1—N3—C2106.7 (2)
N4i—Ag1—S1—C111.91 (13)C3—N3—C1—S13.5 (4)
S2—Ag1—S1—C1138.45 (9)Ag1—S1—C1—N110.7 (3)
S1ii—Ag1—S1—C197.15 (9)Ag1ii—S1—C1—N191.7 (3)
Ag1ii—Ag1—S1—C197.15 (9)Ag1—S1—C1—N3172.3 (2)
N4i—Ag1—S1—Ag1ii109.06 (9)Ag1ii—S1—C1—N391.3 (2)
S2—Ag1—S1—Ag1ii124.40 (3)N1—N2—C2—N30.6 (4)
S1ii—Ag1—S1—Ag1ii0.0C1—N3—C2—N21.2 (4)
C1—N1—N2—C20.2 (4)C3—N3—C2—N2178.9 (3)
N2—N1—C1—N30.9 (3)N4i—Ag1—S2—C424.14 (14)
N2—N1—C1—S1176.7 (2)S1—Ag1—S2—C4150.33 (11)
C2—N3—C1—N11.2 (3)S1ii—Ag1—S2—C489.46 (11)
C3—N3—C1—N1178.9 (3)Ag1ii—Ag1—S2—C4141.07 (11)
C2—N3—C1—S1176.4 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N4i0.86 (2)2.10 (2)2.954 (4)171 (3)
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Ag2(NCS)2(C3H5N3S)2]
Mr562.22
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.4842 (6), 7.5420 (6), 8.4262 (7)
α, β, γ (°)79.985 (2), 84.329 (2), 64.508 (1)
V3)422.62 (6)
Z1
Radiation typeMo Kα
µ (mm1)2.82
Crystal size (mm)0.31 × 0.12 × 0.05
Data collection
DiffractometerBruker APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.682, 0.879
No. of measured, independent and
observed [I > 2σ(I)] reflections
5887, 2083, 1904
Rint0.026
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.070, 1.05
No. of reflections2083
No. of parameters104
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.79, 0.63

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Ag1—N4i2.354 (3)Ag1—S12.5554 (8)
Ag1—S22.4987 (8)Ag1—S1ii2.6688 (8)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N4i0.860 (18)2.101 (19)2.954 (4)171 (3)
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

Financial support from the Center of Excellent for Innovation in Chemistry (PERCH-CIC), Office of the Higher Education Commission, Ministry of Education, and Graduate School, Prince of Songkla University, are gratefully acknowledge.

References

First citationBruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, H., Guo, Y., Li, Y. & Li, J.-G. (2007). Acta Cryst. E63, m936–m938.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChen, H.-J., Yang, G. & Chen, X.-M. (1999). Acta Cryst. C55, 2012–2014.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDiaz, C., Ribas, J., Sanz, N., Solans, X. & Font-Bardı'a, M. (1999). Inorg. Chim. Acta, 286, 169–174.  Web of Science CSD CrossRef CAS Google Scholar
First citationGoher, M. A. S., Yang, Q.-C. & Mak, T. C. W. (2000). Polyhedron, 19, 615–621.  Web of Science CSD CrossRef CAS Google Scholar
First citationJiang, Y.-L., Wang, Y.-L., Lin, J.-X., Liu, Q.-Y., Lu, Z.-H., Zhang, N., Wei, J.-J. & Li, L.-Q. (2011). CrystEngComm, 13, 1697–1706.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSaithong, S., Pakawatchai, C. & Charmant, J. P. H. (2007). Acta Cryst. E63, m857–m858.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, Y., Zhu, D.-R., Zhang, K.-L., Xu, Y., Duan, C.-Y. & You, X.-Z. (2000). Polyhedron, 19, 1461–1464.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVicente, R., Escuer, A., Penalba, E., Solans, X. & Bardia, M. F. (1997). Inorg. Chim. Acta, 255 :, 7–12.  Google Scholar
First citationWang, Y.-L., Zhang, N., Liu, Q.-Y., Shan, Z.-M., Cao, R., Wang, M.-S., Luo, J.-J. & Yang, E.-L. (2011). Cryst. Growth Des. 11, 130–138.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, H., Wang, X., Zhang, K. & Teo, B. K. (1999). Coord. Chem. Rev. 183, 157–195.  Web of Science CrossRef CAS Google Scholar
First citationZhang, W., Ye, H.-Y. & Xiong, R.-G. (2009). Coord. Chem. Rev. 253, 2980–2997.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds