organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(Adamantan-1-yl)-3-anilino­methyl-2,3-di­hydro-1,3,4-oxa­diazole-2-thione

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, Salman bin Abdulaziz University, Alkharj 11942, Saudi Arabia, bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 8 April 2013; accepted 10 April 2013; online 13 April 2013)

In the title compound, C19H23N3OS, the oxa­diazole and benzene rings are inclined at a dihedral angle of 50.30 (11)°, with the major twist between them occurring at the ring–methyl­ene N—C bond [N—N—C—N torsion angle = −101.2 (2)°]. In the crystal, helical supra­molecular chains along [010] are sustained by N—H⋯S hydrogen bonds. These are linked into layers lying parallel to (-101) by methyl­ene–phenyl C—H⋯π inter­actions.

Related literature

For the anti-viral and anti-inflammatory activity of adamantane derivatives, see: El-Emam et al. (2004[El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107-5113.]); El-Emam & Ibrahim (1991[El-Emam, A. A. & Ibrahim, T. M. (1991). Arzneim. Forsch. Drug. Res. 41, 1260-1264.]). For the structure of the 4-fluoro derivative, see: Al-Tamimi et al. (2013[Al-Tamimi, A.-M. S., Alafeefy, A. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o730.]).

[Scheme 1]

Experimental

Crystal data
  • C19H23N3OS

  • Mr = 341.46

  • Monoclinic, P 21 /n

  • a = 14.1326 (13) Å

  • b = 7.1179 (5) Å

  • c = 18.3685 (16) Å

  • β = 105.546 (10)°

  • V = 1780.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 295 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.863, Tmax = 1.000

  • 12073 measured reflections

  • 4115 independent reflections

  • 2827 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.131

  • S = 1.03

  • 4115 reflections

  • 221 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C14–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯S1i 0.87 (1) 2.62 (1) 3.4763 (19) 170 (2)
C13—H13ACg1ii 0.97 2.83 3.549 (2) 132
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+2.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In continuation of our long-term interest in the chemical and pharmacological properties of adamantane derivatives (El-Emam & Ibrahim, 1991; El-Emam et al., 2004), including structural studies (Al-Tamimi et al., 2013), we describe herein the X-ray crystal structure determination of the title compound, (I).

In (I), Fig. 1, the oxadiazole ring is strictly planar (r.m.s. deviation = 0.003 Å) and the thione-S1 atom lies in this plane. The benzene ring is highly twisted out of this plane, forming a dihedral angle of 50.30 (11)°; the N2—N1—C13—N3 torsion angle = -101.2 (2)°. Despite the kink in the molecule, the thione-S1 and amine-N3—H atoms are syn, as seen in the S1—C1···N3—H3 torsion angle of 3 (1)°. This allows for the formation of N—H···S hydrogen bonds that lead to helical supramolecular chains along the b axis, Fig. 2 and Table 1. Chains are connected into layers parallel to (101) by methylene-C—H···π(phenyl) interactions, Fig. 3 and Table 1.

Related literature top

For the anti-viral and anti-inflammatory activity of adamantane derivatives, see: El-Emam et al. (2004); El-Emam & Ibrahim (1991). For the structure of the 4-fluoro derivative, see: Al-Tamimi et al. (2013).

Experimental top

A mixture of 5-(adamantane-1-yl)-1,3,4-oxadiazole-2-thiol (2.36 g, 0.01 mol), aniline (0.93 g, 0.01 mol) and 37% formaldehyde solution (1.5 ml), in ethanol (15 ml), was stirred at room temperature for 2 h and allowed to stand overnight. The precipitated crude product was filtered, washed with water, dried, and crystallized from ethanol to yield 3.04 g (89%) of the title compound (I) as fine colourless crystals. M.pt: 439–471 K. Colourless prisms were obtained by slow evaporation of its CHCl3-ethanol (1:1; 10 ml) solution held at room temperature. 1H NMR (CDCl3, 500.13 MHz): δ 1.75 (q, 6H, adamantane-H), 2.01 (s, 6H, adamantane-H), 2.12 (s, 3H, adamantane-H), 2.98 (t, 4H, piperazine-H), 3.20 (t, 4H, piperazine-H), 5.06 (s, 2H, CH2), 6.88–6.95 (m, 3H, Ar—H), 7.27 (t, 2H, Ar—H, J = 7.5 Hz). 13C NMR (CDCl3, 125.76 MHz): δ 27.47, 34.40, 36.10, 39.12 (adamantane-C), 49.36, 50.26 (piperazine-C), 69.86 (CH2), 116.43, 120.15, 129.17, 151.22 (Ar—C), 167.91 (CN), 178.62 (CS).

Refinement top

The H-atoms were placed in calculated positions [C—H = 0.93 to 0.98 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The N-bound H-atom was refined with the distance restraint N—H = 0.88±0.01 Å.

Structure description top

In continuation of our long-term interest in the chemical and pharmacological properties of adamantane derivatives (El-Emam & Ibrahim, 1991; El-Emam et al., 2004), including structural studies (Al-Tamimi et al., 2013), we describe herein the X-ray crystal structure determination of the title compound, (I).

In (I), Fig. 1, the oxadiazole ring is strictly planar (r.m.s. deviation = 0.003 Å) and the thione-S1 atom lies in this plane. The benzene ring is highly twisted out of this plane, forming a dihedral angle of 50.30 (11)°; the N2—N1—C13—N3 torsion angle = -101.2 (2)°. Despite the kink in the molecule, the thione-S1 and amine-N3—H atoms are syn, as seen in the S1—C1···N3—H3 torsion angle of 3 (1)°. This allows for the formation of N—H···S hydrogen bonds that lead to helical supramolecular chains along the b axis, Fig. 2 and Table 1. Chains are connected into layers parallel to (101) by methylene-C—H···π(phenyl) interactions, Fig. 3 and Table 1.

For the anti-viral and anti-inflammatory activity of adamantane derivatives, see: El-Emam et al. (2004); El-Emam & Ibrahim (1991). For the structure of the 4-fluoro derivative, see: Al-Tamimi et al. (2013).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view of the helical supramolecular chain along the b axis in (I), which is sustained by N—H···S hydrogen bonds shown as orange dashed lines.
[Figure 3] Fig. 3. View of the unit-cell contents in projection down the b axis of (I). The N—H···S and C—H···π interactions are shown as orange and purple dashed lines, respectively.
5-(Adamantan-1-yl)-3-anilinomethyl-2,3-dihydro-1,3,4-oxadiazole-2-thione top
Crystal data top
C19H23N3OSF(000) = 728
Mr = 341.46Dx = 1.274 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2861 reflections
a = 14.1326 (13) Åθ = 2.9–27.5°
b = 7.1179 (5) ŵ = 0.19 mm1
c = 18.3685 (16) ÅT = 295 K
β = 105.546 (10)°Prism, colourless
V = 1780.2 (3) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4115 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2827 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 3.0°
ω scanh = 1618
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 79
Tmin = 0.863, Tmax = 1.000l = 2322
12073 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.3647P]
where P = (Fo2 + 2Fc2)/3
4115 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.27 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C19H23N3OSV = 1780.2 (3) Å3
Mr = 341.46Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.1326 (13) ŵ = 0.19 mm1
b = 7.1179 (5) ÅT = 295 K
c = 18.3685 (16) Å0.40 × 0.30 × 0.20 mm
β = 105.546 (10)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4115 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2827 reflections with I > 2σ(I)
Tmin = 0.863, Tmax = 1.000Rint = 0.033
12073 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.27 e Å3
4115 reflectionsΔρmin = 0.21 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.24181 (4)0.53985 (8)0.68790 (3)0.05916 (19)
O10.37654 (9)0.79478 (17)0.67903 (7)0.0445 (3)
N10.40128 (11)0.6798 (2)0.79036 (8)0.0443 (4)
N20.47627 (11)0.8094 (2)0.79447 (8)0.0439 (4)
N30.42471 (14)0.4044 (3)0.87149 (10)0.0572 (5)
H30.3797 (12)0.317 (2)0.8616 (12)0.064 (7)*
C10.33997 (14)0.6695 (2)0.72114 (10)0.0434 (4)
C20.45822 (13)0.8739 (2)0.72695 (9)0.0387 (4)
C30.51147 (13)1.0228 (2)0.69660 (9)0.0380 (4)
C40.44544 (15)1.1970 (3)0.67713 (12)0.0521 (5)
H4A0.38501.16440.63970.063*
H4B0.42881.24150.72200.063*
C50.49874 (17)1.3518 (3)0.64617 (13)0.0600 (6)
H50.45631.46270.63400.072*
C60.52324 (16)1.2811 (3)0.57462 (12)0.0601 (6)
H6A0.46321.24840.53680.072*
H6B0.55621.37930.55410.072*
C70.58959 (15)1.1093 (3)0.59392 (10)0.0499 (5)
H70.60541.06470.54810.060*
C80.53678 (15)0.9534 (3)0.62449 (10)0.0445 (4)
H8A0.57860.84330.63600.053*
H8B0.47710.91880.58670.053*
C90.60678 (14)1.0759 (3)0.75559 (9)0.0445 (4)
H9A0.59191.11900.80140.053*
H9B0.64900.96650.76800.053*
C100.65936 (15)1.2308 (3)0.72437 (11)0.0516 (5)
H100.72011.26440.76240.062*
C110.59323 (18)1.4034 (3)0.70569 (13)0.0638 (6)
H11A0.62701.50300.68670.077*
H11B0.57771.44840.75100.077*
C120.68424 (15)1.1618 (3)0.65259 (11)0.0525 (5)
H12A0.71801.26010.63290.063*
H12B0.72721.05340.66420.063*
C130.38778 (16)0.5893 (3)0.85927 (11)0.0539 (5)
H13A0.41990.66550.90260.065*
H13B0.31820.58690.85620.065*
C140.51825 (16)0.3569 (3)0.91240 (10)0.0501 (5)
C150.59359 (18)0.4873 (4)0.93158 (12)0.0721 (7)
H150.58210.61270.91780.087*
C160.6873 (2)0.4277 (6)0.97194 (15)0.0973 (11)
H160.73810.51450.98560.117*
C170.7051 (2)0.2421 (6)0.99156 (16)0.1006 (11)
H170.76790.20371.01780.121*
C180.6307 (2)0.1144 (5)0.97258 (14)0.0864 (9)
H180.64270.01120.98580.104*
C190.53828 (19)0.1709 (3)0.93402 (11)0.0643 (6)
H190.48780.08300.92200.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0456 (3)0.0447 (3)0.0819 (4)0.0051 (2)0.0079 (3)0.0002 (2)
O10.0420 (7)0.0413 (7)0.0474 (7)0.0013 (6)0.0072 (6)0.0018 (5)
N10.0449 (9)0.0411 (8)0.0483 (8)0.0022 (8)0.0147 (7)0.0023 (6)
N20.0435 (9)0.0417 (8)0.0467 (8)0.0038 (8)0.0126 (7)0.0011 (7)
N30.0549 (11)0.0478 (10)0.0605 (10)0.0125 (9)0.0007 (9)0.0073 (8)
C10.0428 (10)0.0340 (9)0.0558 (11)0.0045 (8)0.0171 (9)0.0021 (8)
C20.0375 (10)0.0371 (9)0.0412 (9)0.0024 (8)0.0101 (8)0.0024 (7)
C30.0389 (10)0.0354 (9)0.0403 (9)0.0024 (8)0.0115 (8)0.0006 (7)
C40.0488 (12)0.0452 (11)0.0661 (12)0.0104 (10)0.0217 (10)0.0070 (9)
C50.0618 (14)0.0390 (10)0.0846 (15)0.0146 (10)0.0291 (12)0.0150 (10)
C60.0578 (13)0.0620 (13)0.0601 (12)0.0056 (11)0.0154 (11)0.0230 (10)
C70.0545 (12)0.0577 (12)0.0401 (9)0.0046 (10)0.0173 (9)0.0026 (8)
C80.0491 (11)0.0428 (10)0.0412 (9)0.0030 (9)0.0117 (8)0.0023 (7)
C90.0454 (11)0.0485 (11)0.0400 (9)0.0011 (9)0.0117 (8)0.0012 (8)
C100.0492 (11)0.0535 (12)0.0508 (11)0.0106 (10)0.0115 (9)0.0037 (9)
C110.0811 (17)0.0411 (11)0.0773 (14)0.0083 (12)0.0352 (13)0.0054 (10)
C120.0461 (11)0.0593 (12)0.0550 (11)0.0023 (10)0.0188 (9)0.0079 (9)
C130.0588 (13)0.0555 (12)0.0532 (11)0.0052 (11)0.0250 (10)0.0048 (9)
C140.0522 (12)0.0644 (13)0.0340 (9)0.0061 (11)0.0121 (9)0.0013 (8)
C150.0603 (15)0.0996 (19)0.0548 (12)0.0252 (14)0.0124 (11)0.0134 (12)
C160.0567 (17)0.168 (3)0.0676 (16)0.032 (2)0.0168 (14)0.0173 (19)
C170.0655 (19)0.173 (4)0.0645 (16)0.026 (2)0.0193 (15)0.025 (2)
C180.093 (2)0.106 (2)0.0594 (14)0.032 (2)0.0173 (15)0.0027 (14)
C190.0756 (16)0.0685 (15)0.0453 (11)0.0103 (13)0.0101 (11)0.0020 (10)
Geometric parameters (Å, º) top
S1—C11.642 (2)C8—H8A0.9700
O1—C11.369 (2)C8—H8B0.9700
O1—C21.371 (2)C9—C101.525 (3)
N1—C11.335 (2)C9—H9A0.9700
N1—N21.392 (2)C9—H9B0.9700
N1—C131.478 (2)C10—C111.526 (3)
N2—C21.283 (2)C10—C121.533 (3)
N3—C141.376 (3)C10—H100.9800
N3—C131.411 (3)C11—H11A0.9700
N3—H30.872 (10)C11—H11B0.9700
C2—C31.492 (2)C12—H12A0.9700
C3—C91.533 (3)C12—H12B0.9700
C3—C41.535 (2)C13—H13A0.9700
C3—C81.543 (2)C13—H13B0.9700
C4—C51.528 (3)C14—C151.385 (3)
C4—H4A0.9700C14—C191.389 (3)
C4—H4B0.9700C15—C161.399 (4)
C5—C111.527 (3)C15—H150.9300
C5—C61.531 (3)C16—C171.375 (5)
C5—H50.9800C16—H160.9300
C6—C71.524 (3)C17—C181.363 (4)
C6—H6A0.9700C17—H170.9300
C6—H6B0.9700C18—C191.368 (3)
C7—C121.522 (3)C18—H180.9300
C7—C81.526 (3)C19—H190.9300
C7—H70.9800
C1—O1—C2106.57 (13)H8A—C8—H8B108.2
C1—N1—N2112.24 (14)C10—C9—C3109.68 (15)
C1—N1—C13126.30 (16)C10—C9—H9A109.7
N2—N1—C13120.92 (15)C3—C9—H9A109.7
C2—N2—N1103.52 (15)C10—C9—H9B109.7
C14—N3—C13125.16 (19)C3—C9—H9B109.7
C14—N3—H3118.6 (15)H9A—C9—H9B108.2
C13—N3—H3114.4 (15)C9—C10—C11109.63 (16)
N1—C1—O1104.80 (15)C9—C10—C12109.81 (16)
N1—C1—S1130.78 (14)C11—C10—C12109.40 (16)
O1—C1—S1124.43 (14)C9—C10—H10109.3
N2—C2—O1112.87 (15)C11—C10—H10109.3
N2—C2—C3128.79 (16)C12—C10—H10109.3
O1—C2—C3118.31 (14)C10—C11—C5109.43 (17)
C2—C3—C9110.28 (14)C10—C11—H11A109.8
C2—C3—C4108.94 (14)C5—C11—H11A109.8
C9—C3—C4109.27 (15)C10—C11—H11B109.8
C2—C3—C8110.47 (14)C5—C11—H11B109.8
C9—C3—C8108.90 (14)H11A—C11—H11B108.2
C4—C3—C8108.96 (14)C7—C12—C10109.08 (15)
C5—C4—C3109.84 (15)C7—C12—H12A109.9
C5—C4—H4A109.7C10—C12—H12A109.9
C3—C4—H4A109.7C7—C12—H12B109.9
C5—C4—H4B109.7C10—C12—H12B109.9
C3—C4—H4B109.7H12A—C12—H12B108.3
H4A—C4—H4B108.2N3—C13—N1114.57 (16)
C4—C5—C11109.33 (17)N3—C13—H13A108.6
C4—C5—C6109.28 (17)N1—C13—H13A108.6
C11—C5—C6109.76 (18)N3—C13—H13B108.6
C4—C5—H5109.5N1—C13—H13B108.6
C11—C5—H5109.5H13A—C13—H13B107.6
C6—C5—H5109.5N3—C14—C15122.3 (2)
C7—C6—C5109.30 (16)N3—C14—C19118.8 (2)
C7—C6—H6A109.8C15—C14—C19118.8 (2)
C5—C6—H6A109.8C14—C15—C16119.0 (3)
C7—C6—H6B109.8C14—C15—H15120.5
C5—C6—H6B109.8C16—C15—H15120.5
H6A—C6—H6B108.3C17—C16—C15120.7 (3)
C12—C7—C6109.66 (17)C17—C16—H16119.6
C12—C7—C8109.99 (15)C15—C16—H16119.6
C6—C7—C8109.76 (15)C18—C17—C16120.0 (3)
C12—C7—H7109.1C18—C17—H17120.0
C6—C7—H7109.1C16—C17—H17120.0
C8—C7—H7109.1C17—C18—C19120.0 (3)
C7—C8—C3109.39 (14)C17—C18—H18120.0
C7—C8—H8A109.8C19—C18—H18120.0
C3—C8—H8A109.8C18—C19—C14121.4 (3)
C7—C8—H8B109.8C18—C19—H19119.3
C3—C8—H8B109.8C14—C19—H19119.3
C1—N1—N2—C20.20 (19)C2—C3—C8—C7179.05 (15)
C13—N1—N2—C2172.34 (16)C9—C3—C8—C759.69 (19)
N2—N1—C1—O10.44 (19)C4—C3—C8—C759.4 (2)
C13—N1—C1—O1172.06 (15)C2—C3—C9—C10178.88 (14)
N2—N1—C1—S1179.88 (13)C4—C3—C9—C1059.16 (18)
C13—N1—C1—S18.5 (3)C8—C3—C9—C1059.75 (19)
C2—O1—C1—N10.49 (17)C3—C9—C10—C1160.0 (2)
C2—O1—C1—S1179.97 (13)C3—C9—C10—C1260.2 (2)
N1—N2—C2—O10.13 (18)C9—C10—C11—C560.5 (2)
N1—N2—C2—C3177.74 (16)C12—C10—C11—C560.0 (2)
C1—O1—C2—N20.40 (19)C4—C5—C11—C1060.3 (2)
C1—O1—C2—C3177.71 (14)C6—C5—C11—C1059.6 (2)
N2—C2—C3—C99.1 (2)C6—C7—C12—C1060.7 (2)
O1—C2—C3—C9173.15 (14)C8—C7—C12—C1060.1 (2)
N2—C2—C3—C4110.8 (2)C9—C10—C12—C759.9 (2)
O1—C2—C3—C466.93 (19)C11—C10—C12—C760.5 (2)
N2—C2—C3—C8129.51 (19)C14—N3—C13—N190.8 (2)
O1—C2—C3—C852.7 (2)C1—N1—C13—N387.8 (2)
C2—C3—C4—C5179.79 (16)N2—N1—C13—N3101.2 (2)
C9—C3—C4—C559.2 (2)C13—N3—C14—C1515.3 (3)
C8—C3—C4—C559.6 (2)C13—N3—C14—C19165.89 (18)
C3—C4—C5—C1159.9 (2)N3—C14—C15—C16178.7 (2)
C3—C4—C5—C660.3 (2)C19—C14—C15—C160.1 (3)
C4—C5—C6—C760.4 (2)C14—C15—C16—C170.9 (4)
C11—C5—C6—C759.5 (2)C15—C16—C17—C180.9 (4)
C5—C6—C7—C1260.2 (2)C16—C17—C18—C190.0 (4)
C5—C6—C7—C860.7 (2)C17—C18—C19—C141.0 (3)
C12—C7—C8—C360.39 (19)N3—C14—C19—C18177.80 (19)
C6—C7—C8—C360.3 (2)C15—C14—C19—C181.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3···S1i0.87 (1)2.62 (1)3.4763 (19)170 (2)
C13—H13A···Cg1ii0.972.833.549 (2)132
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC19H23N3OS
Mr341.46
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)14.1326 (13), 7.1179 (5), 18.3685 (16)
β (°) 105.546 (10)
V3)1780.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.863, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12073, 4115, 2827
Rint0.033
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.131, 1.03
No. of reflections4115
No. of parameters221
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.21

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3···S1i0.872 (10)2.615 (10)3.4763 (19)169.7 (18)
C13—H13A···Cg1ii0.972.833.549 (2)132
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1, y+1, z+2.
 

Footnotes

Additional correspondence author, e-mail: elemam5@hotmail.com.

Acknowledgements

The financial support of the Deanship of Scientific Research, Salman bin Abdulaziz University, Alkharj, Saudi Arabia, is greatly appreciated. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAl-Tamimi, A.-M. S., Alafeefy, A. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o730.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEl-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107-5113.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl-Emam, A. A. & Ibrahim, T. M. (1991). Arzneim. Forsch. Drug. Res. 41, 1260–1264.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds