organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[2-(4-But­­oxy­phen­yl)ethen­yl]-1-methyl­pyridinium tosylate

aDepartment of Physics, Presidency College, Chennai 600 005, India, bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, and cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, mohan66@hotmail.com

(Received 7 April 2013; accepted 8 April 2013; online 13 April 2013)

In the title mol­ecular salt, C18H22NO+·C7H7O3S, the dihedral angle between the aromatic rings in the cation is 10.00 (9)°; its alkyl side chain adopts an extended conformation. In the crystal, weak C—H⋯O and ππ [centroid–centroid distance = 3.7658 (17) Å] inter­actions link the components, generating a three-dimensional network.

Related literature

For mol­ecular compounds with non-linear optical properties, see: Nalwa & Miyata (1997[Nalwa, H. S. & Miyata, S. (1997). In Nonlinear Optics of Organic Molecules and Polymers. Boca Raton: CRC Press.]). For related structures, see: Krishnakumar et al. (2012[Krishnakumar, M., Sudhahar, S., Silambarasan, A., Chakkaravarthi, G. & Mohankumar, R. (2012). Acta Cryst. E68, o3268.]); Sivakumar et al.(2012[Sivakumar, P. K., Krishnakumar, M., Kanagadurai, R., Chakkaravarthi, G. & Mohankumar, R. (2012). Acta Cryst. E68, o3059.]).

[Scheme 1]

Experimental

Crystal data
  • C18H22NO+·C7H7O3S

  • Mr = 439.55

  • Monoclinic, P 21 /n

  • a = 9.0884 (6) Å

  • b = 6.4559 (5) Å

  • c = 39.827 (3) Å

  • β = 95.404 (3)°

  • V = 2326.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 295 K

  • 0.28 × 0.24 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.954, Tmax = 0.967

  • 20608 measured reflections

  • 5629 independent reflections

  • 4258 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.160

  • S = 1.16

  • 5629 reflections

  • 291 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O4i 0.93 2.33 3.210 (3) 158
C4—H4⋯O3ii 0.93 2.56 3.412 (3) 153
C6—H6B⋯O3iii 0.96 2.57 3.470 (4) 157
C8—H8⋯O3ii 0.93 2.55 3.418 (3) 156
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In continuation of our studies of molecular compounds with potential non-linear optical properties, which could be used in optoelectronic and photonic devices (Nalwa & Miyata, 1997), we herewith report the crystal structure of the title compound, (I), (Fig. 1).

The geometric parameters of the cation and anion in (I) are comparable to those in previously reported structures (Krishnakumar et al., 2012; Sivakumar et al., 2012). The benzene ring and pyridinium ring makes a dihedral angle of 10.00 (9)°. in the cation.

In the crystal, the anions and cations are linked by weak C—H···O (Table 1 & Fig. 2) and π···π [Cg1···Cg2 (1/2+x,-1/2-y,1/2+z) = 3.7658 (17)Å; Cg1 and Cg2 are the centroids of the N1/C1-C5 and C9-C14 rings, respectively] interactions.

Related literature top

For molecular compounds with non-linear optical properties, see: Nalwa & Miyata (1997). For related structures, see: Krishnakumar et al. (2012); Sivakumar et al.(2012).

Experimental top

The 4-butoxy-4'-N'-methyl stilbazolium tosylate was synthesized by the condensation reaction. The stoichiometric amount of reagents 4-picoline (4.65 g, 5 mmol), methyl p-toluenesulfonate (9.31 g, 5 mmol), and p-butoxybenzaldehyde (8.64 ml, 5 mmol) were refluxed 20 hours in the presence of piperidine. Colourless blocks of (I) were grown by slow evaporation of a methanol solution.

Refinement top

H atoms were positioned geometrically and refined using riding model with C-H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for CH, C-H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2, C-H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3. H atoms for C20 and C23 were found from the difference Fourier map and C20-H20 and C23-H23 distances were restrained to 0.93 (1)Å.

Structure description top

In continuation of our studies of molecular compounds with potential non-linear optical properties, which could be used in optoelectronic and photonic devices (Nalwa & Miyata, 1997), we herewith report the crystal structure of the title compound, (I), (Fig. 1).

The geometric parameters of the cation and anion in (I) are comparable to those in previously reported structures (Krishnakumar et al., 2012; Sivakumar et al., 2012). The benzene ring and pyridinium ring makes a dihedral angle of 10.00 (9)°. in the cation.

In the crystal, the anions and cations are linked by weak C—H···O (Table 1 & Fig. 2) and π···π [Cg1···Cg2 (1/2+x,-1/2-y,1/2+z) = 3.7658 (17)Å; Cg1 and Cg2 are the centroids of the N1/C1-C5 and C9-C14 rings, respectively] interactions.

For molecular compounds with non-linear optical properties, see: Nalwa & Miyata (1997). For related structures, see: Krishnakumar et al. (2012); Sivakumar et al.(2012).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed down [010]. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
4-[2-(4-Butoxyphenyl)ethenyl]-1-methylpyridinium 4-methylbenzenesulfonate top
Crystal data top
C18H22NO+·C7H7O3SF(000) = 936
Mr = 439.55Dx = 1.255 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4259 reflections
a = 9.0884 (6) Åθ = 2.0–28.3°
b = 6.4559 (5) ŵ = 0.17 mm1
c = 39.827 (3) ÅT = 295 K
β = 95.404 (3)°Block, colourless
V = 2326.4 (2) Å30.28 × 0.24 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5629 independent reflections
Radiation source: fine-focus sealed tube4258 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and φ scanθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.954, Tmax = 0.967k = 88
20608 measured reflectionsl = 5353
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0359P)2 + 2.0379P]
where P = (Fo2 + 2Fc2)/3
5629 reflections(Δ/σ)max < 0.001
291 parametersΔρmax = 0.23 e Å3
2 restraintsΔρmin = 0.39 e Å3
Crystal data top
C18H22NO+·C7H7O3SV = 2326.4 (2) Å3
Mr = 439.55Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.0884 (6) ŵ = 0.17 mm1
b = 6.4559 (5) ÅT = 295 K
c = 39.827 (3) Å0.28 × 0.24 × 0.20 mm
β = 95.404 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5629 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4258 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.967Rint = 0.028
20608 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0692 restraints
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.23 e Å3
5629 reflectionsΔρmin = 0.39 e Å3
291 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.50367 (7)0.31025 (11)0.192843 (17)0.04861 (19)
O10.5412 (3)1.3940 (4)0.42984 (6)0.0809 (7)
O20.5079 (3)0.5330 (3)0.19010 (6)0.0789 (7)
O30.6435 (2)0.2208 (4)0.20606 (5)0.0640 (6)
O40.3804 (2)0.2348 (4)0.20972 (5)0.0664 (6)
N10.4977 (2)0.0292 (3)0.27689 (5)0.0469 (5)
C10.3694 (3)0.0849 (5)0.28821 (7)0.0573 (7)
H10.28630.00230.28330.069*
C20.3587 (3)0.2596 (5)0.30663 (7)0.0575 (7)
H20.26830.29370.31440.069*
C30.4789 (3)0.3888 (4)0.31426 (6)0.0466 (6)
C40.6110 (3)0.3277 (5)0.30151 (7)0.0503 (6)
H40.69490.40970.30550.060*
C50.6177 (3)0.1500 (4)0.28339 (7)0.0500 (6)
H50.70660.11140.27540.060*
C60.5076 (4)0.1583 (5)0.25612 (7)0.0612 (8)
H6A0.42670.24910.25960.092*
H6B0.59930.22790.26250.092*
H6C0.50310.12000.23280.092*
C70.4653 (3)0.5724 (5)0.33512 (7)0.0556 (7)
H70.37360.59670.34290.067*
C80.5707 (3)0.7068 (5)0.34388 (7)0.0519 (7)
H80.66140.68430.33540.062*
C90.5600 (3)0.8877 (5)0.36552 (6)0.0497 (6)
C100.4379 (3)0.9313 (6)0.38288 (8)0.0700 (9)
H100.35640.84370.38030.084*
C110.4343 (4)1.0995 (6)0.40360 (9)0.0765 (10)
H110.35081.12480.41480.092*
C120.5539 (3)1.2327 (5)0.40816 (7)0.0607 (8)
C130.6756 (3)1.1942 (5)0.39102 (8)0.0653 (8)
H130.75651.28290.39350.078*
C140.6773 (3)1.0237 (5)0.37012 (7)0.0580 (7)
H140.76050.99960.35870.070*
C150.6659 (4)1.5244 (6)0.43681 (8)0.0738 (9)
H15A0.69031.59130.41620.089*
H15B0.75041.44300.44570.089*
C160.6299 (5)1.6859 (6)0.46230 (9)0.0851 (11)
H16A0.54301.76270.45350.102*
H16B0.60731.61750.48290.102*
C170.7561 (6)1.8339 (7)0.47022 (10)0.1014 (14)
H17A0.78171.89570.44930.122*
H17B0.84141.75670.47990.122*
C180.7232 (7)2.0047 (8)0.49432 (12)0.133 (2)
H18A0.64292.08750.48440.199*
H18B0.80932.09000.49890.199*
H18C0.69671.94510.51500.199*
C190.4720 (2)0.2172 (4)0.15089 (6)0.0428 (6)
C200.4479 (4)0.3501 (5)0.12436 (8)0.0613 (8)
C210.4179 (4)0.2789 (6)0.09167 (8)0.0700 (9)
H210.40260.37380.07410.084*
C220.4105 (4)0.0713 (6)0.08467 (8)0.0687 (9)
C230.4372 (4)0.0616 (5)0.11138 (9)0.0737 (10)
C240.4687 (3)0.0078 (5)0.14422 (8)0.0597 (8)
H240.48750.08690.16170.072*
C250.3715 (5)0.0092 (8)0.04919 (10)0.1049 (14)
H25A0.41790.14120.04670.157*
H25B0.40560.08680.03320.157*
H25C0.26630.02430.04510.157*
H230.435 (4)0.2033 (19)0.1073 (8)0.083 (11)*
H200.449 (3)0.489 (2)0.1308 (8)0.071 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0408 (3)0.0486 (4)0.0569 (4)0.0088 (3)0.0075 (3)0.0052 (3)
O10.0891 (17)0.0787 (17)0.0752 (15)0.0093 (14)0.0099 (12)0.0245 (13)
O20.1106 (19)0.0453 (13)0.0813 (15)0.0024 (13)0.0112 (13)0.0055 (11)
O30.0428 (10)0.0851 (16)0.0633 (12)0.0141 (10)0.0009 (8)0.0020 (11)
O40.0463 (10)0.0839 (16)0.0715 (13)0.0134 (11)0.0189 (9)0.0157 (12)
N10.0499 (12)0.0433 (13)0.0469 (11)0.0035 (10)0.0009 (9)0.0074 (10)
C10.0428 (14)0.0621 (19)0.0664 (17)0.0118 (14)0.0022 (12)0.0051 (16)
C20.0379 (13)0.069 (2)0.0667 (17)0.0022 (13)0.0094 (12)0.0010 (16)
C30.0433 (13)0.0479 (15)0.0486 (13)0.0010 (12)0.0046 (10)0.0079 (12)
C40.0405 (12)0.0525 (16)0.0580 (15)0.0096 (12)0.0058 (11)0.0002 (14)
C50.0413 (13)0.0511 (17)0.0586 (15)0.0037 (12)0.0104 (11)0.0030 (13)
C60.078 (2)0.0452 (16)0.0594 (16)0.0041 (15)0.0014 (14)0.0017 (14)
C70.0431 (14)0.0617 (19)0.0630 (16)0.0058 (14)0.0108 (12)0.0020 (15)
C80.0455 (13)0.0559 (17)0.0548 (15)0.0068 (13)0.0072 (11)0.0052 (14)
C90.0495 (14)0.0526 (17)0.0469 (13)0.0107 (13)0.0044 (11)0.0026 (13)
C100.0547 (17)0.080 (2)0.077 (2)0.0043 (17)0.0136 (15)0.0155 (19)
C110.0638 (19)0.091 (3)0.077 (2)0.0096 (19)0.0193 (16)0.020 (2)
C120.0690 (19)0.061 (2)0.0519 (15)0.0182 (16)0.0064 (13)0.0063 (14)
C130.0618 (17)0.066 (2)0.0682 (18)0.0005 (16)0.0069 (14)0.0090 (17)
C140.0527 (16)0.0624 (19)0.0605 (16)0.0072 (14)0.0129 (13)0.0060 (15)
C150.095 (3)0.062 (2)0.0630 (19)0.009 (2)0.0010 (17)0.0061 (17)
C160.123 (3)0.069 (2)0.0623 (19)0.018 (2)0.000 (2)0.0104 (18)
C170.154 (4)0.078 (3)0.070 (2)0.001 (3)0.001 (2)0.010 (2)
C180.208 (6)0.091 (3)0.095 (3)0.000 (4)0.008 (3)0.029 (3)
C190.0328 (11)0.0383 (14)0.0576 (14)0.0006 (10)0.0062 (10)0.0095 (12)
C200.0727 (19)0.0432 (17)0.0667 (18)0.0019 (15)0.0003 (15)0.0114 (15)
C210.080 (2)0.067 (2)0.0604 (18)0.0054 (18)0.0040 (15)0.0238 (17)
C220.069 (2)0.071 (2)0.0651 (19)0.0089 (18)0.0039 (15)0.0003 (18)
C230.097 (3)0.0449 (19)0.077 (2)0.0071 (18)0.0009 (19)0.0015 (17)
C240.0704 (19)0.0421 (16)0.0659 (18)0.0007 (14)0.0022 (14)0.0145 (14)
C250.133 (4)0.104 (3)0.075 (2)0.023 (3)0.003 (2)0.011 (2)
Geometric parameters (Å, º) top
S1—O21.443 (2)C12—C131.376 (4)
S1—O41.445 (2)C13—C141.381 (4)
S1—O31.4487 (19)C13—H130.9300
S1—C191.773 (3)C14—H140.9300
O1—C121.364 (4)C15—C161.512 (5)
O1—C151.418 (4)C15—H15A0.9700
N1—C11.339 (3)C15—H15B0.9700
N1—C51.346 (3)C16—C171.503 (6)
N1—C61.474 (4)C16—H16A0.9700
C1—C21.354 (4)C16—H16B0.9700
C1—H10.9300C17—C181.510 (6)
C2—C31.385 (4)C17—H17A0.9700
C2—H20.9300C17—H17B0.9700
C3—C41.404 (4)C18—H18A0.9600
C3—C71.459 (4)C18—H18B0.9600
C4—C51.360 (4)C18—H18C0.9600
C4—H40.9300C19—C201.363 (4)
C5—H50.9300C19—C241.378 (4)
C6—H6A0.9600C20—C211.383 (5)
C6—H6B0.9600C20—H200.933 (10)
C6—H6C0.9600C21—C221.369 (5)
C7—C81.315 (4)C21—H210.9300
C7—H70.9300C22—C231.370 (5)
C8—C91.460 (4)C22—C251.516 (5)
C8—H80.9300C23—C241.386 (5)
C9—C141.379 (4)C23—H230.930 (10)
C9—C101.391 (4)C24—H240.9300
C10—C111.366 (5)C25—H25A0.9600
C10—H100.9300C25—H25B0.9600
C11—C121.384 (5)C25—H25C0.9600
C11—H110.9300
O2—S1—O4113.47 (14)C9—C14—C13122.3 (3)
O2—S1—O3113.34 (15)C9—C14—H14118.8
O4—S1—O3112.88 (13)C13—C14—H14118.8
O2—S1—C19105.64 (13)O1—C15—C16108.8 (3)
O4—S1—C19105.08 (12)O1—C15—H15A109.9
O3—S1—C19105.44 (12)C16—C15—H15A109.9
C12—O1—C15117.6 (3)O1—C15—H15B109.9
C1—N1—C5119.7 (2)C16—C15—H15B109.9
C1—N1—C6120.7 (2)H15A—C15—H15B108.3
C5—N1—C6119.5 (2)C17—C16—C15111.7 (4)
N1—C1—C2121.0 (3)C17—C16—H16A109.3
N1—C1—H1119.5C15—C16—H16A109.3
C2—C1—H1119.5C17—C16—H16B109.3
C1—C2—C3121.7 (3)C15—C16—H16B109.3
C1—C2—H2119.2H16A—C16—H16B107.9
C3—C2—H2119.2C16—C17—C18113.9 (4)
C2—C3—C4115.8 (3)C16—C17—H17A108.8
C2—C3—C7120.5 (2)C18—C17—H17A108.8
C4—C3—C7123.7 (2)C16—C17—H17B108.8
C5—C4—C3120.8 (2)C18—C17—H17B108.8
C5—C4—H4119.6H17A—C17—H17B107.7
C3—C4—H4119.6C17—C18—H18A109.5
N1—C5—C4121.0 (2)C17—C18—H18B109.5
N1—C5—H5119.5H18A—C18—H18B109.5
C4—C5—H5119.5C17—C18—H18C109.5
N1—C6—H6A109.5H18A—C18—H18C109.5
N1—C6—H6B109.5H18B—C18—H18C109.5
H6A—C6—H6B109.5C20—C19—C24118.0 (3)
N1—C6—H6C109.5C20—C19—S1121.1 (2)
H6A—C6—H6C109.5C24—C19—S1120.9 (2)
H6B—C6—H6C109.5C19—C20—C21121.6 (3)
C8—C7—C3126.0 (3)C19—C20—H20113 (2)
C8—C7—H7117.0C21—C20—H20125 (2)
C3—C7—H7117.0C22—C21—C20121.2 (3)
C7—C8—C9126.6 (3)C22—C21—H21119.4
C7—C8—H8116.7C20—C21—H21119.4
C9—C8—H8116.7C21—C22—C23116.9 (3)
C14—C9—C10116.6 (3)C21—C22—C25121.9 (3)
C14—C9—C8119.6 (2)C23—C22—C25121.2 (4)
C10—C9—C8123.8 (3)C22—C23—C24122.4 (3)
C11—C10—C9121.8 (3)C22—C23—H23119 (2)
C11—C10—H10119.1C24—C23—H23119 (2)
C9—C10—H10119.1C19—C24—C23119.8 (3)
C10—C11—C12120.7 (3)C19—C24—H24120.1
C10—C11—H11119.7C23—C24—H24120.1
C12—C11—H11119.7C22—C25—H25A109.5
O1—C12—C13124.9 (3)C22—C25—H25B109.5
O1—C12—C11116.4 (3)H25A—C25—H25B109.5
C13—C12—C11118.7 (3)C22—C25—H25C109.5
C12—C13—C14119.9 (3)H25A—C25—H25C109.5
C12—C13—H13120.1H25B—C25—H25C109.5
C14—C13—H13120.1
C5—N1—C1—C21.1 (4)C11—C12—C13—C140.9 (5)
C6—N1—C1—C2178.4 (3)C10—C9—C14—C130.5 (4)
N1—C1—C2—C30.7 (5)C8—C9—C14—C13178.1 (3)
C1—C2—C3—C40.4 (4)C12—C13—C14—C90.1 (5)
C1—C2—C3—C7177.9 (3)C12—O1—C15—C16177.7 (3)
C2—C3—C4—C51.1 (4)O1—C15—C16—C17178.4 (3)
C7—C3—C4—C5177.2 (3)C15—C16—C17—C18177.2 (3)
C1—N1—C5—C40.4 (4)O2—S1—C19—C204.2 (3)
C6—N1—C5—C4177.8 (2)O4—S1—C19—C20116.1 (2)
C3—C4—C5—N10.7 (4)O3—S1—C19—C20124.5 (2)
C2—C3—C7—C8179.6 (3)O2—S1—C19—C24176.9 (2)
C4—C3—C7—C82.2 (5)O4—S1—C19—C2462.8 (2)
C3—C7—C8—C9178.1 (3)O3—S1—C19—C2456.7 (3)
C7—C8—C9—C14174.7 (3)C24—C19—C20—C211.3 (5)
C7—C8—C9—C106.8 (5)S1—C19—C20—C21177.7 (3)
C14—C9—C10—C110.4 (5)C19—C20—C21—C220.4 (5)
C8—C9—C10—C11178.2 (3)C20—C21—C22—C231.4 (5)
C9—C10—C11—C120.3 (6)C20—C21—C22—C25177.4 (3)
C15—O1—C12—C134.1 (5)C21—C22—C23—C240.8 (6)
C15—O1—C12—C11175.6 (3)C25—C22—C23—C24178.0 (4)
C10—C11—C12—O1178.8 (3)C20—C19—C24—C231.8 (5)
C10—C11—C12—C131.0 (5)S1—C19—C24—C23177.1 (3)
O1—C12—C13—C14178.8 (3)C22—C23—C24—C190.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O4i0.932.333.210 (3)158
C4—H4···O3ii0.932.563.412 (3)153
C6—H6B···O3iii0.962.573.470 (4)157
C8—H8···O3ii0.932.553.418 (3)156
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H22NO+·C7H7O3S
Mr439.55
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)9.0884 (6), 6.4559 (5), 39.827 (3)
β (°) 95.404 (3)
V3)2326.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.28 × 0.24 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.954, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
20608, 5629, 4258
Rint0.028
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.160, 1.16
No. of reflections5629
No. of parameters291
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.39

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O4i0.932.333.210 (3)158
C4—H4···O3ii0.932.563.412 (3)153
C6—H6B···O3iii0.962.573.470 (4)157
C8—H8···O3ii0.932.553.418 (3)156
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

MK thanks the Council of Scientific and Industrial Research, New Delhi, India, for financial support (project No. 03 (1200)/11/EMR-II).

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKrishnakumar, M., Sudhahar, S., Silambarasan, A., Chakkaravarthi, G. & Mohankumar, R. (2012). Acta Cryst. E68, o3268.  CSD CrossRef IUCr Journals Google Scholar
First citationNalwa, H. S. & Miyata, S. (1997). In Nonlinear Optics of Organic Molecules and Polymers. Boca Raton: CRC Press.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSivakumar, P. K., Krishnakumar, M., Kanagadurai, R., Chakkaravarthi, G. & Mohankumar, R. (2012). Acta Cryst. E68, o3059.  CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds